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NOTE ON HYPERBOLIC PARTIAL DIFFERENTIAL
EQUATIONS

BOGDAN RZEPECKI

1. Introduction

Let f be a continuous function on [0, a] X (— =, %) such that |f(t, x)|<M "
and (" - |f(t, x)=f(t, y)] < L-|x—yl|% where M>0, L>0, p>—1,¢=1 and r
are constants with q(p+1)—r=p and 2M)*"'L <(p+1)‘. Under thc above
assumption O. Kooi [7] (cf. also [10]) proved the uniqueness of a solution of the
equation x' = f(t, x) satisfying the condition x(0)= x,, and the uniform converg-
ence of successive approximation to this solution. (We note that the firs result of
the above type was obtained by A. Rosenblattin [12].) For the Darboux problem
for hyperbolic differential equations similar theorems were obtained by J. S. W.
Wong [17] and V. Durkovié& [3]—[6].

The purpose of the present paper is to give some results on the following
hyperbolic partial differential equation

3%z

(+) ax—a;=f(xv ¥ 2),

where f is a continuous function satisfying the Kooi type conditions.

We consider the questions of the existence of the unique solution (as a limit of
successive approximations) and the continuous dependence of the Darboux
problem solution on the right-hand side for the above equation. The method used
here is hased on the concept due to Luxemburg [9] of the “generalized metric
space” (see aldo [10], [11], [16], [3]—[6], [15], [17]). Our results are connected
with Bielecki’s method ([1], [2]) of norm changing, and extend the facts of [7],[10],
[16], [13], [14], [17]. '

2. Preliminaries

Let X be a non-empty set and let d be a function defined on X X X with the
following conditions:
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(L1) 0<d(x, y)<x,

(L2) d(x,y)=0if and only if x=y,
(L3) d(x, y)=d(y, x),

(L4) d(x, y)sd(x, z)+d(z, y)

for all x, y, z in X.

A generalized metric space (X, d) is a pair composed with a non-empty set X
and a distance function d satisfying the above axioms (L1)—(L4). If further every

d-Cauchy sequence in X is d-convergent (i.e., lim d(x,, x,)=0 for a sequence
p.q—>

(x») in X implies the existence of an element x, € X such that lim d(x,, Xo) =0),

then X is called a complete generalized metric space.

Moreover, we shall use the notion of the £*-space [8]:

The set X is called an #*-space if a certain class of sequences in X (named
elements of this class are convergent sequences) is distinguished in such a way that

for every sequence (p.) from this class there exists an element p =1lim p, in X

having the following properties :
1° if lim p,=p and k;<k;<..., then lim p,, =p;

2° if p,=p for all n=1, then lim p,=p;

3° if the sequence (p.) is not convergent to p, then it contains a subsequence
(p«.) in which every subsequence fails to converge to p.

Let X and Y be two £*-spaces. A mapping f of X into Y is called continuous at
the point xoe X if for each sequence (x,) in X converging to x, we have

lim f(x.)=f(xo). Further, a mapping f is called continuous (on the ¥*-space X) if

it is continuous at each point of X.

Generally, the theorems on the existence of the unique solution to the initial--
value problems for the differential equations are proved with the help of either
a fixed-point theorem of the Banach type or successive approximations in various
forms. The proof of our main result will be based on the following theorem of the
Banach fixed-point principle type:

Proposition (cf. [16]). Let (X, d) be a generalized complete metric space, let
Toand T, (n=1, 2, ...) be mappings of X into itself such that lim d(T.x, Tox)=0

for all x in X. Assume, moreover, that there exist constants ¢ >0, 0<k <1 and an
element z,€ X such that
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d(z0, Tazo)<e, d(Twx, T.y)<k-d(x,y)

for all n=1 and x, y e X with d(x, y)<e.
Then the equation T,.x=x (m=0, 1, ...) has a unique solution u,, € X such that

there exists an ¢-chain joining zo and u,.*) , and lim d(u., uo)=0. Further, every

sequence of successive approximations x{™ = ,,.x(’”’ (n=1,2,...), where x§™ is an

element such that there exists an e-chain joining z, and x§™, is d-convergent to this
solution u,,.

3. Assumptions and notations

Let us put G=(0, a]x (0, b], P=[0, a] X[0, b] and Q=P X (— », ). Let
o€ C'[0, a] and T € C'[0, b] be functions such that ¢(0) = t(0). Assume, moreov-
er, that A is a bounded function on P and A(x, y)>0 for all (x, y) in G.

These assumptions remain valid throughout the paper and will not be repeated in
formulations of particular results.

Let us denote:

X — the set of all real continuous functions z on P such that z(x, 0) = o(x) for
0<x<a and z(0,y) = 1(y) for O0<y<b;

by ¥ — the set of real continuous functions f on Q such that

|f(x, y, 2)|<8(x,y) forall (x,y,2)eQ,
If(x’ Y, u)_f(x’ Yy, v)|$L,(x, Y) |u_v|q'

for all (x, y) € G and — » <u, v <, where § is a non-negative integrable function
on P which does not depend on f, L;: P—[0, + ] is a function and g,>1 is
a constant which may depend on f. -

Let us put:

A = Sup —A(xl, 7 J:Lyé(u, v)dudv;
2°(x, y)=o(x)+1(y)— cx(0)+£‘Ly S(u, v)dudv for(x, y)eP;
Ui(x, y)=(A(x, y))¥ - Ly(x, y) for(x, y)eP;

x y .
B;= f Us(u, v) du dv.

1
s L A(x, y)fo 0

* A finite sequence xo, x4, ..., X, Of points of X is called e-chain joining xo and x, if d(x,—,, x,)<e for
i=1,2,..,q
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The hyperbolic equation (+) with the initial conditions
2(x,0)=0(x) for O0<y<ua,

2(0, y)=t(v)for 0<y<bh

is cquivalent to the integral equation
2(x, y) = q@olx, y)+j ff(u. n, z(u, v))dudo,
0 Jo

where ¢o(x, v)=o(x)+ 1(y) — 0(0). The successive approximations of the solution
to the above problem with fe 5 are defined by

) w, (X, y) = qa(x, y)+j‘fv/'(u, v, w(u, 1)) du de

(j=0.1,2...),
where wq is an arbitrary function in X such that there exists a 2A -chain joining z°

and w,.
We define on the set ¥ a distance funcion d defined in the following way

N . [z(x, y) = w(x, V)|
d(z, w) =R A, v) )

z2(x, y)—w(x, y)| < d(z. w). This shows that

ave - (< i
We have: ((ﬂx)r:(; Ax, y)) Sup,
the d-convergence is generally stronger than the uniform one. Therefore, by
a slight modification of the proof from [9] (cf. [11]) we can prove that (Y. d) is
a generalized complete metric space.

4. Main result

Let us put
T(f, z) (x. ¥y)= qo(x, y)+f f_/'(u, v, z(u, 1)) du de

for fen and zeld, where qo(x,y) = o(x)+T1(y)—0(0). The set 5 will be
considered as an #*-space. Moreover, suppose that for every fixed z in ¥ the
transformation T(-, z) maps continuously the #*-space  into (X, d).

Theorem. Let A <x and let f € . Suppose that the function U, is integrable on
P and (2A)*~"- B,<1. Then there exists the unique function z, € X satisfving the
equation (+) on P. Moreover, there exists a 2A-chain joining z° and z;, and every
sequence of successive approximations (:) is d-convergent to this z;.

Next assume that each U, (f € ) is integrable on P and k = sup 2A)" ' B, <.
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Then the function f — z; maps continuously the ¥*-space  into (X, d).
Proof. Let f,, e (m=0, 1,2, ...) be such that lim f, =f,. We define a trans-

formation T, as z — T(f., z). Then this T,, (m=0, 1, ...) maps X into itself, and
for each ze X d(T.z, Toz)—0 as n— x.

x [y
Since |2°(x, y) — (Tz®) (x, y)| <2 f f O(u, v) dudv, and so d(z°, T,z") <
0 Jo

2A for all n=1. We now prove that d(T.z, T,w) < k-d(z,w) (n=1,2,...) for
all z, we X such that d(z, w)<2A.

Indeed, for (x, y)e G, n=1 and z, we X with d(z, w)<2A we have

Xy
[(T.z) (x, y) = (T.w) (x, y)| SJ j L, (u, )| z(u, V)= w(u, v)|% du dn <
0 Jo
xry
<d(z, w) f j A(u, v) - Ly (u, v) - |z(u, v)=w(u, v)|* " dude <
0 Jo

x [y
<(2A)"' - d(z, w) j J’ U,.(u, v)du dv,
0 Jo
whence
d(T.z, Tw)<(2A)*" By, - d(z, w)<k - d(z, w).

Consequently, our Proposition is applicable to the mappings T,. and the proof is
finished.

x [y
Remark. Let Sup, A ((x, y))™ f f A(u, v) du dv < ». Assume, moreover,
x, y)e o Jo

that the set ;¥ is considered as an f*-space, where lim f, = f, means that
P nm

(x. y)eGA.( )If(x Y Z) fo(x Y, Z)l'—’O as n—o®

for every compact € in the Euclidean space. Then T(-, z) (z is fixed in X) maps
continuously § into X.

Indeed, fix z in X and let (f.) be a sequence of ;¥ converging to f,. Then

(),L’[fn(u, v, z(u, v))— fo(u, v, z(u, v))] du dv| <

U, V,8)— folU, v, s !
< sup ¢ /\()u,/:)§ ) LJ:) A(u, v) du dv

(u,v)eG
aez[P]

for (x, y) in G, whence
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(u, v, 2(u, v)) = fo(u, v, 2(u, v))] du do| <

sup 3
(x.y)eG A

x (u, v, (u, v, s)|
= l ,v)ydudv -
(x y)eG A(X )’) o Jo (u U) uav (us}yj)lelc A(ll, 1')
sez|P

and therefore d(T(f, z), T(fo, 2))—0 as n— oo,

Now we are going to give some corollaries from the above results. Let us denote :

by &o — the set § with g;=q and 6(x, y) = M- (x-y)?, Li(x,y) = L(x-y)™"
on P, where M>0, L>0, p>—1, g=1 and r are constants such that
qlp+)—p=r;

by &, — the set § with ¢, =1 and L,(x, y)=A; on P, where A, >0 is a constant
(depending on a function fe §);

by &, — the set &, with 6(x, y)=C on P, where C>0 is a constant;

by X, — the generalized metric space X with'a distance function d generated by
A(x,y) = (x - y)**'on P, where p is a constant from the definition of the set ¥, ;

by Cy(P) — the set X with the usual supremum metric.

The set 5, be considered with the convergence defined as that in the above
Remark in the case of A(x, y) = (x-y)"*'. Moreover, we shall deal with the sets
N1, ov2 as F*-spaces endowed with the almost uniform convergence and pointwise
convergence on Q, respectively.

Corollary 1.Suppose that (2M)*™'-L<(p+1)*. Then for each fe &, there
exists a unique z; € X, satisfying the equation (+) on P and, moreover, the function
f +— z;, which maps §, into X,, is continuous.

Proof. Let us put A(x. y)=(x-y)**! for (x, y) € P, where p is a constant from
the definition of the set s, Then

sup( ),,+1 ff M- (u-v) dudo= (TMl)Z

-0 ) — . __L . +1
2, ) = o)+ 7(y) = 0(0)+ s (¥ on P
Further, for f in %, we have:

Ur(x, y)=L(x - y)***""=L(x - y)” on P,

1 = L
B, =sup ——1 ) dudv=—".
s =sup Oy J; L L(u-v) dudv TS
Since 2M)*™'- L<(p+1)*, and so

e \q—1 =(2M q_lL
h=sup (2A) By =" 3y

The application of our Theorem and Remark completes the proof.

<1.
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Corollary 2. For an arbitrary fe§: (i=1, 2) there exists a unique z; € Co(P)
satisfying the equation (+) on P. Moreover, if sup {Ay: fe §:} <, then f — z
maps continuously ¥; into Co(P).

Proof. Let us put A(x, y)=exp (p(x +y)) for (x, y) € P, where p is a positive
constant such that p>>sup {A;: f€¥.}.

The distance function d generated by the above A is equivalent to the original
supremum metric of the space of continuous functions on P. For feF: (i=1, 2)
and (x, y)eP

Ui(x, y)=A; - exp (p(x +y)) on P,
x [y
B; =sup exp (—p(x+y))ff Ui(u, v) du dv
(x.y) oJo

and

x(y
k =sup B;=sup A;-sup exp (—p(x+y))- f f exp (p(u+v))dudvs
fedki fe (x,y) 0oJo
<p~?-sup A;<1.
feki
Consequently the case i =1 is obvious. Next, let us fix z in Cy(P), let f, € ¥
(n=1, 2, ...) and let the sequence (f,) converge pointwise to f,. Then the Lebesgue

bounded convergence theorem implies that lim T(f,, z) (x, y) = T(fo, 2) (x, y)
on P. By an equicontinuity of a sequence (T(f., z)) on the compact P,
lim T(f., z) (x, y) = T(fo, z) (x, y) uniformly on P. Finally, the application of our

Theorem completes the proof.
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3AMETKA OB I'MIEPBOMYECKHX OTUPPEPEHUHNAILHbIX
YPATHEHHUSAX BTOPOI'O TMOPAOKA (I)

B. Xeneuku

Pesome

B nanHO#W paGoTe paccMaTpuBaeTCsl npuMeHeHHe 06O6LEHHOro npuHuMna baxaxa HenmoaBHXHOW
TOUKM K McciefoBasmio 3aaun [1ap6y ans ypasHeHus Bupa 3°z/3x 3y = f(x, y, 2) npu ycnosusix Tuna
Koot [7]. MoayueHnbie pe3yabTaThl O CyLIECTBOBAHHM €AMHCTBEHHOTO PELLEHUS CBS3aHbl C METOOM
Beneikoro o u3MeHeHMM HOpMbl B Teopuu auddepeHumanbhbix ypasHenuit. Kpome Toro, Mbi
MOKAXEeM, YTO Hallia 3aaya MocTasBjleHa KOPPeKTHO. [Ins 3Toil uesu B MHOXECTBAX MPaBbIX 4YacTen
U 'PAHUYHBIX yCJ’lOBMﬁ BBE/JICH MOHATHUSA Npeaena nocaefoBaTEe/IbHOCTH TOYCK M TEM CaMbIM HA/ICTIUM KX
CTPYKTYpHO#I £*-npocTpaucTsa.
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