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Math. Slovaca 31,1981, No. 3, 243—250 

NOTE ON HYPERBOLIC PARTIAL DIFFERENTIAL 
EQUATIONS 

BOGDAN RZEPECKI 

1. Introduction 

Let f be a continuous function on [0, a] x ( - oc, cc) such that |/(t, x)\ ^ M tp 

and tr • \f{t, Jc)-/(r, y)\ ^ L \x-y\\ where MX) , L>(), p > - l , </X and r 
are constants with </(p +1) — r = p and (2M) t , _ ,L<(p + IT- Under the above 
assumption O. Kooi [7] (cf. also [10]) proved the uniqueness of a solution of the 
equation x' =f{t, x) satisfying the condition x{()) = x(h and the uniform converg­
ence of successive approximation to this solution. (We note that the firs result of 
the above type was obtained by A. Rosenblatt in [12].) For the Darboux problem 
for hyperbolic differential equations similar theorems were obtained by J. S. W. 
Wong [17] and V. Durkovic [3]—[6]. 

The purpose of the present paper is to give some results on the following 
hyperbolic partial differential equation 

( + ) ^j- = f(x,y,z), 

where / is a continuous function satisfying the Kooi type conditions. 
We consider the questions of the existence of the unique solution (as a limit of 

successive approximations) and the continuous dependence of the Darboux 
problem solution on the right-hand side for the above equation. The method used 
here is hased on the concept due to Luxemburg [9] of the "generalized metric 
space" (see aldo [10], [11], [16], [3]—[6], [15], [17]). Our results are connected 
with Bielecki's method ([1], [2]) of norm changing, and extend the facts of [7], [10], 
[16], [13], [14], [17]. 

2. Preliminaries 

Let X be a non-empty set and let d be a function defined on X x X with the 
following conditions: 
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(LI) 0^d(x, y)^oo, 
(L2) d(x, y) = 0 if and only if x = y, 
(L3) d(x,y) = d(y,x), 
(L4) d(x,y)^d(x, z) + d(z,y) 

for all x, y, z in X. 

A generalized metric space (X, d) is a pair composed with a non-empty set X 
and a distance function d satisfying the above axioms (LI)—(L4). If further every 

d-Cauchy sequence in X is d-convergent (i.e., lim d(xp, xq) = 0 for a sequence 

(xn) in X implies the existence of an element x0eX such that lim d(xn, x0) = 0), 

then X is called a complete generalized metric space. 
Moreover, we shall use the notion of the !£*-space [8]: 
The set X is called an 5£*-space if a certain class of sequences in X (named 

elements of this class are convergent sequences) is distinguished in such a way that 

for every sequence (pn) from this class there exists an element p = lim pn in X 
n—•oo 

having the following properties: 

1° if lim pn=p and k!<k2<..., then lim Pkn = P', 
n—»oo rt-+°° 

2° if pn = p for all n ^ 1, then lim pn = p\ 
n—*oo 

3° if the sequence (pn) is not convergent to p, then it contains a subsequence 
(pkn) in which every subsequence fails to converge to p. 

Let X and y be two i?*-spaces. A mapping / of X into y is called continuous at 
the point jc0eX if for each sequence (xn) in X converging to x0 we have 

lim f(xn) = f(x0). Further, a mapping / is called continuous (on the if*-space X) if 
n—»oo 

it is continuous at each point of X. 
Generally, the theorems on the existence of the unique solution to the initial-

value problems for the differential equations are proved with the help of either 
a fixed-point theorem of the Banach type or successive approximations in various 
forms. The proof of our main result will be based on the following theorem of the 
Banach fixed-point principle type : 

Proposition (cf. [16]). Let (X, d) be a generalized complete metric space, let 

T0 and Tn (n = 1, 2, ...) be mappings of X into itself such that lim d(Tnx, TOJC) = 0 
n—»oo 

for all x in X. Assume, moreover, that there exist constants e>0,0^k<\ and an 
element z0eX such that 
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d(zo, TnZo) ^ e, d(T„x, T„y) ^ k • d(x, y) 

for all n ̂  1 and JC, y e X with d(x, y) ^ c. 
Then the equation Tmx = x (m = 0, 1, ...) has a unique solution umeX such that 

there exists an E-chain joining Zo and um*) , and lim d(un, u0) = 0. Further, every 

sequence of successive approximations xn
m) = Tmxn

m\ (n = 1, 2, ...), where x0
m) is an 

element such that there exists an e-chain joining Zo and x0
m), is d-convergent to this 

solution um. 

3. Assumptions and notations 

Let us put G = (0,a]x(0,b], P = [0, a]x[0, b] and Q = Px(-oo, oo). Let 
o e Cl[0, a] and T e Cl[0, b] be functions such that a(0) = T(0). Assume, moreov­
er, that A is a bounded function on P and X(x, y )>0 for all (x, y) in G. 

These assumptions remain valid throughout the paper and will not be repeated in 
formulations of particular results. 

Let us denote: 
X — the set of all real continuous functions z on P such that z(x, 0) = o(x) for 

O^jc^a and z(0, y) = r(y) for O ^ y ^ b ; 
by Jv — the set of real continuous functions f on Q such that 

|/(*,y,z)l^<5(*,y) for all (x,y,z)eQ, 
\f(x, y, u)-f(x, y, v)\^Lf(x, y) • | I I - V | * 

for all (JC, y) e G and - oo < u, v < °°, where 6 is a non-negative integrable function 
onP which does not depend on/ , L,: P->[0, -foe] is a function and q I^l is 
a constant which may depend on /. 

Let us put: 

1 fxfy 

A = sup -r-7 r 6(u,v)dudv; 
(X,y)KGX(x, y) Jo Jo 

z°(x, y) = o(x) + t(y) - o(0) + [ T 8(u, v) du dv for (x, y) e P; 

U,(x, y) = (X(x, y))* • L,(x, y) for (x, y)eP; 

Bf= sup -r-7 r I [//(w, v) dw dv. 
7 ( M ^ I ^ , y) J0 J0

 / v ' 

* A finite sequence x0, xu ...,*, of points of X is called e-chain joining x0 and xq if d(jt._i, JC,)^ e for 
i = l , 2 q. 
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The hyperbolic equation ( + ) with the initial conditions 

z(xj)) = a(x) for O^ .v^ / / , 

z(lly) = T(y)for O^y^h 

is equivalent to the integral equation 

z(x, y) = q\)(x, y)+ \ I / ( / / , /», z(u, v)) du d/», 

where ((t)(x\ y) = o(x) + r(y) — o(0). The successive approximations of the solution 
to the above problem with feJs are defined by 

n wlhl(Xiy) = ((\í(x,y)+l I /"(//, i\ w,( / / , / ')) d// d r 

(y = 0 . ! , 2 , . . . ) , 
where vv0 is an arbitrary function in X such that there exists a 2A-chain joining ^° 
and H\). 

Wc define on the set /v a distance funcion d defined in the following way 

// . | : (x , y ) - iv(x, y)\ 
d(z,w)= sup ^ — Y 7 \ — • 

(x.yfeG A ( X , V) 

We have: ( sup A(x, y)) ' • sup \z(x, y)- vv(.v, y)\ ^ <7(z, vv). This shows that 
( x . V)<F G (x, x f e P 

the d-convergence is generally stronger than the uniform one. Therefore, by 
a slight modification of the proof from [9] (cf. [11]) we can prove that (A\ d) is 
a generalized complete metric space. 

4. Main result 

Let us put 

T(f, z) (x, y) = cf0(x, y)+ f f / ( « , ,., -(,/, ,.)) di. dr 
Jo Jo 

for /G^V and ^eA\ where cp{)(x, y) = o(x) + r(y) — o(Q). The set /y will be 
considered as an ^*-space. Moreover, suppose that for every fixed z in A' the 
transformation T( , z) maps continuously the r/*-space ^ into (A\ d). 

Theorem. Let A < *> and let fets. Suppose that the function U, is integrable on 
P and (2A)lif~] B,<\. Then there exists the unique function z, e X satisfying the 
equation (+) on P. Moreover, there exists a 2A-chain joining z° and zh and every 
sequence of successive approximations (...) is d-convergent to this z,. 

Next assume that each Uf (f e Jy) is integrable on P and k = sup (2A)'if x Bt<\. 
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Then the function f »-> zf maps continuously the t£*-space Jv into (X, d). 

Proof. Let fmeJs (m = 0, 1, 2, ...) be such that lim /,, =/„. We define a trans-

formation Tm as z •-» T(/m, z). Then this Tm (m =0, 1, ...) maps .¥ into itself, and 
for each zeX d(Tnz, T„z)—>() as tz—>*>. 

Since |z°(*.y) " (Tnz
0)(x,y)\^2- {* {'d(u, v) du dv, and so d(z\ Tnz") ^ 

Jo Jo 

2A for all n ^ 1 . We now prove that d(Tnz, Tnw) ^ k d(z, w) (H = 1, 2, ...) for 
all z, w e £ such that d(z, w)^2A. 

Indeed, for (x, y)eG, n^\ and z, w e * with d(z, w)^2A we have 

\(TnZ) (x, y)-(Ttlw) (x, y)\^\*\\.("> ")|z(w, I O - W ( M , i')|q'"dM d r ^ 

^d (z , w)- I fyA(zM;)LA(N, i>)- |z(w, lO-wfa- iOl^clMdr-ss 
Jo Jo 

^(2A)^~X • d(z, w) • fX ^ Ufn(u, v) du dv, 
Jo Jo 

whence 

d(TnZ, THw)^(2Ay*-1 • Bfn • d(z, w ) ^ k • d(z, w). 

Consequently, our Proposition is applicable to the mappings Tm and the proof is 
finished. 

Remark. Let sup (l((x, y))"1 • k(u, v) du dt><oo. Assume, moreover, 
( * .y ) e G Jo Jo 

that the set Jy is considered as an .'/*-space, where lim /„ =/0 means that 
n—>» 

S U P n v vJ/"(*>y>z)~/o(*»y>*)l->0 a s "-^°° 
( t ,y )eG A ^ x , y j 

for every compact Q in the Euclidean space. Then T(,z) (z is fixed in X) maps 
continuously Jy into .¥. 

Indeed, fix z in ,¥ and let (fn) be a sequence of Jy converging to /0. Then 

n [fn(u, v, z(u, v))-f0(u, v, z(u, v))\ du dv ^ 
) 

cnn \fn("^V^)-fo(u,V,s)\ fXfy
Ui 

sup T77Tt\ A(w,v)dMdt; 
u, u)eG A^U, i>j Jo Jo 
( 
uez[P] 

for (x, y) in G, whence 
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S U P )(r v ) 
(*. y)eG A{X, y) 

n [fn(u, v, z(u, v))-f{)(u, v, z(u, v))] du d 
> 

1 T P w ^ , ^ \f„(u,V,s)-f„(u,V,s)\ 
S U P I < W . A ( " ' W ) ŮU d " ' S U P IuTv{ 

(jt.y)eO A^JT, y ^ J o Jo («, i,)6G M t » , ' ) 

and therefore d(T(fn, z), T(/(), z))-^0 as rz—>oo. 
Now we are going to give some corollaries from the above results. Let us denote: 
by Jvo — the set Jv with qf = q and d(x, y) = M (x y)p, Lf(x, y) = L(x • v)" f 

on P, where M > 0 , L > 0 , p > —1, q^\ and r are constants such that 
q(p + \)-p = r\ 

by Tvi — the set Jv with qf = 1 and L/(x, >') —A/ on F, where A , > 0 is a constant 
(depending on a function /e?Vi); 

by 7?2 — the set TVi with <5(x, y) = C on P, where C > 0 is a constant; 
by X{) — the generalized metric space X with a distance function d generated by 

k(x, y) = (x • y ) p + 1 on P, where p is a constant from the definition of the set Js0; 
by Co(P) — the set X with the usual supremum metric. 

The set Jv() be considered with the convergence defined as that in the above 
Remark in the case of X(x, y) = (x • y) p + 1 . Moreover, we shall deal with the sets 
Isi, 7?2 as ^*-spaces endowed with the almost uniform convergence and pointwise 
convergence on Q, respectively. 

Corollary l.Suppose that (2M)q~l - L<(p + \)\ Then for each / e f t , there 
exists a unique zf e X0 satisfying the equation ( + ) onP and, moreover, the function 
f *-* z.f, which maps <v0 into X{), is continuous. 

Proof. Let us put A(x, y) = (x • y) p + 1 for (x, y) e P, where p is a constant from 
the definition of the set Jvo. Then 

A = s u p ; ғ м ' I M• (u • v)p du di 
o(xy)p hh 

M 

(p + lf 
M 

z"(x,y) = o(x) + T(y)-o(0) + j—r[y(xy)P+l on P . 

Further, for / in !¥Q we have: 

U,(x, y) = L(x-yy<p+l)-r=L(xy)p on P, 

B/=su
c
p (x-h^[[L{u •v)p du dv=(7+l?-

Since (2My~x • L<(p + \)2\ and so 

k=sup(2Ay-'Bf =
 (f^q~^<\. 

The application of our Theorem and Remark completes the proof. 
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Corollary 2. For an arbitrary /ejy, (i = l, 2) there exists a unique zfeC0(P) 
satisfying the equation ( + ) on P. Moreover, if sup {Af: fe &•} < <*>, then f i-> zf 

maps continuously 7?« into C0(P). 
Proof. Let us put A(JC, y) = exp (p(x + y)) for (JC, y)eP, where p is a positive 

constant such that p2>sup {Af: / e Jv«}. 
The distance function d generated by the above A is equivalent to the original 

supremum metric of the space of continuous functions on P. For / e & (/ = 1, 2) 
and (JC, y)eP 

Uf(x,y) = Arexp(p(x + y)) on P, 

Br = sup exp (-p(jc + y)) \ Uf(u, v) du dv 
(x,y) Jo Jo 

and 

k=sup B/ = sup Af sup exp (—p(x + y)) • I J exp (p(u + v)) du dv^ 
fefii feX, (x,y) J o J o 

^ p ~ 2 s u p Af<\. 
feXi 

Consequently the case / = 1 is obvious. Next, let us fix z in C0(P), let /„ e Jy2 

(n = 1, 2, ...) and let the sequence (/rt) converge pointwise to /0. Then the Lebesgue 

bounded convergence theorem implies that lim T(fn, z) (x, y) = T(/0, z) (JC, y) 

on P. By an equicontinuity of a sequence (T(/rt, z)) on the compact P, 

lim T(/rt, z) (JC, y) = T(/0, z) (x, y) uniformly on P. Finally, the application of our 
rt—•» 

Theorem completes the proof. 
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ЗАМЕТКА ОБ ГИПЕРБОЛИЧЕСКИХ ДИФФЕРЕНЦИАЛЬНЫХ 
УРАГНЕНИЯХ ВТОРОГО ПОРЯДКА (I) 

Б. Жепецки 

Р е з ю м е 

В данной работе рассматривается применение обобщенного принципа Банаха неподвижной 
точки к исследованию задачи Дарбу для уравнения вида д2г/Эх Эу = /(.V, у, г) при условиях типа 

Коой [7]. Полученные результаты о существовании единственного решения связаны с методом 

Белецкого о изменении нормы в теории дифференциальных уравнений. Кроме того, мы 
покажем, что наша задача поставлена корректно. Для этой цели в множествах правых частей 

и граничных условий введен понятия предела последовательности точек и тем самым наделим их 

структурной ^-пространства. 
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