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FUNCTIONS OF MEASURES AND
A VARIATIONAL PROBLEM OF THE TYPE OF
THE NONPARAMETRIC MINIMAL SURFACE

JOZEF KACUR—IJIRI SOUCEK

Introduction
Let us define the functional
J(u, Q)=j [y, ... ue) dx
fo]

on the space W1(£), where f is a continuous, non-negative, convex function
defined on Ep, for which there holds

f(x)<C@1 +|x|), xeEn.
Let us consider the following variational problem: given any function uoe W;(£2),

to find the function u € uo+ W1(£) such that J(u) = infﬁ,ll(v).
UV E€up+ 1

Since the ball in the space W; is not weakly compact, direct methods cannot
usually be used here. However, it is possible to look for the minimum on a larger
space of functions W,(£2)> Wi(£2), which does have a compact ball in a weak*
topology (for the definition and properties of the space W, the reader is referred to
[7], the results from this work will be often used in this paper). There remains the
problem to extend the functional J by any natural (and reasonable) way to the
whole space W}, (resp. to the space Wi+ W.). Such a problem was investigated in
[8], there are two posibilities of such extending:

F((u, a), Q) =inf {lim J(un, 2);
" up—(u, @) in W, u,e Wi}

for (u, a)e W, and
Fi((u, @), Q)=inf {lim J (un, 2);

un—(u, @) in Wi, un €(u, a)+ w,, u,e Wi}
for (u,a)e Wi+ W,.
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It is possible to prove that F;=F=J on Wi and that F is weak* lower
semicontinuous on W, (resp. F; is weak* lower semicontinuous in uo+ W2 for all
uoe Wi) — see [8].

The functional F is of interest because it is the greatest (in the sense of values)
extension of J on W, which is weak* lower semicontinuous (the same is true for F,
on uo+ Wi, uoe Wi).

Now (as in [8] for a more general case) we can find in the usual way the solution
of our variational problem for the functionals F and F,.

The handling with these functionals F, F, is difficult, for their definitions are very
abstract. The aim of this work is to express the functional F analytically by means
of a “function of measures” (see Sec. 1) and to investigate on this base the
functional F and the corresponding variational problem. In Section 1 (§ 1 and § 2)
we define the function of measures f(a, A), which is again measure, there is proved
the weak lower semicontinuity of the measure f(a, A) with respect to a (in some
sense), further, we prove there the possibility of integral representation

f_(a,A)(E)=Lf(Z—:,%)dv, EcQ, v=l|a|+i

and other properties of a function of measures.
In section 2, § 3 there is shown the analytic expresion of the functional F (there A
denotes the Lebesque measure)

F((u, a), 2)=f(a, A)(Q)

and other explicit expressions for F.
In § 4 there is proved the main result, F = F;, from which, among others, two
important consequences follow:

1) If u € Wi is the solution of our variational problem on the space W3, then it is
also the solution of the same variational problem in the extending formulation
with the functional F on the space W,.

2) If ueW, is the solution of the extending variational problem with the
functional F on the space W, and with the boundary condition u'e L,(39),
then the paradox situation F((u, a), Q)< inf J(u, Q), the trace of

uewj
u|an=u'

(u, a) is equal to u’, cannot happen. It means that the variational problem with
the functional F on the space W, is a reasonable one in some sense.

By means of results from § 3 and § 4 we prove in § 5 the unicity of the solution of
this variation problem and in § 6 the maximum principle.
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Notation

f — a continuous function, which is non-negative and convex on Eyx and for
which there holds the growth condition

fla)<C(+|al|), aceEn.
C — a constant depending only on the function f and
Ial = ,a1, + ...+ |a~|.

X — a compact set in En.

L,.(X) — the space of all Borel o-additive measures a, which are defined on X
with norm |||t = |a|(X)<, where |a| is the total variation of a.

In the space L,(X) we shall define the weak convergence by

a,—a in L,(X) iff f wda,.—»f @ da for all ¢ € C(X)
P, X

L (X)=[L.(X)]" — the space of N-tuples of measures a = (aj, ..., anx) with the
norm |a|(X), |a|=|ai|+ ...+ |a~| and with the weak convergence defined as the
weak convergence in each component.

A — fixed non-negative measure from L,(X).

B — the family of all Borel subsets of Ey.

B(X)={EeB; EcX).

L,(X, v) — the space of all Borel functions, which are integrable by the measure
veL,(X), v=0.

1. A function of measures

§ 1. Definition of the function of measures
and its weak semicontinuity

Definition 1. For a e En, b >0 let us set

fa.b)=f (50,

f(a,0)=lim f(a, b).
fra)—£(O)
r

Remark 1. With regard to the convexity of f, the expression

f(ra)
r

nondecreasing as r — © and hence lim exists. Thus, f(a, 0) is well-defined for

o

each a € En.
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Theorem 1.
1) f(a,b)<C(la|+|b]) for all a € Ex, b=0.
2) f(ka, kb)=kf(a, b) for all a € Ex, b=0, k=0, i.e. f(0,0)=0.
3) The funct:on fis contmuous on En X (O 00)

4) f (Za‘, Zb ) Ef(a,, b.) provided Za,, Zb are convergent, where a; € En,

bi/O, i= 1, 2,
5) If(al, b)—f(ab blsclal_azI for all a,, a:GEN, b=0.
Proof. Assertions 1) and 2) are evident. First we shall prove 4). Let £ >0 be

a positive number. Let us choose & >0 such that Zs,- < ¢. There exists d >0 such

i=1

that for 0 <n <¢d there holds
f_(Zai, Zb.-)sf (Eai, Zbi+n>+£
i=1 i=1 i=1 i=1
There exist 6, >0, i=1, 2, ... such that 26i<6 and
i=1

fla:, b +6,)<f(a:;, b)+& for i=1,2,..

From the convexity of f we conclude

F(San Shy<f (San oo+ o)+ e =

Za

————— + —
f(z(a‘+6)>2(b+6) €=
b1+61 a, bz+67_ a»
- : S(bi+6)+e<
f(Z(a,-+6i) b:i+0 T S(b+6) batos ) E( )tes

b|+(§1 a b2+(52 a: -
<(so7oy! 5770, )+>:(bi+5i)) f (bz+a)+‘”) Zbito)tes

=

i

f (b,i‘a, )(bi+6i)+£=‘.21f—(aiy bi+6‘)+£$

Ma

f_(a,-, b,) + 28,

]
-t

from which the assertion 4) follows.
Now we prove the assertion 3). If

a,—»0, b,—»b, a,a.€En, b,b,=0,
then

f(a., b)=f(a +a,—a, b, + 0)<f(a, b,)+f(a.—a, 0),
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f(a, ba)=f(a.+a —an, b +0)<f(a., b)) +f(a —a,, 0).
These inequalities imply
lf(any bn)_f-(a’ bn)lsCIll —a,.],

Using the continuity of f, we obtain |f(a, b.)—f(a, b)]—0, from which the
assertion 3) follows. The assertion 5) can be proved by reason of the assertion 1).

Definition 2. Let us set

%(E)={{Ei}‘zl;
E.nE;=¢ foreach i#j, VE,=E, E, e 3}

for each E € B(X). Suppose a =(ay, ..., an) € L}(X).
For E € B(X) let us define
fla, A)(E)= &3up > f(a(E:), A(E)),

;Y eR(E) i=1

Remark 2. The correctness of this definition follows from the consequence of
Theorem 6. In definition 2 it is evidently sufficient to consider the supremum only
on the finite decompositions of the set E.

Lemma 1. Suppose E € B(X), {E:}, {F;} e R(E) and let us assume that the
decomposition {F;} is more fine than {E;}. Then

2f(a(ED, “E"))si;f(a (F), A(F))).
Proof. From the assertion 4) of Theorem 1 we conclude
f@E),AENS 3 F@E)AFE), i=1,2, ..

Adding i =1, 2, ... we obtain Lemma 1.

Theorem 2.
1) f(a,A)E)<C(|a|(E)+A(E)) forall E € B(X), where |a|=|a|+ ... + |an].
2) f(ka, kA)(E)=kf(a,A)(E) for all k=0, E € B(X).
3) f(a,A)eL.(X), f(a,2)=0.
4) Suppose ay, ..., ax €Ly (X), t1, ..., =0, t+ ...+t =1. Then

k k
f ( Zt,-a.-, l)s th(ai, A.)
5) If_(al, A.)—f(az, l)]SClal—azl for all a,, a, EL:(X).

Proof. Assertions 1) and 2) follow from Theorem 1. Now we shall prove the
o-additivity of the set function f(a, 1) on the ring B(X) of Borel subsets of X.
Suppose E € B(X), {E:}, {A:} e R(E). Let us put E;=A;nEx.
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With respect to Lemma 1 we have

2f(a(a), 2(AN)< 3 f(a(ED, A(ED)< Zf(a, 2)(Ex)

ik=1

and thus f(a, A)(E)< > f(a, A)(Ex).
i=1
Now we prove the reverse inequality. Let £ >0 be given. Let us take & >0,

> ex <e. There exist the decompositions {Ex}i=1 € Z(Ek), k =1, 2, ... such that

k=1

f(a, \)E)< ;f(a(El), AMED)) +&, k=1,2, ...

Then if_(a, M(E) <

<> (SF@(ED, A(EY )+ ec<f(a, D)(E) +e.

Further, f(a, b)=0 implies f(a, A)=0.
Using Theorem 1 we prove the assertion 4). Suppose E € B(X). Then

f (Ztlahl)(E)— sup Ef (Etlal(E) Etll(E))

AEi}eA(E) i=

< sup z Zt,f(a,(E;), AME)) <

(E;}e.R(E) i=1 =1

=

<>t sup Ef(a,(E)A(E)) Zt:f(a:,/l)(E)

I=1 (E;}eA(E) i=1

For the proof of the assertion 5) we suppose E € B(X), {E:} e R(E).
With regard to Theorem 1 and the preceding assertion we conclude

[f(a:i(E:), A(E) = f(ax(E:), A(E))| <
SC]a,(E,-)—a:(EJI&CIa;—azl(E;), i=1, 2, ceey

|f(a1, &) = f(az, D|(E) =
= sup Zlf(an,l)(E) flaz, A)E)| <

{Ei}eR(E) i=1

= sup ZCIal—azl(E,-)=C|a1—azl(E).

{E;}eR(E) i=1

Theorem 3. Suppose a = (a1, ..., an) € L(X) and denote

o= { (0 i€ C(En), =0, S =1 } .

i=1
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Then we have

f ¢ df(a, )= sup Ef(Lqm)ida,Ltpwid/l),

{mj}eo i=1

for each @ € C(X), ¢ =0.

It is clear that it is sufficient to consider the supremum only on finite
decompositions of the unit.

Remark 3. Especially for (p__l we obtain an equivalent definition of the
function of measures

f(a, A)(E)= sup Zf(f w,-da,J' ;i dl),

{w;}eo i

where E is an arbitrary compact E c X.
Proof. Suppose {wi, ..., wm, 0, ...} €0,

K =max (||(Zi||1_,,(x>, ”M|L.,(x» m;ix |(P|)-

Let £ >0 be fixed. There exists a finite decomposition {E,, ..., E,, 0, ...} e #(X)

such that sup ¢@(x)w:(x)— mf @(x)wi(x)<e for each i,j. Let us denote a; =

x € E;j E;

=inf @(x)w:(x).

x € Ej
Then the assertions

>a; = inf gw; <inf E(pm. = mf @,

i=1 i=1 E; E; i=
l f @pw; da — Za,,a (E))[<Ke hold.
X i=1

Let 6 (¢) be the module of continuity of f on (=K, K)" x (0,K) (i.e. o((x1,
A1), (x2, A2)) <6 implies o (F(x1, A1), f(x2, A2))<e for all x4, x2e (=K, K)", A4,
22€(0,K)).

Then we have

m r

(D >F (L(pwi da,L(p(u.- d/l>s§;' ( za.,a(E,) Za,,l(E))

i=1 =

+md (Ke)< Ya:f (a(E;), A(E;)) + md(Ke)<
<> ig_fcp~f'(a(E,~)JL(E,-))+m6(Ke)<
sz irsxf @ fla, )L)(E,-)+m6(Ke)$j @ df(a, 1) +mé(Ke).
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Now, we shall prove an inequality reverse to that of (1). There exists a decomposi-
tion {E,, ..., En, 0,...} € 2(X) such that

£
-’

3 i=1,...,m,

sup @ —inf @ <
E; E;

| @ dft@. 1)< sup af(a(®D. 2B +e.

since f(a, A) e L, (X).

Let us denote a; =sup @ +¢/3. There measures a, A are regular. There exist
E;

compacts F; = E; such that
f @ df(a, A)<Daf(a(F), A(F))+ 2¢.
X i

Similarly, there exist disjoint open sets G; o F; satisfying a; — £ < @ (x) <a; for each
xeG,i=1,..m, :

€ £
|a|(G: —F)<——, MG -F)<_—-

and
) fx ¢ df(a,A)< Za,f‘(a(c.-), A(G))+ 3.
There exist m; e C(En) such that

w;=1 on F,suppw;cG;, O0sm;<1.

Then we conclude

aia(Gi)—fx QW; da’le (ai — @) da~+

+

f (af—wwf)da‘<f‘lal(ﬂ)+(K+s)-£—
G;—F; m

a,]t(G;)—f Pw; dllssA(E)+(K+e)-'i—

(3) aiA (G;)—f Q@w; di =0.
X
Ussing the assertion 4) from Theorem 1 and (3) we obtain
Zaf(a (G, A(G)=
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=>Ff (J' ew; da +a,—a(G,-)—f Qw; da,f Qw;: dA +
X X X
+a,~)l(G.-)—f Qw; d/l)$
X

<>f (L @uw; da, fx Qw; dl)+ Zf(aia(G:)"

—f (pn),-'da,ail(Gi)—f Qw: dA )<
X X

st_ (L @u; da, J; Quw; dl)+éCg(|a|(E)+l(E))+

+2(K+8)<Ef (fx ew; da, fx Qu; dA)+ Ce-4(K +¢).

i=1

Adding the function 1 — E‘"f we shall complete the system of functions w,, ...,
i=1

wm to the decomposition of the unit. Using (2) we obtain the required inequality.

Theorem 4 (Jensen’s inequality). Suppose a € L,)(X), @ € C(X), ¢ =0. Then we

have
f(fx(p da,fxw dA)qu) df(a, 2

Proof. Jensen’s inequality is a consequence of the previous Theorem if we
consider the following decomposition of the unit

{1,0,0...} €a.

It is possible to prove Jensen’s inequality directly without using Theorem 3.
From definition 2 we see that f(a(E), A(E))<f(a, A)(E) for all E € B(X). Then
we proceed as in the proof of Theorem 3, where we estimate Riemann’s integrals
by Riemann’s sums.

Theorem 5. The mapping
aeL;(X)—>f(a, 1) eL.(X)
is weakly lower semicontinuous, i.e. if

an, a € LY(X), an—a in L}(X),
then

f ? df(a,z)s_limf @ df(an, 4)
x =% )y
for each ¢ € C(X), ¢ =0.
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Remark 4. Especially for ¢ =1 we conclude that a,—a in L,(X) implies f(a,
A)(X)<lim f(an, A)(X).
Proof. If ¢ e C(X), ¢ =0, {w1, ..., ®Om, 0,...} €0, then

>f (L(p‘”" da, L Pw; dl) =.Z ’l'l_l}lf_ (L(pw.- da,.,Lq)w.» d,l) =

= lim Zf(L(pw,» da,.,fx(pw,- di)si_mewdf(an,A)

n—o T

because of Theorem 3.

2. Equivalent definitions for the functions of measures

In accordance with Bourbaki [4] let us state.

Definition 3. Suppose a = (ay, ..., an)€ L, (X) and let v e L,(X), v=0 be such
that the measures a;, ..., an, A are absolutely continuous with respect to the
measure v (such measure v exists, for example v =|a|+1). Let us denote by

da,  day dA

v dy EGLI(X’ V)

the densities of the measures «a,, ..., an, A with respect to the measure v. This ‘
notation will be used in the following. For E € 8(X) in [4] is defined
dal dan dA
% — —
fra @)= [ 75 o )
or equivalently

[0 @ n=[ of (5. jﬁ)dv

for all ¢ € C(X).

Remark 5. In Bourbaki [4] a composed function of measure is defined in
a somewhat more general way. He considers a continuous, non-negative, positively
homogeneous function

g(x1, ..., xn), x € Eny (9: Ev—>R)
satisfying
]g(xl, ceey xN)|$C(|x1| + ...+ |xN|).

Suppose ay, ..., an € L,(X). Let us take a non-negative Borel measure v such that
as, ..., an are absolutely continuous with respect to v. Then they define

g(ai, ...,an)(E)= j da. .(:iaN>dv E € B(X)
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and it is proved in [4] that the above integral has a sense and that the defined
measure is independent of the choice of the measure v.
The main result of this paragraph is the following

Theorem 6. Suppose
a=(a, ..., an) € Ly (X).
Then
fa,1)=f*(a,A) in L.(X).

Consequence. If the measures a,, ..., an are absolutely continuous with
respect to A, then for v =4 we deduce

f(pdf(a,l) f d“‘ ...,‘%)dx, @ € C(X),

df(a,A) , da:;  dan\ .
d f(dl 9 e dl ) m LI(X,A).

Thus in this case the definition of the function of measures coincides with the
definition of the composed function.

Remark 6. Suppose that a;=a;+aj, i=1, ..., N are decompositions of the
measures a, ..., 0n, Where a;, a; are absolutely continuous and singular parts of a;
with respect to the measure A.

There exists Foe B (X) such that

|ail(X —Eo)=0 foreach i=1,...,N, A(Eo)=0.

From the preceding Theorems and Definitions we conclude
fla, 1)(X)=f(a, 1)(X — Eo) +f(a, A)(Eo) =
=f(a’: A)X —Ey) +_f(a’, A)(Eo) =
=f(a’, ) )(X)+f(a’, A)(X)

i.e.

(@) Fla 00 = [ £ (55 )ar+ [ (g1

ala 0) d|a’].

Proof of Theorem 6. It is sufficient to prove that f(a, A(Y) = f*(a, A)(Y),

where Y is an arbitrary compact set, Y < X. Suppose {E:} e R(Y).
Owing to Jensen’s inequality (see [2])

Sia(E), AEN=F j 2 4y f—dv

da dA - da dA
<Z (dv dv)d _ff(EJ’E)d"
and hence 0<f(a, A)Y)<f*(a, A)(Y).
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By reason of this inequality we deduce that the measure f(a, 1) is absolutely
continuous with respect to the measure f*(a, A). With regard to the definition of
f*(a, 1) we have that the measure f*(a, 1) is absolutely continuous with respect to
the measure v. Let us set

_df(a,})
h= dv GL](X, V).

The above inequality implies that

~;da dA
f(dv dv) v —a.e.on X.

Now let us assume that h <f (da gl\ on a set of a positive measure v. Then there

exist € >0 and Eoe B(X) satisfying
v(Eo)>0,

- da dA
(d_v’ 37)_8 v —a.e.on E,.

With respect to Luzin’s Theorem (see [3]) there exists E, € B (X) such that E, = E,,

dal dan di

dv *dv ’ dv

With respect to the regularity of the measure v we can take a closed subset

E,c E, with v(Ez)>0.

v(E1)>0 and the functions —— are continuous in E;.

There exists a point xo € E, such that v(F,)>0 for F, =E, n ll |x — xo s%} (see

Remark 7).

. . . d d di
With regard to the continuity of the functions %, cees d(t/N dv on the compact

E; and owing to the continuity of f, we conclude

1 day da, dh_ dA
v(F)Ln dv y %) Top v(F) . dv

1 7 da dA
v(F,) JE, (dV dv

(xO) n—

(5)
) —— 7 (L L.

From the definition of the measure f(a, A) we obtain

- d
F A ﬁdv,L g—ﬁdv)$f(a,l)(1’n)=

J;hdv<J da dl dv—ev(F)
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We divide this inequality by v(F,) and apply the homogenity and continuity of
the function f. Then by the limiting process we deduce

(32 () 2 (e <7 (32 (o), B ()] e,

which is a contradiction.

d
Thus h=f (ga dl} in L,(X, v) and hence

fa, 1)=f*(a, ).

Remark 7. For completness we shall prove the following assertion. Let E =« X
be a compact and suppose

veL,(X), v(E)>0, v=0.
Let us denote B(x,r)={y eEn; |x —y|<r}.
Then there exists a point xo € E such that v(F,)>0 for F,=EnB (xo, %) ,n=1,

2, ...
We put M, ={x€eE; v (EnB (x,%))>0}. .

From v(E)>0 we deduce that M,,#0 forn=1, 2, ...
We can easily verify the inclusion M, SM,,n=1,2, ...
There exists xo€ [ | M, and hence xo€ (| M,.

n=1 n=1

We shall prove some further properties of the measure f(a, ). From now on
throughout we shall assume this section that A is the Lebesque measure in E,. We
shall use the canonical imbedding L(X, A)=L,(X) defined by (see [7])

uelL(X,A)—»aeL,(X),
a(E)=fud/1 forall E e B(X).
E

Theorem 7. Suppose E € B(X), A(E)>0, then
fla. )(E)= sup  S(a(ED. AE.

AE)>0, i=1,2,...
Proof. Let us denote K = max (|a|(E), A(E)) and let £,> 0 be fixed. Let us take

£>0,i=1,2,... with Zs,- < go. Owing to the uniform continuity of the function f

i=1

on (—K,K)" x (0, K) there exist >0, i =0, 1, ... with > 8; <o such that for

i=1

a, a € En, b1, b>>0 we obtain
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(6) if Ial—a2|+|b1—b2|S6,-, then If_(ahb])"'f(az, bz)lsf,-,
i=0,1,...

There exists a decomposition {E;}i~o€ R (E) for which
ZJf_(a(E,-), A(E))=f(a, A)(E) - €.

In accordance with Lemma'1 we can assume that the decomposition {E;}/;Zo is
sufficiently fine and (after suitable relabelling) satisfies

(7) IaI(Eo)<(§o, A,(Eo)<60, A.(Eo)>0.

By induction we find a sequence of disjoint Borel sets F,<E,, n=1, 2, ...,
satisfying

) | ME)>0, A(F)<bn lalF)<6. n=1.2,.

It is sufficient to take into account that A is the Lebesque measure ay, ..., dy are
o-additive measures and to use Remark 7. From (6), (7), (8) we conclude

2f(@(E), A(E)=f(a, A)(E) 2,
if(a(Equi), A(E:UF))=f(a, A)YE)—2e0— iﬂ-

i=1

Finally it suffices to add

F(a(Ba-UR). 2 (Ba-UF))=0

to the left-hand side of the above inequality.

Theorem 8. Suppose 4(X)>0, a € L;(X). Then there exist function u, = (u,,
..y un) € LY(X,A), n=1, 2, ... such that u,—a in L(X), f(a,r)(X)=
lim J £ () dA (x). |
n—® Jx

Remark 8. Taking into account the Remark 4 and the consequence of
Theorem 6, we obtain a further equivalent definition of the measure f(a, 1) if
A(X)>0:

Fla, )00 =inf Jim [ f(un(6)) di o),
where the infimum is taken over all the sequences {Un}n=-1 satisfying u,, u,,
..eLY(X, 1), u.—a in L}(X).

Proof. From Theorem 7 and Lemma 1 it follows that there exist decompositions
{El}izi € R(X), n=1, 2, ... satisfying
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9) AL(ED>0, diam(E?)s% foreach i,n=1,2,..

(10) S(a(ED, AEN>f(@, X0 -

For each n=1, 2, ... let us denote

un(x)=‘;$;; for xeE!, -i=1,2, ...

These vector functions belong to LY (X, 1), because

[meiam=3 [ 28l o<

,SZIal(E?)slal(X)<w.

With respect to the definition of f and from (10) we deduce

[ rmenax=3 [ (‘jﬁg;) dx =

= Zf(a(E?), A(ED)—f(a, 1)(X).

Now we prove that u,—a in L} (X). Suppose ¢ € C(X).Forn=1,2, ... letus set

q)..(x)=L ;p(g))dl(y) for xeE;, i=1,2,...

From the uniform continuity of ¢ on X and from (9) we obtain @.— ¢ in C(X)
and hence

L Gun 1 =3, L,» (ED 45 =

2(ED)

—Z o A(E)dA a(ED)= Jmnda—)J @ da.

I1. Application of the function of measures
in the caleulus of-variation

We shall consider a bounded domain Q = En with the-boundary 3L of the class
1

C' (see [7], [8]). We recapitulate for the reader the definition and some- basic
properties of the space W,(£2) (for details see [7]).
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W,(82) is the space of all (N + 1)-tuples (u, a,, ..., ax) for which
i) ueLy(Q), a,...,aneL, (),
ii) there exists a measure (3 € L,(3£2) such that

J(pV.»dﬁ=f uq),,.dx+f(pda,-, i=1,..,.N
o2 2 Q

holds for all ¢ € C'(2), where v=(v, ..., vx) is the normal exterior of 3.
The measure f3, which is uniquely determined by (u, a;), will be called the trace
of the element (u, a;). The norm in W:(Q) is defined by

”(u, a,)”W,‘, = ”u ”Ll(a)+ lea'l(g)

By W.(£2) we denote the subspace of all elements of Wi(€) with the trace § =0.
The measure

N
a, € L“(SQ), a, = ZViai |aa
i=1

is called the side of the element (1, a;) € W,(2), where the obvious definition of

the measure via; |sq (v: € C(3R2), a:|sq is the restriction of a; on 3Q) has been used.
The measure 3°=f8 — a, is called the inner trace of (u, a;). It is proved in [7] that

3°e L.(3Q). For each (u, a;) € W,(£2) there exists {un }n-1, 4. € W1(£2) such that

fu,,(p dx—>f up dx, fu,,‘,,,(p dx—-»f @ da;
Q Q Q 2
(i=1,..,N)

for all ¢ € C(Q), i.e., Wi(R) is the completion of Wi(£2) in this convergence
(weak* convergence). The ball in Wi(Q) is compact with respect to this weak*
convergence (contrary to the space Wi(Q)).

§3. F((u, @), 2)=f(a, 1)(2)
The main result of this paragraph is Theorem 9. Then we present some
consequences of this Theorem.
Theorem 9. For (u, a)e Wn(Q2)
F((u, a), Q)=f(a, A)(Q).

Proof. We recall that in [8] it is proved that F=J on the space Wi(£2). The
consequence of Theorem 6 implies that

fa, ) (RQ)=T(u, Q) for (u,a)e Wi(Q).
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From Remark 4 on the semicontinuty we deduce that for (., a.), (4, a) e W, such
that (4., a,) — (u,a) in W, f(a,A)(Q) < lim f(an, A)(2) holds, i.e. the
functional f(-, 2)($2) is weakly lower semicontinuous in W, and hence f(a, 1)(£2)
< F((u, a), Q) for all (u, a) € WyQ).

The Proof will be divided into three parts, in which we shall prove the reverse
inequality

(11) f(a, 2)(R2)=F((u, a), 2),

1) for function from Wi+ Wi.={v + (u, a); ve Wi, (u, a)e W,)},

2) for functions (u,a)e W,(2) with a non-negative (a non-positive) side
a,eL,(3RQ)

3) for an arbitrary function from W,.

For the proof of 1) let us consider (u, @) € W)+ W,. The proof is similar to the
proof of Theorem 13 in [7]. Firstly, we extend the function (u, a) from Q to the
bounded domain Q* > Q. ’

There exists (u*, a*)e W(Q*) satisfying (see [7])

(12) u*=u on Q, a*=a on £, a*=2a on 3Q

and
U*|ge—a € Wi(Q* - Q).
Let there be

exp (Jx[*/(|x|*=h*) for |x|<h and K"(x)=h£~w,.(x),

Ixl<1

wr(x) ={ where R = m(x) dx
0 for |x|=h

We denote

(13) u,,(x)=L_ K"(x —y)u*(y)dy, xeQ.

The following assertions are valid (see [7])

(14) @)= [ K"(x=y) dat), xe,
. -

(15) - w—(u,a) in Wu(R),

(16) jK"(x—y)dx—»% uniformly for y €d3Q.
«Q

From (14) and owing to Jensen’s inequality (Theorem 4) we obtain
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J(uh,9)=Lf(L. K"(x-y) da*(y)) dx =
[ 7 K@=y dato [ K-y dy) ar<

<[ [ K'e-p e o) d=

ye y €32 yeSh

where St ={x e Q*—Q; dist (x, 3Q)<h}.
For the estimation of the first and second integral we use (12), (13) and (16)

M"'SL df(a, )= f(a, 1)(Q),

ye

ff .= f K"(x —y) df 2a, 0)(y) dx e —;—Ln df(2a, 0) =
=f(a, 0)(32)=f(a, 1)(3%),
since A(3Q)=0.

Since [S#* =0 we conclude
h>0

L[Kh(x—y) df(a*, A)(y) dx <f(a*, 1)(S1)—0

yeSh

as h—0.
Thus we obtain f(a, A1)(£2) =lm J (us, Q).

On the other hand, we conclude from (15) {1_% J(un, Q) = F((u, a), 2) and

hence

17) lim J(un, Q)= f(a, @)=f(a, A)(Q)=F((4, a), Q).

Now we prove 2). Let (u, a)e W, possess the side a, =0 (see [7]). By the
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method of regularization such measures a., € L,(3€2), h >0 can be found that are
absolutely continuous with respect to the Hausdorff measure dS on 3Q and satisfy

ax=0, am —a in L,(3£2).
The existence of such measures follows from Lemma 1 in [7]. In addition to the
above it is proved in [7] that the side a, satisfies
(18) adilse=va,, i=1,..,N,
where v =(vi, ..., v~) is the exterior normal to 3Q. Thus, let us set
(19) an=a; on , anm=va., on 32, i=1,...,N.
In [7] (see proof of Theorem 14) it is proved that
(20) (u, an)e Wi+ Wi, (u, an)—(u,a) in W,

and that the side of (u, ax) is av.
Now we shall use the first part of the proof for the functions (u, a,) € Wi+ W,
h >0. Our next aim is to prove

(21) f(a, 1)(2) =1im f(an, 2)(Q),
(22) F((u, a), Q) <lim F((u, a), Q).

These inequalities imply the desired inequality (11).
Ising Theorem 6, (18), (19) and the fact that a, =0, a., =0, A (3€2) = 0 we obtain

Fla, 1)(R) = f )dav f f(v, 0) day,

da;.

Flan 1)@= [ F (522, 0) daw = [ (v, 0) data.

With regard to (20) and using f(v, 0) e C(382) we deduce (21). The assertion (22)
is proved in the more general form

(23) if teW,, u0,eWi+W,, #a,—a in W,, then

F(a, Q)Smg_ F(ii., Q).
For the proof we use the same method as in the proof of Theorem 1 in [8]. Owing
to (15) and (17), there exist uw € Wi, n, k=1, 2, ..., such that un—i, in W},

J(tni, ) — F(itn, Q) as k— . With respect to the Theorem 13 in [7], these
sequences satisfy ||t ||wi— ||t || w2-
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From u,—i in W, it follows sup ||i.||w, <. Thus there exist R >0 and

a sequence of positive integers {k, } such that ||tn||w,'<R for all n and k =k, and
lan|lw,<R for all n, ||i||w,<R.

With regard to Lemma 2 in [8], the weak topology in the ball {# e W,;
|9 ||w,' <R} can be metrized by some metric ¢. Then, for each index n, there exists
an index [(n) such that for w, = u..in) there is satisfied

1 _
o(wn — i, 0)<;,J(w,., Q)<F(i,, Q)+%, n=1, ...

Hence and from
ow,—1,0)<o(tt. — 1, 0)+0(W. — s, 0)

we conclude that w,—i& as n — x.
With respect to the definition of the functional F we obtain

F(a, @)<lim J(w,, @)<lim (F(u,., 9)+—/ =lim F(i., Q)
and hence the relation (23) is proved.

Finally we prove the assertion 3) using the assertion 2). We assume that
(u, @) e W, possesses the side a, € L,(3Q). There exists a Hahn decomposition
QR =r"ur, r'nr =0, r, r e® such that av—a.,, a,=0onT", a,=0,
a.=—a, on F and a,=ar—a,, ay, a,=0.

Let us set a; =a.=a; on Q,

1 2 - .
a;=2va., ai=-2va, on 3R, i=1,..,N.

With respect to Theorem 14 in [7], the functions (u, a') and (u, a®) belong to the
space W, and moreover (u, a') possesses the side 2a, and (u, a’) possesses the
side —2a.. Evidently (u, @)=3 (u, a')+3 (u, @) is valid. The convexity of the
functional J implies the convexity of the functional F and hence

(24) F((u, @), 2)<: F((u, a"), @) +: F((u, a*),Q).
Using Theorem 6 and the homogeneity of the function f, we obtain

Fla, A)(@) =F(a, A)(@) +f(a, D)) + (o, YI™) =
=f(a. 1)(Q) +f(val, 0)(3Q) +f(-var, 0)(3Q) =
=f(a, 1)(Q) +} (@', 0)(3Q) +} f(a, 0)(32) =
= (@', (@) +1 (e’ 2)(@).

From (24) and owing to the proved assertion 2, we deduce the required inequality

(11).
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Remark 9. From Theorem 9 it follows that
(25) F((u, a), 2)=f(a, 2)(2) +f(a, 0)(3L2),

where (u, a)e Wy(Q).
The functional f(a, 1)(2) is closely related to the function F(u, Q), which is
defined by Serrin in [5]:

F(u, Q)=inf {lim J(tn, 2.); tn € L1,10(2)NC'(2,),
Un—> U in L1_|M(Q), Q,./'Q}.

Let us set a=a on 2, a=0 on 3Q.
Then with respect to [7], («, @) e W, and evidently

fla,2)(Q)=f(a, 1)(R2)=F((u, &), Q).

The side of the function (u, @) is equal to zero and for each such function it is
proved in [8] that

F((u, a), Q)=f(u, Q).
J. Serrin proved in [5] the relation

F(u, Q) =£in3 J(un, 1),
where
u;.(x)=f K"(x —y)u(y)dy, 2, = {x € Q; dist (x, 92)>h}.
Q
From the preceding we conclude
fla, A)=F(u, Q) =lim J (un, 2u).

Now let (u, a) possess the side a, € L,(3Q). We use the Hahn decomposition

a,=a, —a,,3Q=I"uI'" (see the proof 3) in Theorem 9). Let us set sign a, = 1

onI'" and signa,=—1on I'".
Using Theorem 6 we can write

f(a,002)= [ _f(gra.0) dla.l=

=jr+ f(v,0)d|a,| +fr_f(—v, 0)d|a.| =J;Q f(v sign a,, 0) da |,

dalag

for we have =v, which is a consequence of ai|se =via, (see [7]).

v
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Remark 10. Let us especially consider
— %
f(ai, ...,an)=V1+ai+...+an.

In this case J(u, ) denotes the functional of area,

F % S e
f(a,b)=Vai+..+ax+b’, aeEn, b=0.
As a consequence of Remark 9 we obtain
B

f(a, 0)(3Q) =Ln \/;(vi sign a,)* d|a, | =Ln d|a.]|.

To make the application of Theorem 9 clear we refer to the example in [8]. In that
example we deduce

F((u,a), 2)=F(u, Q)+Lnd|avl=1+J; lg (x)| dx,.

Remark 11. From Theorems 9 and 3 we conclude that the functional F is lower

weakly semicontinuous in the space W,.
In [8] this semicontinuity was proved under more general conditions but

coerciveness of the functional J(u, ) was supposed. In our special case the
semicontinuity was proved without assumption of coerciveness.

§4. F=F1

The purpose of this paragraph is to prove the equality F = F,. Then we present
some important consequences of this result.

Theorem 10. If

(u, a)e Wi(Q) + Wi(Q),

then
F((u, o), 2)=Fi((u, a), 2).

Evidently, the inequality F, =F is valid (see the definitions in the introduction).
It suffices to prove the reverse inequality. In the proof we use the regularized
functions defined in § 3 by the formulas (12), (13). Owing to (15) and (17), the

functions u, satisfy
un—(u, a) in W,, J(un, Q)-F((u, a), Q) as h—0.
The proof Theorem 10 is based on the following theorem.
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Theorem 11. Let uj e L,(382) be the trace of the function u, € W from (13) and
let u' e L,(3RQ) be the trace of the function (u,a)e Wi+ W,. Then u,—u' as
h —0 in the norm of the space L.(32).

Proof. Assertion (15) implies only us—u’ in L,(3L2) (see [7]). Let us denote
a=a on Q, a=0 on 3Q and a’'=a—a. In [7] it is proved that (u, a),
(0, a’) € W,, and the trace of the function («, @) belongs to the space L,(32). From
the assumption (u, a)e Wi+ W, we deduce that the trace of the function (0, a')
belongs to L,(3Q), too. Evidently (¢, a) = (u, a)+ (0, a’) is satisfied. Now we
shall choose a function iz € W1(£2) possessing the same trace on 3 as the function
(u, a) (see [6]).

We can write the following decomposition
(u,a)=a+(0,a’)+[(u, a)—i]

for all (u, @) € Wi+ W,, hence it is clearly sufficient to prove Theorem 11 only for
functions of the following three types:

1) (u, a)e Wi(Q),
2) (u,a)eWi+W,, u=0 on Q,
3) (u, a)e W, with the side and the trace equal to zero.

1) In this case the extension (u*, a*) of (u,a) can be constructed so that
(u*, a*)e Wi(22*) (see [1]). By (12) we define uy. It is known that in this case
u,— (u, a) in the norm of the space W1(£2) and hence (see [1]) their traces
satisfy ur—u’ in L,(3Q).

2) In this case the extension (u*, a*) satisfies

u*=0 on Q, u*|g-—ae Wi(Q*- Q)

and the function u*|q._q possesses the trace 2u’ on 382 (where u' is the trace of
the function (0, a)). Let £ >0 be fixed. Let us choose the function ¢ € C(Q2* —
) such that

(26) “u*|n-—n —Q ”wl'(no_m<£.

In [7] it is proved (see the relation (57)) that

(27) L__Q K"(x—Y)qJ(Y)dy—-»%w(x) as h—0

in the norm of the space L,(32)- _
From (26) we conclude that ||@|sa —2u’||z,ea)< C-&. With regard to (26), (27)

we obtain’

im | i) —uw' @) dS(x) =

h—0 Jag2
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=i [ | K"(x—y)u*(y)dy—u'(x)’dS(x)s
h—0 )30 | Jo=

<lim j K"(x=y)p(y)dy —u'(x)| dS(x) +

. B0 Jag | Jar-a

+im [ [ K @-plem)-we) ay ds@=Ce.

h—0

The theorem on imbedding from W:(Q)—»L.(BQ) has been used. For the proof of
the case 3) we use the following inequalities

1
(28) o= € (5 lllsat Nullwriso)  for e W)
and
(29 Nalleso<C-h-llallwisy for 2eWuyS), where

N .
llullwe =X lluxlle,, Sw={xe$; dist (x,3R2)<h}
i=1

and C is independent of u and (h being sufficiently small). For the completness we
suggest the proof of these inequalities. The boundary 32 € C' can be covered by'
the finite number of the cubes K, ..., Kr. Let us consider the corresponding
decomposition ¥y, ..., Yr of the unit with respect to these cubes (see [1]). Now it is
sufficient to prove (28), (29) for the function u - y, with the supportinK,,r=1, ...,
R . Then we carry out a linear transformation of coordinates, so that it remains to
prove (28) and (29) for u € Wi(KN€) with the support in (KNnQ) U (KN3Y).
The set 32K can be described by xn=a(x')eC’, x'=(x1, ..., Xn-1). For
a smooth u we obtain

. a(x’) ’
3 ,
u(x',a(x’))=u(x"a(x')_s)+J _u_(ax_ézdghh
a(x)—s XN
h >s >0 and hence
Y1 du
e, aGel<lut aen -+ [ |2 d
ax)-h |OXN

from which we deduce

h-|lu leieanry< C(||lu “L,(S;.) + k- |Jullwitesw)

for u € Wi(2nK), which implies (28).
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If u(x’, a(x'))=0 then

Y| Ju

U, at)-sl<[ 2=

déy for hA>s5>0

a(x’')—h
and hence
"u ”Ll(sh)sc ‘h ”u”wll(sh) for ue W:(Q nK)

Thus, (29) is proved for u e Wi(£2). Now we prove (29) for & € W(£2). For this
purpose we use Theorem 4 from [7]. With respect to this theorem for u € W,(L2)
there exists u, € W:(Q), n=1, 2, ..., such that u,—(u, a) in W,“ and-

”u,“‘. ”L,(m$C|Ia,-|IL“(m for. i= 1, ooy N,

where the constant C is independent of n. Using semicontinuity of the norm with
respect of the w*-convergence, we obtain

|l ssio <Um |t ||eysn<C-h|lu "v;/..‘(sh)

for u e W,.. Now let us extend u to 2* > Q by zero and let us consider u, from (12),
(13).
Evidently, for u, we have

|4 "L«s;.)s ||u ||Ll(s1,.), (2 || w s =< || u ||W..‘<sm-

From (28) and (29) we deduce

1
lun || cr0ay<C (; l[en || Lacsn> + lutn ”M‘(s,.)) =
1
sC n e Il s + Nl wtsanfs

/2h
<C{ 5 Mullwiom + ullviss) < Cllallao

With respect to the fact that (u, ) e W,(£2) with a. =0 on 3R, we deduce a; =0
on3Q,i=1, ..., N (see [7]) and hence

lullw,s.w—0 as h—0

for functions of the third type. Thus, Theorem 11 is proved. _

Proof of Theorem 10. Let us consider the function (u, a)e Wi+ W, and
un € Wi, h >0 its regularization from (13). Let us denote by u’, u,e L,(3R) the
traces of-these functions. With regard to (15), (17) and Theorem 11 the following
relations are satisfied

un—(u, a) in Wi(), ui—u' in L,(3Q)
J(un, 2)>F(u, Q) as h—0.
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Let us denote Q, = {x € Q; dist (x, 3Q2)>h}, S, = Q2 — Q,. In [1] there is proved
the existence of the functions v, € W possessing the traces vi=u'—uj on 3Q and
satisfying

(30) lonllwi<Cllu’ - uillc,ear—>0 as h—0,
where the constant C is independent of A.

It can be easily seen that w, + va—(u, @) in W,(2) and u)+v,=u' on 3Q.
Owing to the assertion 5 of Theorem 1 we obtain

(1) [f(a:) - f(a;)|<Clai—a,|, ai,aeEn.
Thus, from (30), (31) and from the definition of F, we conclude

Fl((u, a)’ Q)S%J(uh + Uy, Q)$
s!'i_%.l(uh, Q)+£i_xg_fg [f(Vu, + Vo) — f(Vup)] dx <

<F((u, a), @)+1im C f [Vua| dx <F((u, @), Q),
e Q

and the proof is complete.

Remark 12. Let us assume uoe Wj.
1) The functional F, evidently satisfies

inf F,(4, Q)= inf J(u, Q).
ue uo+ Wul u Euo+W11

Theorem 10 implies that this equality is valid if we substitute F instead F;.

2) If u € uo+ W, is the solution of the boundary value problem
J(u,2)= inf lJ(v, Q),

veug+W,

then u is also the solution of the boundary value problem .

J(u, Q)= inf \ F(v, Q).

3) The functional F, is weakly lower semicontinuous on the space W, + W, (see
the Remark 11). In [8] the semicontinuity of F; has been proved only on
uo+ Wi.

Int the next theorem a classical inequality from [9] will be generalized and
strengthened.

Theorem 12. Suppose that the functions i, = (41, 1), iy = (42, @2) € W, possess
the traces 31, 32€ L,(3R). If 4, is a solution of the boundary value problem

F(i, Q)= inf lF(z‘;,()), then

6e“+Wu
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(32) F(u, Q)<F(i,, Q)+Ln f(v sign (31— f2), 0) d|B:1— B2l

is valid (see Remark 9).
If 4, is also a solution of the corresponding boudary value problem, then

(33) lF(lZ], Q)_F(uz, Q-)l =max (Ln f(V sign (I"l _I')’z), 0) dlﬁl —,';2',
J;n f_(V Sign (I')'z—l'),h 0) d'ﬁl _Igzl) $C LQ dll;] "I)’zl.

If, particularly f(a)=V1+ |a|, then
(34) [F(as, @)= Flas, )< [ _dltn=pil.
Q2

Remark 13. Let us assume that u,, u, € W1 solve the boundary value problem in
the sense of Remark 12. If f(a) = V1 + |a|?, then Remark 12 and the relation (34)
imply
(35) [T (1, Q) — T (ua, Q)|<f luj—ul| ds,

aQ

where u}, uye L,(3Q) are the traces of the functions u,, u,. If u e C(2)nC*(Q)
solves the equation for the minimal surfaces, then we find out easily (owing to the
mentioned inequality from [9]) that u € Wi(£2) and that u solves the variational
boundary value problem in W3. Then the estimate from [9] is a consequence of
(35) if u,=rconst.

Proof. Letusset & = v;(fi —f32) on 32, d; = 0 on 2 (see [7]). Then the function
(0, @) e W, possesses the trace f1—f3. (see [7]) and hence (u°, a’+a)e W,
possésses the trace f§,. Owing to Theorem 9 we obtain

F(t:, Q)<F((u* a’+a), Q)=
=f(a® 1)(2)+f(a’+a, 0)(3RQ).

With regard to the assertion 2 and 4 from Theorem 2 we conclude

f(a*+a, 0)(3R)(BN)=2f( a’+3 @, 0)(3R) <
<f(a? 0)(3Q) +f(a, 0)(3L).

Using Remark 9, we deduce
F(it, Q)<f(a® 1)) +f(a?, 0)(3RQ) + f(a, 0)(32) =
= Fas, @)+ [ 1 sign (6:- ), 0) dlps =,
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since the function (0, &) possesses the side 3; — 32 (see [7]). The inequality (33) can
be obtained from (32) exchanging 4, and #&.. Owing to the Remark 10, the
inequality (34) is a consequence of (33).

By reason of Theorem 10 we deduce a remarkable theorem for the furiction from
W,., which strengthens essentially

Theorem 4) ii) and Theorem 13 from [7].

Theorem 13. If (u, @) Wi+ W, then there exist functions u, € W1, h >0 such
that u,—(u, a)eW,, u,—(u, a) in W,

I”h||L:(m—’”u”L|(ﬂ) and “uhx(”Ll(Q)'—)”ai”L“(f}) as h—0,

where i=1,2, ..., N.
Proof. Let us set f(ay, .., an) = |ai| + ... + |an|. Evidently, f(a, b) = f(a), where
a € Ex, b =0. With respect to Definition 1 and Theorem 9 we conclude

F((u, a), ) =f(a, )(@)= sup  Sf(a(E))=lal().

With regard to Theorem 10, there exist functions
u, e Wi, une(u,a)+W, h>0 suchthat
N N
un—(u, a) in W, Z”uhx,”mm—’ Z”ai"mm

as h—0, us—(u, a) implies that ||a; || < llm s || Lycars i =1, ..., N. Thus, we

deduce ||tny |lei@ — ||l ey as h—>0fori=1, ..., N. Owing to the theorems on
imbedding (see [7]), we conclude from uw,—(u, a) that u,—u in L(2), i.e.
lunlleiar — Nullea-

§. Unicity

J. Serrin proved in [5] (part 1.4 and 1.5) a unicity result and some further results
for the functional F(u, Q) (see Remark 9). In this paragraph we present an
analogous result for the functional F((u, a), £) under somewhat more general
assumptions than those in [5]. Methods of proofs are similar to those in [5], but
using our result of the preceding paragraphs the proofs are simplified. Part of the
results in this section can be proved with the help of Serrin’s results in [5]. For this
purpose a function (u,a) € Wy(2) must be extended by a function from
Wi(2* - ) to a larger domain 2* and then we can use the equality f = F on Q*
(see Remark 9). This equality was proved in [8] for the function u € W,.(Q)
possessing the side a, =0 on 3Q.

374



Let us denote by a’, a’ the regular and singular parts of the measure a € L, (Q)
with respect to the Lebesque measure A. From Remark 6 we obtain

(36) F((u, @), 2)=f(a", 1)(2) +f(a’, 0)(2) =

_ 'da') . da’ : s
_Lf(d/1 dA+Lf(d'a,|,0)d|a l.
Thus, from (36) we conclude that

df(a,2) . (da’ df(a, L)\ ;¢ da’
(7 At ]( dja’] /Lf(d|a’|’0.)'

The function f is supposed to be continuous, non-negative, convex and satisfying
f(@a)<C@1+|al).
Analogously as in [5] let us set

(38) T(u, 2)=J((u, a), Q)=Lf (‘:ﬁ) di

for (u, a)e Wi(2) (the measure a’ is uniquely determined by the function u).

Theorem 14.
1) The functional F is convex on Wi(Q).
2) J(u, Q)<F((u, a), Q) for all (u,a)e W Q).
3) Let the function f satisfy

(39) f(a)=C,la| - C,, where aeEn, Ci>0.

Suppose (u,a)e Wi(Q). Then J(u, Q) = F((u,a), Q) if and only if
(u,a)eW; (ie. a=a").

4) Let us assume that f is strictly convex. Suppose i, = (U1, 1), 2= (U2, a.). If for
some t €(0,1) there is satisfied

(40) F(tit, + (1 — t)ia,, Q) =tF (i, Q)+ (1 —t)F (2, 2),
then a; =as.

Proof. Assertion 1) is a consequence of the definition of F and of the convexity
of the functional J.

2) From (36) and from (38) we conclude
F((u, a), Q)=f(a,A)(2)=f(a", 1)(2) =T (u, Q).

3) By reason of (39) we obtain f(a, 0)=C,la|.
Owing to (36) we deduce

F((u, a), @)=J(u, .Q)+Lf (:T:’I’O) dlo’].

If a’#0, then the integral in the equality is evidently positive.
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4) Let us denote u, = (u,, a,) =t + (1 —t)i, for t e (0,1).
Using Theorem 1, we obtain

(41) f(ai, A)(R)<tf(ai, 1)(2)+ (1 —0)f (az, 1)(Q),
(42) f(az, 0)(2)<tf(ai, 0)(L2)+(1-1)f(az, 0)(L).

Adding (41) and (42) we obtain (40) and hence in (41) and (42) the equalities are
valid. Then, from (41), we deduce

Lf(da')dk f(‘j;;l)d/l+(l t)f d‘“

Thus, the strict convexity of the function f implies

dai_da;
da ~ da

a.e.in Q.

Theorem 15. Let 'us assume that f is strictly convex and satisfies (39).
1) If a,= (u.,al) and i, = (uz, a;) are two solutions of the same variational
problem in W}, i.e.,
(43) F(d,, Q)=F (42, Q)= inf F(@, Q),
ueu|+W
then ai=aj;.
2) If use W, is the solution of the variational problem
J(uy, )= inf J(u, ),
ueuy+W,!
then for all 0;€u,+ W,, d2#u; F(it2, 2)>J(us, Q) is valid.
Proof. 1) With regard to the convexity of the functional F and from (43) we
conclude

F(ta,+ (1 — )z) = tF (@) + (1 —t)F(@z) forall te (0, 1).

Thus, it is sufficient to use the assertion 4) from the preceding theorem.

2) With respect to Remark 12, u, is also a solution of the boundary value
problem in W,. If F(ii,, Q) = J(u,, Q) were satisfied, then owing to the proved
assertion 1) we would deduce a;=a; and hence J(it;, 2) = J(u, Q)
= F(u», Q). By reason of the assertion 3) from Theorem 14 we conclude &, W
and thus

U = Uz, a.e.inQ,for i=1,2,...,N.

u,, i, possess the same trace and hence u,; = u,.
Remark 14. Only partial unicity has been proved. This is due to the fact that the
function f is never strictly convex, because of the equality

f(ka, kb)=kf(a, b), k=0.
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With regard to Remark 6, the functional F satisfies

Fw o), @)= [ £ (5 )duff(d‘l’“l 0} dla’l.

If o # 0, then non-strictly convexity can be presented in the second integral. Now
we present an example, where the functional F is not strictly convex on the set

Ug + W:‘.

Example. Let us consider f(a)=V1+ |a], Q = {x € E3, |x| <1)}. Let us define
f € L,(3£2) by the prescription

=0 on {(x1,x,)edR; x;<0},
f=dS on {(x1,x2)edQ; x>0},

where dS is a one-dimensional Lebesque measure on 3Q2. There exist functions
(u1, ay), (42, @2) € Wa(82) with the trace 8 and satisfying u; =0, u,=1 on Q (see
[7]). These functions are uniquely determined.

Their inner traces satisfy (see [7]) 1=0, B3=dS. The sides of these functions
satisfy (see [7]) aw = — B3, az, = — 5. Remark 10 implies

F((us, av), Q)=Ldl +fm dlaw|=2n

and
F((u2, az), 2)=2m.
Let us set
(e, a)=t(u1, a))+ (1 —1t)(uz, az)
for 0<r<1.

This function satisfies
u=1-t onQ2, a,=ta,+(1-8ta,,.

From this we obtain

F((uz, az), Q)=L da +LQ d|an|=2n.

Thus, the functional F is not strictly convex on the set uo + W, where uoe W1 is the
function with the trace
dap
——~€eL,(32
3s €L1(3€2).

6. The principle of the maximum

The classical principle of the maximum asserts that if we have u; <u; on 3Q two
solutions u,, u, of the equation for the minimal surface, then u;<u, on Q.
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We prove this principle of the maximum in a somewhat weakened form for the
solution of the boundary value problem for the functional F, on the space W(£2).
For this purpose we use the results from § 4 and § S.

Definition 4. Let us consider (ui, ai), (42, a;)e W, with the traces f,,
f2€L,(382). We say that (u;, a1)<(u,, a2) iff uy<u, in L(2) and 5,<}, in
L,(382).

Theorem 16. Let i,, resp. i, € W, be the two solutions of the boundary value
problem in W,, with the boundary concition u?, resp. use L,(3Q). Let us assume
that ui<uj a.e. in 3Q. Then there exists a solution ¥ € W, of the boundary value
problem with the boundary contition uj; and satisfying i, <9 .

The same assertion for the revers inequality is valid.

Proof. The equality F=F, implies the existence of the functions u., uze W;
such that 2,—4,, ui—u, in W, and

J(un, Q)<F (i, Q)+'17 , Unloa=ul,

J(u:, Q)sF(liz, Q)"'rlT, u:lag=ué,

(where un|sq is the trace of u, on 38, for i=1, 2).

Let us set v, =max (4, u:), w,=min (u., u2). Evidently v.|se=u} and
Whn |en =uj.

Now let n be fixed. There exists a decomposition 2 = E,UE,, where E,, E; are
measurable and u.=u, on E,, us<uj on E..

From the assumptions we deduce

J(w,.,.Q)=f f(Vui)dx+f f(Vu,‘.)deJ(u.'.,Q)—;l;,
i.e.

J F(Vu2) dx ;f f(Vul) dx -1
Ey Ej n
Thus, we conclude
J(va, 2)= f f(Vuy) dx + f f(Vul)dx< f f(Vul) dx +
E; Ez E;
2 1 2 1 L=y, 2
+ | f(Vup)dx +=<J(un, Q)+—<F(i1;, 2)+—.

) 2 n n n

Owing to this inequality, {v.} is a minimizing sequence for the boundary value

problem with the boundary condition u,. The norms [[v.|lw,'@ are bounded,
because [|va||lw,t < ||usllwt + ||u2||w,. The ball in the space W,, is weakly compact
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(see [7]). Thus, there exists a subsequence {va, } and v € W, such that v—v. Thus,
Un |52 are weakly convergent in L, (3€) to the trace of the function v e Wy, i.e., v

possesses the trace u;. The function ¥ solves the variational problem with the
boundary condition u3, since

F(ﬁ)slim J(vn ) <F ().

From u,—1, and from v, —% as k— « we conclude (see [7]) that u,,— u, and
Un, — v in L,(£2) and hence u; <v a.e. in 2, because u,, <v,, a.e. in . Thus we
conclude that i, <9. For the proof of the reverse inequality we use w, instead of
Un.

If one of the solution of the variational problem belongs to the space W1, then
Theorem 16 can be strengthened.

Theorem 17. Let us suppose that f is strictly convex and satisfies (39). Let
u, € Wi, resp. ti,€ W,, be the two solutions of the variational problem in W, with
the boundary condition ui, resp. u;, where ui, u;e L,(3Q).

If uy<uj a.e. in 39Q, then u; <ii,.

Proof. From the preceding Theorem we deduce that there exists © € W, solving
the variational problem with the boundary condition u] and satisfying ¥ <u,. With
regard to Theorem 15, 2) on unicity we conclude that u,=19.

Remark 15. 1) In Theorem 17 it is sufficient to assume that u, is the solution of
the variational problem in W1, because of the Remark 12, § 4, it is also the solution
of the same problem in W,.

2) Let us set u,=K (constant). Evidently, u;, is the weak solution of the
corresponding Euler equation and hence the minimum of the functional F on the
set uy+ Wi.

With respect to Remark 15 and Theorem 15 it is also the minimum on the set
u;+ W,. Thus, if u3<K a.e. on 3, then ,<K in W,, where &, is the solution of
the variational problem with the boundary condition u;.
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