
Mathematica Slovaca

Štefan Černák
Convergence with a fixed regulator in Archimedean lattice ordered groups

Mathematica Slovaca, Vol. 56 (2006), No. 2, 167--180

Persistent URL: http://dml.cz/dmlcz/132658

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 2006

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/132658
http://project.dml.cz


Mathematica 
Slovaca 

©2006 
. . • / - • --- / « ^ « ^ \ . . ^ „.--....-.,-. Mathematical Insti tute 
Math. SlOVaCa, 56 (2006), NO. 2, 167-180 Slovak Academy of Sciences 

Dedicated to Professor Tibor Katrindk 

CONVERGENCE WITH A FIXED REGULATOR 
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ABSTRACT. A convergence with the same regulator u for all sequences in an 
Archimedean lattice ordered group G is dealt with in this paper. It is shown 
tha t a u-Cauchy completion (C-completion) G* of G is an I -subgroup of the 
Dedekind completion of G. Some results on the relations between G and G* are 
proved. The question of the existence of a greatest C-complete I -ideal of G is 
investigated. 

This paper can be considered as a continuation of the article [3]. In [3] we 
were dealing with a convergence in a lattice ordered group which is determined 
by a fixed regulator. J. M a r t i n e z [10] examined a convergence with regu­
lators depending on sequences in Archimedean lattice ordered groups. Related 
notions for vector lattices were studied by V u l i k h [11], and L u x e m b u r g 
and Z a a n en [9]. 

In the present paper we restrict ourselves to the case when the lattice ordered 
group G under consideration is Archimedean. Let 0 < u E G be a convergence 
regulator in G. The main results of the paper are as follows. 

The Dedekind completion GA of G is u-Csaichy complete and a ?/-Cauchy 
completion G* of G is an I -subgroup of GA. This implies that G is a dense 
Z-subgroup of G*. Using this fact, some further results on the relationships 
between G and G* are established. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 06F15; Secondary 20F60. 
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STEFAN CERNAK 

We are interested in the existence of a greatest ^-Cauchy complete /-ideal 
of G. 

A ^-Cauchy completion of the direct product of Archimedean lattice ordered 
groups is constructed. 

1. Preliminaries and auxiliary results 

The standard terminology for lattice ordered groups will be used (cf. [1], 
[5], [6]). We recall the basic relevant notions. The group operation in a lattice 
ordered group will be written additively. 

Let G be a lattice ordered group, N the set of all positive integers and Q 
(K) the additive group of all rationals (reals) with the natural linear order. G 
is called Archimedean if for any x,y G G, nx < y for all n G N implies x < 0. 
It is well known that Archimedean lattice ordered groups are Abelian. 

A strong unit of G is an element e G G, 0 < e, such that to each x G G 
there exists n G N satisfying ne > x. 

G is torsion free, i.e., x ^ 0 implies nx ^ 0 for each n G N. 
Setting \x\ = x V (—x), we define the absolute value of x G G. The relations 

\x V z — y V z\ < \x — y\, \x A z — y A z\ < \x — y\ (1) 

are fulfilled for all x, y, z G G. 
Let x,x{ G G for every i G 7. If V x^ exists in G, then so do / \ ( — x j , 

zGI i(EI 
V (x + x j . Moreover, / \ (—xj = — V x{, V (x + xf) = x + V xi a n d dually. 

i£l i£l i£l iel i£l 
If G is Abelian and x,y G G, then |x + ^| < |x| + |T/| ; if n G N and nx <ny, 

then x <y\ n(x V y) = nx V ny for each n G N and dually. 
Define an /-subgroup H of G to be dense in G if for each 0 < g G G there 

exists h e H with 0 < h < g. 
If every nonempty upper bounded subset of G possesses a least upper bound 

(or equivalently if each nonempty lower bounded subset of G has a greatest 
lower bound) in G, then G is called complete. Note that a complete lattice 
ordered group is Archimedean. 

DEFINITION 1.1. (cf. [1; p. 71]) Let G, GA be lattice ordered groups with 
the following properties: 

(i) G is an /-subgroup of GA . 
(ii) GA is complete. 

(iii) Every element of GA is the least upper bound of a subset of G . 

Then GA is said to be a Dedekind completion of G . 
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CONVERGENCE WITH A FIXED REGULATOR IN LATTICE ORDERED GROUPS 

THEOREM 1.2. (cf. [1; Theorem 8.2.2]) If G is Archimedean lattice ordered 
group, then it admits a unique Dedekind completion. 

Remark that G is dense in G A . 

L u x e m b u r g and Z a a n e n in their monograph [9] studied the notion of 
a u-uniform convergence in a vector lattice V. 

DEFINITION 1.3. (cf. [9]) Let V be a vector lattice and 0 <u eV. A sequence 
(xn)neN (briefly (xn)) in V is said to converge u-uniformly to an element x G V 
whenever for every e e l , 0 < e, there exists n0 G N such that 

\x
n ~ x\<eu for each n G N, n > n0 . 

This definition was adapted for using in lattice ordered groups as follows 
(cf. [3]): 

DEFINITION 1.4. Let G be a lattice ordered group and 0 < u G G. We say 
that a sequence (xn) in G u-converges to an element x G G, written xn -^-> x 
(or x is a u-limit of (x n ) ) , if for every p G N there exists n0 G N such that 

p\xn — x\ < u for each n G N, n > n0 ; 

u is called a convergence regulator. 
If G — Q, the 7x-convergence coincides with the usual convergence for every 

u G Q, 0 < u. 
Let us recall some notions from [3] concerning the convergence determined 

by a fixed convergence regulator in lattice ordered groups. Unless otherwise 
specified, all results of this section have proofs which may be found in [3]. 

DEFINITION 1.5. Let G be a lattice ordered group and 0 < u G G. A sequence 
(xn) in G is called u-fundamental whenever for every p G N there exists n0 G N 
with 

p\xn — xm\ < u for all ra,nGN, m>n>n0. 

THEOREM 1.6. Let G be an Archimedean lattice ordered group and 0 < 
u G G. Then u -limits are uniquely determined. 

In what follows, G is assumed to be an Archimedean lattice ordered group 
and 0 < u G G the convergence regulator in G. By a convergent (fundamental) 
sequence and a limit, a ^-convergent (^-fundamental) sequence and a u-limit 
will be meant respectively. The notation xn —> x (or xn —> x in G) will be 
applied instead of xn ---» x. 

By a zero sequence in G a sequence (xn) with xn —> 0 is understood. F (E) 
stands for the set of all fundamental (zero) sequences in G. 

In 1.7-1.9, (xn), (yn) are sequences in G and x,y G G. 
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L E M M A 1.7. Let • G {+, A, v } . 

(i) If xn-> x and yn -> y, then xnUyn -> xUy. 
(ii) / / (xj G F and (yj G F, then (xnUyJ G F. 

(iii) If xn —> x, then kxn —» kx for each integer k. 
(iv) If (xj G F, then (xj is a bounded sequence. 

LEMMA 1.8. Let xn —r x and xn > 0 for every n G N. Then x > 0. 

P r o o f . According to 1.7 (i), xn = xn V 0 -> x V 0. The hypothesis and 
Theorem 1.6 imply x = x V 0, which entails x > 0. • 

From Lemmas 1.7 and 1.8 we obtain: 

COROLLARY 1.9. Let xn -> x, yn -> y and xn < yn for each n G N. Then 
x < y. 

Every convergent sequence in G is fundamental in G. If also the converse 
holds, then G is called u-Cauchy complete (briefly, C-complete). 

DEFINITION 1.10. Let G, H be Archimedean lattice ordered groups with the 
following properties: 

(i) G is an /-subgroup of H. 
(ii) H is C-complete. 

(iii) Every element of H is a limit of some sequence in G. 

Then H is said to be a u-Cauchy completion (briefly C-completion) of G. 

Let (xj,(yj G F . If we put (xj + (yj = (xn+yj and (xj < (yj if and 
only if xn < yn for every n G N, then (F, + , <) becomes an Archimedean lattice 
ordered group. E is an /-ideal of F. Let us form the factor group G* = F/E. We 
use (xj* to denote the coset of G* containing the sequence (xj. G* is a lattice 
ordered group. We have (xj* + (yj* = (xn + yj* and (xj* < (yj* if and 
only if there exist sequences (xj G (xj* and (yj G (Hn)* with (xn) < (yj, 
or equivalently, for each (xj G (xn)* there is (yj G (HJ* with (xj < (yn); 
(xnY v (VnY = (xn v 2/n)* a n d dually. It is easy to verify that (xj* < (yj* if 
and only if (xj < (yj + (tj for some sequence (£n) G E+. 

The element (ix, u,.. .)* is considered as a convergence regulator in G*. The 
mapping </>: G —> G*, denned by (p(x) = (x, £ , . . . )* for every x G G, is an 
embedding of the lattice ordered group G into G*. Under this embedding, G is 
an /-subgroup of G*, u is a convergence regulator in (7* and we have: 

Remark 1.11. Every element (xj* G G* is a limit of some sequence in G, 
namely x n -> ( z j * . 
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2. iz-Cauchy completion and the Dedekind completion 
of an Archimedean lattice ordered group 

Remind that G is assumed to be an Archimedean lattice ordered group and 
0 < u G G is a convergence regulator in G and G*; u will be taken as a 
convergence regulator in GA . 

This section deals with a relation between G* and the Dedekind completion 
GA of G. GA is an Archimedean lattice ordered group. This is a consequence 
of the following statement. 

THEOREM 2.1. ([5; Proposition 5.4.2]) A complete lattice ordered group is 
Archimedean. 

Let (xn) be an upper bounded sequence in a complete lattice ordered group 
G and p G N. Then V xn and V pxn G N do exist in G. 

nGN nGN 
The following result is well known. 

LEMMA 2.2. Let G be a complete lattice ordered group, (xn) an upper bounded 
sequence in G and xn > 0 for every n G N . Then p\J xn= \Jpxn for each 
p £ JJ# nGN nGN 

Let (An) be a fundamental sequence in GA. By Lemma 1.7 (iv) the sequence 
(An) is bounded in GA. Hence there exists Bn = An A An+1 A . . . in GA for 
each n G N . 

LEMMA 2.3. If (An) is a fundamental sequence in GA, then so is (Bn). 

P r o o f . Let p G N. There exists n0 G N with 

p\An-Am\<u for each ra,nGN, m>n>n0. 

Let m, n G N, m > n > nQ. By using (1) we get 

P\Bn-Zm\ 

= p\(An A An+1 A .- . A Am_x) A (Am A Am+1 A . . . ) - (Am A Am+1 A . . . ) A A J 

= p\Am + ((-An) V (-An+1) V . . . V ( - A ^ J ) | 

= vUm - An) V (Am - A n + 1 ) V - . . V (Am - A m _ x ) | 

<P l^m " An\ Vp\Am - An+1\ V . • • Vp\Am - A m _ ! | < ti • 

Thus (Bn) is a fundamental sequence in GA. • 

171 



m 

STEFAN CERNAK 

THEOREM 2.4. Let G be an Archimedean lattice ordered group. Then GA is 
C-complete. 

P r o o f . Let (An) be a fundamental sequence in GA and let (Bn) be as 
above. Then Lemmas 2.3 and 1.7(iv) imply that the sequence (Bn) is bounded 
(this follows also from the definition of Bn). Hence there exists B = \f B 
= V/ Bm • W e i n t e n d t o show that An -» B. m G N 

mEN 
m > n + l 

Let p G N. There exists n0 G N such that 

p | An — Am \ <u for all m, n G N, m> n > n0. 

Suppose that n G N, n > n0 . Applying Lemma 2.2 we get 

p\An-B\=p\B-An\=p\ \J Bm-An 
mGN 

m > n + l 

= p\Bn+1\,Bn+2V----An\ 

= P\(Bn+1-An)y(Bn+2-An)W...\ 

= p\(An+1 A An+2 A • • • - An) V (A„ + 2 A A „ + 3 A • • • - An) V . . . | 

< P ( K + i A A „ + 2 A • • • - An\ V \An+2 A ̂ n + 3 A • • • - An\ V . . . ) 

= p\(An+1-An)A(An+2-An)A...\ 

Vp\(An+2-An)A(An+3-An)A...\V... 

= p\(An-An+1)W(An-An+2)W...\ 

Vp\(An - An+2) V (An - An+3) V . . . | V . . . 

<p(\An-An+1\V\An-An+2\V...) 

v p ( | A n - A n + 2 | v | ^ n - A n + 3 | v . . . ) v . . . 

= P\K~ An+l\ Vp\An~ K+2\ V • • • < «• 

as desired. D 

Let (xn) be a sequence in G and x G G. It is easily seen that xn —>> x in G 
if and only if x n —r x in GA and that (xn) is fundamental in G if and only if 
(xn) is fundamental in GA . 

Suppose that x G G*. With respect to Theorem 1.11, there exists a sequence 
(xn) in G such that x n —>> x in G*. Since (xn) is fundamental in G, it is also 
fundamental in G A . By Theorem 2.4, there exists A G GA with x n ^> .4 in GA . 
Define the mapping ip: G* —r GA by the rule (/?(x) = A. 

Assume that also for a sequence (x'n) in G, x n —•> x in G* holds. Then there 
exists A' G GA with x n -> A' in GA . By Lemma 1.7 (i) we have xn—xn->0, 
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xn — xn —> A — A' in GA. Applying Theorem 1.6 we get A = A'. Therefore cp 
is correctly defined. An analogous argument proves that ip is injective. 

Let x = (xn)*, y = (yn)* and cp(x) = A, ip(y) = B. Theorem 1.11 implies 
that xn -» x, yn -> y in G*. Then xn -» A, yn -> B in GA. By Lemma 1.7(i), 
xn A yn -» x A y in G* and x n A yn -> A A F? in G A . Consequently, cp(x Ay) = 
A A B = (/?(x) A (/p(H). Dually, (/?(# V y) = ^ ( x ) v ^(2/) • 

It is easy to verify that (/? preserves the group operation. 
At the end we identify x and (p(x) for every x G G. We have proved the 

validity of the following Theorem. 

THEOREM 2.5. Let G be an Archimedean lattice ordered group. Then G* is 
an I -subgroup of GA . 

Since G is dense in GA, we get: 

COROLLARY 2.6. G is a dense I-subgroup in G* . 

The following question remained open in [3]: Is G* Archimedean lattice or­
dered group for each Archimedean lattice ordered group G? The following Corol­
lary of Theorems 2.1 and 2.5 gives the positive answer to this question. 

COROLLARY 2.7. G* is an Archimedean lattice ordered group. 

From Corollary 2.7 and [3; Theorems 3.16, 3.17] we obtain: 

THEOREM 2.8. G* is a C-completion of G. It is uniquely determined up to 
isomorphisms over G. 

In general, G* does not coincide with GA. 

E X A M P L E 2.9. Let G be the set of all eventually constant sequences of real 
numbers. G is an Archimedean lattice ordered group under the addition and 
the ordering performed componentwise. The Dedekind completion GA of G 
is the lattice ordered group of all bounded sequences of real numbers. This 
is a consequence of [4; Theorem 2.5]. We choose the constant sequence u = 
(1 ,1 , . . . ) as a convergence regulator in G and also in GA. With respect to 
Theorem 2.5, G* is an /-subgroup of GA. There is no sequence in G that 
converges to the element (1 ,0 ,1 ,0 , . . . ) G GA . Thus GA fails to have the property 
(iii) of C-completion of G from the Definition 1.10. We conclude that G* ^ GA . 

Let G be a lattice ordered group and x G G. The set 

x1- = {yeG: M A |x|-= 0} 

is said to be a polar of x. For X C G, we set XL = Hi^" 1 : x ^ X}. X1- is 
called a polar of X; x1- and XL are convex /-subgroups of G. 
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A lattice ordered group G is called protectable if G = g^1- x g1- for each 
g G G (cf. [5]). It is well known that each complete lattice ordered group is 
projectable. 

Hence we have 
GA = u±L x uL . (2) 

Every element z G GA can be uniquely expressed in the form z = z1 + z2, 
z1 G i*-1-1, z2 G uL. Let (xn) be a sequence in GA, x G GA . Under the above 
notation, xn = xn + x2 for each n G N, x = x1 + x 2 ; u1 = n, n2 -= 0, as 
TX G n-1-1. 

LEMMA 2.10. Let (2) be fa/id. I/ (xn) is a sequence in GA and x G GA such 
that xn —J> x , iTzen 

(i) a ^ - r x 1 , 
(ii) there exists n0 G N with x2 = x2 /o r eac/z- n G N. n >n0. 

P r o o f . Let p G N. There exists nQ G N with 

\xn — x\ < u for every n G N, n > n0 . 

Consequently, for each n G N, n>n0, 

\x\ — xx\ = \x„ — xl1 < u and \x2 — x2\ = \x„ — x\2 < 0 
I Tt I l TL l —~ l Th I * il I — 

is satisfied as desired. • 

From Lemma 2.10, there immediately follows: 

LEMMA 2 .11 . Let (2) be valid. If (xn) is a sequence in uL and x G GA such 
that xn -» x in GA, then x G w 1 and there exists n0 G N such that xn = x for 
each n G N, n > n0. 

3. u-Cauchy completion of the direct product 
of Archimedean lattice ordered groups 

Let G be the direct product of lattice ordered groups G{, i £ I. This fact is 
expressed by writing 

G = ]jGi. (3) 
iei 

The ith component of an element x G G is denoted by x(i). Since G is 
Archimedean, all Gi are Archimedean as well. 

In Lemmas 1-3 it is supposed that G fulfils (3) and that u(i) is a convergence 
regulator in G{ for each i G / . For a sequence (xn) in Gi and xl G G{, we 

will write x* —•> xz instead of xl > xl. F. (E-) will denote the set of all 
Th lb L ^ V ' 

fundamental (zero) sequences in Gt for each i E I. 
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LEMMA 3 .1 . Let (xn) be a sequence in G and x G G. Then xn —r x if and 
only if xn(i) —•> x(i) for each i e I. 

P r o o f . Let p G N. Then p\xn—x\ < u holds if and only if p\xn—x\(i) < u(i) 
for each i G I. As \xn — x\(i) = \xn(i) — x(i)\, the proof is finished. • 

The proof of the following Lemma is analogous. 

LEMMA 3.2. Let (xn) be a sequence in G. Then (xn) G F if and only if 
(xn(i)) G Fi for each i € I. 

Let i G I. E{ is an /-ideal of Fi. We can form the factor group G* = Fi/Gi; 
G* is a lattice ordered group under the natural group and lattice operations. 

LEMMA 3.3. G* is Archimedean for each i e I. 

P r o o f . Let i G I. Assume that ( x j * , (yn)* G G* and k(xn)* < (yn)* 
for every k G N. For each k G N there exists a sequence (tl

n) G Ei with 
k(xn) < (yn)-\-(tn). Let (xn) be a sequence in G with xn(i) = xn and xn(j) = 0 
for all j G / , j 7-= i and all n G N. Sequences (yn) and (£n) in G are defined 
similarly. By Lemmas 3.1 and 3.2, (tn) G E for each A: G N and (a;J G F . We 
have k(xn) < (yn) + ( t n ) , which entails k(xj* < Q/J* for each k G N. The 
assumption implies ( x j * < i?. Then (xn) < (vn) for some (vn) e E. Applying 
Lemma 3.1, vn(i) G E{. The relation x n = xn(i) < vn(i) yields (xn)* < Et, as 
desired. • 

THEOREM 3.4. VVe /mt>e 
G*^]jG*. 

iei 

P r o o f . Let (xn)* G G*. Using Lemma 3.2, from (xn) e F it follows that 

(xn(i)) G Fi for each i G / , so (# n (0 ) £ ^* f° r e a c n i € I- Let X be an 
element of n G* with X,^ = (xn(i)) for each i e I. Define the mapping 

iei 
il): G* -> n GJ by the rule ^((xn)*) =X. 

Let (xn)* , ( y j * G G* . We have (* J * = (yn)* if and only if (xn -yn)eE, 
i.e., (xn - yn)(i) = (xn(i) - yn(i)) € Ei for each i G 7 by Lemma 3.1. That 

means (# n (0 )* = G/nW)* ^or e a c n i ^ I. We conclude that ^ is correctly 
defined and one-to-one. 

To show that ip is a mapping from G* onto J~[ <?* > suppose that F G ]̂ [ G*. 
zGI iGI 

For each i G 7 there is a sequence (yn) G Fi with F (^ = (yn)*. For each n G N 
denote by Hn the element of G with yn(i) = yn for each i G I. Lemma 3.2 
implies (j/n) G F . Consequently, (yn)* G G* is the origin of Y under the 
mapping i\). 

One readily sees that ip preserves the group and lattice operations. • 
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4. Some further results on G and G* 

In this section we investigate the question which properties of G remain valid 
for G*. Further, it is shown that the system of all Cb-complete /-ideals of G 
has a greatest element. An analogous problem is dealt with for C-completeness. 

Evidently, a chain in G is a chain in G*. 
A subset A of G is called an antichain in G if x \\ y for each x,y € A, 

x^y. 

LEMMA 4 .1 . Let A be an antichain in G. Then A is an antichain in G*. 

P r o o f . Let x,y G A, x ^ y. Then x \\ y. Evidently, (x,x, . . . ) * ^ 
(y,H, . . . ) * . We have to show that (.x,.r,.. .)* || (y,y, ...)*. Let (x,x, ...)* < 
(y,y, ...)*. Then there are sequences (xn) G (x,.x, ...)* and (yn) G (y,y,.. .)* 
with (xn) < (yn). By Theorem 1.11, xn -» x and yn -» y. Corollary 1.9 implies 
x < y, a contradiction. • 

A chain K in G is called maximal if for each chain H in G with K C H 
the relation K = H is valid. The notion of a maximal antichain in G is defined 
similarly. 

A maximal chain (antichain) in G need not be a maximal chain (antichain) 
in G*. 

E X A M P L E 4.2. Let G be the direct product of lattice ordered groups Gx, G 2 , 
written G = GxxG2 with Gx = G2 = Q. The set K = {(<?, q) G G : g G Q} is 
a maximal chain in G and A = {(—g, q) G G : g G Q} is a maximal antichain 
in G. On the other hand, K(A) fails to be a maximal chain (antichain) in G*. 
Indeed, by Theorem 3.4 we get G* ~ G* x G* ~ IR x M. 

It is well known that every Archimedean linearly ordered group is a subgroup 
of R. Therefore we get: 

THEOREM 4 .3 . G* is a linearly ordered group if and only if G is a linearly 
ordered group. 

A nonempty system S of strictly positive elements from G is called disjoint 
if x A y = 0 for each x,y G S, x ^ y. We say that S is a maximal disjoint 
system in G if 0 < g G G and # A x = 0 for each x £ S imply g = 0. 

LEMMA 4.4. ie£ S be a maximal disjoint system in G. Then S is a maximal 
disjoint system in G*. 

P r o o f . Let x,y G S, x ^ y. Then x A y = 0. Therefore (x,x, . . . ) * A 
(2/, y,.. .)* = (x Ay,x Ay,.. .)* = (0 ,0 , . . .)* = F7. Hence S is a disjoint system 
in G*. Assume that E < (xn)* G G* and (xn)* A x = E is fulfilled for every 
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x G S. By way of contradiction, suppose that (xn)* > E. In view of Corol­
lary 2.6, there exists g G G with 0 < g < (xn)*. Therefore g A x = 0 for every 
x e S, which contradicts to the maximality of S. • 

A group H is called divisible if for each x G H and each k G N there exists 
y € H such that ky = x. 

LEMMA 4.5. If G is divisible, then so does G*. 

P r o o f . We have to prove that for each k G N and each x G G* there exists 
y G G* with ky = x. 

Let k G N and x G G*. With respect to Theorem 1.11, there exists a sequence 
(xn) in G with x n -> x in G*. Then (xn) is fundamental in G* and also in G. 
For any n G N there is yn G N such that kyn = xn. Let p G N. There exists 
n0 G N with 

p\yn-ym\ <p\kyn-
kym\ = p\xn-x

m\ <u 

for each m,n G N, m > n > n0. Therefore (yn) G F . Again, according to 
Theorem 1.11, there exists y G G* with yn -> y in G*. By 1.7(iii), kyn -> ky. 
Then from kHn -> x in G* and Theorem 1.6 we conclude ky = x. • 

A subset 5 of G will be called Cauchy complete (briefly C-complete) if for 
each sequence (xn) in 5 such that (xn) G F there exists x G 5 with x n -> x 
in G. 

If for each sequence (xn) in S, bounded in S, (xn) G F there exists x G /? 
with x n -» x in G, then we say that S is a Cauchy b-complete subset of G 
(briefly Cb-complete). 

J. J a k u b f k [8] studied o-convergence in lattice ordered groups. By the 
same method as used in [8], the following three results can be proved. 

LEMMA 4.6. Let a,b,c G G. a < b < c. If intervals [a,b] and [b,c] are 
C-complete subsets of G, then [a,c] is also a C-complete subset of G. 

LEMMA 4.7. Let a,b,c G G, a <b. If [a,b] is a C-complete subset of G, then 
[a+c, b+c] is also a C-complete subset of G. 

LEMMA 4.8. Let a,b G G , 0 < a,b. If [0,a] and [0,6] are C-complete subsets 
of G. then [0,a+b] is also a C-complete subset of G. 

Let us form the set 

M = {xeG: [0, \x\] is a C-complete subset of G} . 
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LEMMA 4 .9. M is an I-ideal of G. 

P r o o f . Let x,y G M . Then [0, |x|] and [0, \y\] are C-complete subsets 
of G. Using Lemma 4.8, [0, |x|+|?/|] is a C-complete subset of G as well. From 
\x + H| < \x\ + \y\ and Corollary 1.9 we infer that [0, |x+y|] is a C-complete 
subset of G, so x + y E M. If x G M , then also — x G M because of the relation 
\x\ = \—x\. We have shown that M is a subgroup of G. Since |xVH| < |x| V|y| < 
\x\ + |y|, the same argument as above proves that x\/ y G M and thus M is a 
sublattice of G. It is apparent that M is a convex subset of G. • 

LEMMA 4 .10. M is the greatest Ch-complete I-ideal of G. 

P r o o f . We start by proving that M is a Cb-complete subset of G. Let (xn) 
be a sequence in M , bounded in M , and (xn) G F. There are a,b e M such 
that xn G [a, b] for every n G N. It suffices to show that [a, b] is a C-complete 
subset of G. By Lemma 4.9, b — a G M and so [0, b—a] is a C-complete subset 
of G. Applying Lemma 4.7, [a, b] is a C-complete subset of G. Suppose that 
M' is an /-ideal of G that is a Cb-complete subset of G. Choose any g G M ' . 
From [0, |g|] C M' it follows that [0, |g|] is a C-complete subset of G, implying 
that g G M . We conclude M ' C M . • 

The idea of proofs of Lemma 4.9 and Theorem 4.10 are similar to those used 
in [2] examining a system of intervals in lattice ordered groups. 

The question whether there exists a greatest C-complete /-ideal of G remains 
open. 

Nevertheless, the following two results are valid. 
An /-ideal of G generated by C-complete /-ideals of G need not be C-com-

plete for some convergence regulator in G. 

EXAMPLE 4 .11. Let G = Y[ G-, G- = R for every i G N. Then G\ = {g G G : 
i£N 

g(j) — 0 for each j G N, j ^ i} is an /-ideal of G and it is a C-complete 
subset of G for every i e I. Denote by H the /-ideal of G generated by the set 
\J G^. H consists of all elements of G having a finite support. Let us form the 

sequence (xn) in H by setting xn = f 1, | , | , . . . , ^ , 0 , 0 , . . . ) for every n G N. 
If u G G, u = (1 ,1 ,1 , . . . ) is considered as a convergence regulator in G and 
x = ( l , | , | , . . . V then xn -> x in G . Whence (xn) is a fundamental sequence 
in G . Therefore H fails to be C-complete subset of G, as x £ H. 

THEOREM 4 .12. Let S = {G^^j be the system of all C-complete I-ideals 
of G such that u G G{ for each i £ I. Then the system S has a greatest element. 

P r o o f . We claim that the /-ideal H of G generated by the set |J G{ is 
ie/ 

the greatest element of S. It is enough to show that H is a C-complete subset 
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of G. Let (xn) be a sequence in H such that (xn) G F. Because u G H, 1.7(iv) 
yields that (xn) is bounded in H. There are a, b G H, a < b, with x n G [a, b] 
for every n G N. We have 0 < b — a G H. There are i1,i2,...,in from J 
such that there exist 0 < c1 G G^ , 0 < c2 G G i 2 , . . . , 0 < cn G Gin with 
b — a < c1+c2-\ h cn. Since G^ is a C-complete subset of G, [0, c j C G^ and 
Corollary 1.9 yield that [0,cj is a C-complete subset of G for each i G J . By 
Lemma 4.8 and induction we get that [0, c1+c2-\ \-cn] is a C-complete subset 
of G. From [0, b—a] C [0, c1-|-c2H h c j and Corollary 1.9 we infer [0, b—a] is 
a C-complete subset of G. Applying Lemma 4.7, [a, b] is a C-complete subset 
of G and the proof is complete. • 
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