Milan Jasem
On intrinsic quasimetrics preserving maps on non-abelian partially ordered groups

Mathematica Slovaca, Vol. 54 (2004), No. 3, 225–228

Persistent URL: http://dml.cz/dmlcz/132713

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 2004

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
ON INTRINSIC QUASIMETRICS PRESERVING MAPS ON NON-ABELIAN PARTIALLY ORDERED GROUPS

MILAN JASEM

(Communicated by Tibor Katriňák)

ABSTRACT. In [JASEM, M.: Intrinsic metric preserving maps on partially ordered groups, Algebra Universalis 36 (1996), 135–140], it was proved that a stable surjective map f from an abelian directed group G_1 onto a directed group G_2 is a homomorphism if it satisfies the following condition:

(C) If $|x-y|=|z-t|$, then $|f(x)-f(y)|=|f(z)-f(t)|$ for each $x, y, z, t \in G_1$.

In this paper a stable map $f: G_1 \to G_2$ satisfying (C) is studied, where G_1 and G_2 are non-abelian directed groups. It is shown that a stable injective map $f: G_1 \to G_2$ satisfying (C) is a homomorphism in the case that G_1 is a 2-isolated directed group and G_2 is a linearly ordered group. The question whether f is a homomorphism also in the case of non-linearly ordered group G_2 remains open.

In [5], Swamy defined an intrinsic metric on a lattice ordered group (l-group) G as a map $d: G \times G \to G$ satisfying the following conditions for each $a, b, c \in G$:

(M$_1$) $d(a, b) \geq 0$ and $d(a, b) = 0$ if and only if $a = b$,
(M$_2$) $d(a, b) = d(b, a)$,
(M$_3$) $d(a, c) \leq d(a, b) + d(b, c)$,

and showed that any abelian l-group is autometrized by $d(x, y) = |x - y|$.

Holland [1] considered whether other metrics might be naturally defined on an l-group.

Rachůnek [4] generalized the notion of an intrinsic metric to any partially ordered group (po-group). He defined an intrinsic metric on a po-group G as a map $d: G \times G \to \exp G$ satisfying (M$_2$) and the following conditions for each $a, b, c \in G$:

2000 Mathematics Subject Classification: Primary 06F15.
Keywords: intrinsic metric, intrinsic quasimetric, intrinsic quasimetrics preserving map, partially ordered group, lattice ordered group.
Let G_1 and G_2 be po-groups and let d_1 and d_2 be intrinsic quasimetrics on G_1 and G_2, respectively. A map $f : G_1 \to G_2$ preserves intrinsic quasimetrics d_1 and d_2 if and only if $d_1(x, y) = d_1(z, t)$ implies $d_2(f(x), f(y)) = d_2(f(z), f(t))$ for each $x, y, z, t \in G_1$. A map $f : G_1 \to G_2$ is called stable if $f(0) = 0$.

We recall some notations and notions concerning po-groups used in the paper. Let G be a po-group. The group operation will be written additively. We denote by $U(a_1, \ldots, a_n)$ the set of all upper bounds of the set $\{a_1, \ldots, a_n\}$ in G. If for $a, b \in G$ there exists the least upper bound (greatest lower bound) of the set $\{a, b\}$ in G, then it will be denoted by $a \lor b$ ($a \land b$). For $a \in G$, $|a| = U(-a, a)$. In the case that G is an l-group, $|a| = -a \lor a$ for $a \in G$ as usual. We denote by $\exp G$ the set of all subsets of G. The set of all positive integers will be denoted by \mathbb{N}. A po-group G is called 2-isolated if $2a > 0$ implies $a > 0$ for each $a \in G$.

Theorem 1. Let G be a 2-isolated directed group, $n \in \mathbb{N}$. Let $d(a, b) = n|a - b|$ for each $a, b \in G$. Then d is an quasimetric on G.

Proof. Let $a, b \in G$, $n \in \mathbb{N}$. If $x \in d(a, b)$, then $x = x_1 + \cdots + x_n$, where $x_i \geq a - b$, $x_i \geq b - a$, $i = 1, \ldots, n$. Thus $2x_i \geq 0$ and hence $x_i \geq 0$ for $i = 1, \ldots, n$. Then $x \geq 0$. Therefore $d(a, b) \subseteq U(0)$.

If $d(a, b) = U(0)$, then $0 = z_1 + \cdots + z_n$, where $z_i \geq a - b$, $z_i \geq b - a$ for $i = 1, \ldots, n$. Then $2z_i \geq 0$ and hence $z_i \geq 0$ for $i = 1, \ldots, n$. Then $0 = z_1 + \cdots + z_n \geq z_i$ and thus $z_i = 0$ for $i = 1, \ldots, n$. Then we get $0 \geq a - b$, $0 \geq b - a$. This yields $a = b$. \hfill \Box

The following example shows that a stable map $f : G_1 \to G_2$ satisfying the condition (C), where G_1 and G_2 are even linearly ordered groups, need not be a homomorphism.
EXAMPLE. Let \mathbb{Z} be the additive group of all integers with the natural order. Let $G_1 = G_2 = \mathbb{Z}$. For even integer $x \in G_1$ we put $f(x) = 0$, for odd integer $x \in G_1$ we put $f(x) = 1$. Then the stable map $f : G_1 \to G_2$ satisfies the condition (C), but f is not a homomorphism.

So it is needed to put an additional condition on a stable map satisfying (C) to be a homomorphism, for example surjectivity, injectivity.

Remark. Let G be a po-group, $a, b \in G$. If $a \geq 0$, then $|a| = |b|$ implies $a \geq b$, $a \geq -b$. If $a \geq 0$, $b \geq 0$, then $|a| = |b|$ implies $a = b$. We shall often need these assertions and we shall apply them without special references.

THEOREM 2. Let G_1 be a 2-isolated directed group and let G_2 be a linearly ordered group. Let $f : G_1 \to G_2$ be a stable injective map satisfying the following condition for each $a, b, c, d \in G_1$:

If $|a - b| = |c - d|$, then $|f(a) - f(b)| = |f(c) - f(d)|$.

Then f is a homomorphism.

Proof. First we prove that $f(-z) = -f(z)$, $f(2z) = 2f(z)$ for each $z \in G_1$. Let $z \in G_1$, $f(z) \geq 0$. Assume that $f(-z) > 0$. Since $|z - 0| = |-z - 0|$, we have $|f(z) - f(0)| = |f(-z) - f(0)|$. Then $f(z) = f(-z)$. This implies $z = -z$. Since G_1 is 2-isolated, we have $-z = 0$. Thus $f(-z) = 0$, a contradiction. Therefore $f(-z) \leq 0$. Then from $|f(z) - f(0)| = |f(-z) - f(0)|$ we obtain $f(-z) = -f(z)$. Since $|2z - z| = |z - 0|$, we have $|f(2z) - f(z)| = |f(z) - f(0)|$. This yields $f(z) \geq f(z) - f(2z)$. Therefore $f(2z) \geq 0$. From $|2z - 0| = |z - (-z)|$ we obtain $|f(2z) - f(0)| = |f(z) - f(-z)| = |2f(z)|$. Hence $f(2z) = 2f(z)$.

Let $z \in G_1$, $f(z) < 0$. Assume that $f(-z) < 0$. Since $|z - 0| = |-z - 0|$, we have $|f(z) - f(0)| = |f(-z) - f(0)|$. Thus $f(z) = f(-z)$ and hence $z = -z$. This yields $z = 0$. Then $f(-z) = 0$, a contradiction. Therefore $f(-z) \geq 0$. Then from $|f(z) - f(0)| = |f(-z) - f(0)|$ it follows that $f(-z) = -f(z)$. Since $|2z - z| = |z - 0|$, we have $|f(2z) - f(z)| = |f(z) - f(0)|$. This implies $-f(z) \geq f(2z) - f(z)$. Thus $0 \geq f(2z)$. From $|2z - 0| = |z - (-z)|$ it follows that $|f(2z) - f(0)| = |f(z) + f(-z)| = 2|f(z)|$. Hence $f(2z) = 2f(z)$.

Let $x, y \in G_1$. Now we prove that $f(x + y) = f(x) + f(y)$.

a) Let $f(x) \geq 0$, $f(y) \geq 0$. Assume that $f(x + y) < 0$. From $|(x + y) - y| = |x - 0|$ we obtain $|f(x + y) - f(y)| = |f(x) - f(0)|$. Since $f(x + y) - f(y) \leq 0$, we have $f(y) - f(x + y) = f(x)$. Hence $f(x + y) = -f(y) + f(x)$. From $|(x + y) - 0| = |x - (-y)|$ it follows that $|f(x + y) - f(0)| = |f(x) - f(0)| = |f(x) + f(y)|$. Hence $f(x + y) = f(x) + f(y)$. Then $-f(y) + f(x) = f(x) + f(y) \geq f(x)$. This yields $0 \geq f(y)$. Thus $f(y) = 0$ and hence $y = 0$. Then $f(x + y) = f(x) \geq 0$, a contradiction. Therefore $f(x + y) \geq 0$. From $|(x + y) - 0| = |x - (-y)|$ it follows that $|f(x + y) - f(0)| = |f(x) - f(0)| = |f(x) + f(y)|$. This implies $f(x + y) = f(x) + f(y)$.
b) Let $f(x) \geq 0$, $f(y) < 0$. From $|(x + y) - y| = |x - 0|$ we obtain $|f(x + y) - f(y)| = |f(x) - f(0)|$. Then $f(x) \geq f(x + y) - f(y)$. This implies $f(x) \geq f(x + y)$. Further we have $f(-y) = -f(y) \geq 0$. In view of a) we have $f(x - y) = f(x + (-y)) = f(x) + f(-y) = f(x) - f(y)$. Since $|x - (x + y)| = |(x - y) - x|$, we have $|f(x) - f(x + y)| = |f(x - y) - f(x)| = |f(x) - f(y) - f(x)|$. Clearly $f(x) - f(y) - f(x) \geq 0$. Hence $f(x) - f(x + y) = f(x) - f(y) - f(x)$. Therefore $f(x + y) = f(x) + f(y)$.

c) Let $f(x) < 0$, $f(y) \leq 0$. Since $f(-x) = -f(x) \geq 0$ and $f(-y) = -f(y) \geq 0$, in view of a) we have $f(-y - x) = f((-y) + (-x)) = f(-y) + f(-x) = -f(y) - f(x) \geq 0$. Then $f(x + y) = f(-(y - x)) = -f(-y - x) = f(x) + f(y)$.

d) Let $f(x) < 0$, $f(y) > 0$. Then $f(-y) = -f(y) \leq 0$. In view of c) we get $f(x - y) = f(x + (-y)) = f(x) + f(-y) = f(x) - f(y)$. From $|(x + y) - y| = |x - 0|$ it follows that $|f(x + y) - f(y)| = |f(x) - f(0)|$. Thus $-f(x) \geq f(y) - f(x + y)$. This implies $f(x + y) \geq f(x)$. Since $|x - (x + y)| = |(x - y) - x|$, we have $|f(x) - f(x + y)| = |f(x - y) - f(x)| = |f(x) - f(y) - f(x)|$. Clearly $f(x) - f(y) - f(x) \leq 0$. Then we get $f(x + y) - f(x) = f(x) + f(y) - f(x)$. Therefore $f(x + y) = f(x) + f(y)$.

Remark. It is clear from the proof of Theorem 2 that a stable injective map $f : G_1 \to G_2$ (G_1, G_2 as in Theorem 2) preserving intrinsic quasimetrics $d_1(a, b) = n|a - b|$ ($n \in \mathbb{N}$) and $d_2(a, b) = |a - b|$ on G_1 and G_2 is also a homomorphism.

REFERENCES

Received March 15, 2002
Revised October 25, 2002