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DANIELL T Y P E EXTENSIONS 
OF L^GAUGES AND INTEGRALS 

IVAN DOBRAKOVŤ* — JANA DOBRAKOVOVÁ** 

(Communicated by Miloslav Duchoň ) 

A B S T R A C T . We show t h a t a Daniell type extension procedure is possible if t h e 
subadditivity is replaced by a much weaker requirement of subadditive continuity. 
Particu l lary, we prove t h a t the Fatou and Daniell properties are preserved by this 
comp letion of t h e e lementary Lx-gauge. 

Introduct ion 

An approach to vector integration based on application of the Daniell scheme, 
using outer Lj-pseudonorms induced by vector measures, named Lj-gauges, was 
elaborated by K. B i c h t e l e r in [3]. Its generalization to non locally convex 
spaces outlined in [4] led in [5] to substantial progress in stochastic integration, 
particularly in the Lp-theory for p G [0,1). A similar investigation of subadditive 
Daniell gauges and the integrals they dominate was done by M. W i l h e l m in 
[20], [21] and [22] in an abstract setting. In [8], we will show that Lj-gauges 
of a non linear integration corresponding to Riesz type representations of non 
linear Hammerstein operators on C(S, E) from [1] and [2] are only subadditively 
continuous, see (3) in Definition 1 below. Hence, it is of interest to investigate 
the Daniell scheme of integration in such a general setting. At the same time, 
we continue our program announced already in [9], see also [10]-[13]. 

Elementary L1 -gauges introduced by Definition 1 usually have an additional 
property connected with multiplication by scalars which determines the linear 
topological structure they induce, see Theorems 1 and 2. In Section 2, we show 
that an elementary L1-gauge J on a function lattice T always has an extension 
to a function lattice C such that C is complete in the pseudometric induced by 
this extension. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 28C05, 28C99. 
K e y w o r d s : vector lattice, subadditive continuity, elementary La-gauge, Fatou property, 
Daniell property . 
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In the main Section 3 of this paper, we prove that our extension preserves 
the Fatou and Daniell properties, see Theorems 8 and 9 respectively. 

Finally, in Theorem 11, we show that, by applying our extension procedure 
again, we obtain no further extension. The proofs of these results are subtle 
and more involved then in the subadditive case treated in [3] and [20]. At the 
same time they show how far subadditivity can be replaced by the much weaker 
requirement of subadditive continuity. 

We mentioned earlier that Lx-gauges of our extra generality occur in the non 
linear integration theory ([8]) corresponding to Riesz type representation of non 
linear Hammerstein operators on C(S1E) from [1] and [2]. Namely, having a 
non linear measure m on a 6-ring P of subsets of a set T , in [8], we show that 

oo 

J(f) = J(f, T) = Y1 k~2 ' ™ ^ ' T ) * I1 + ™(fc/>T))_1 

k=i 

is in general only a subadditively continuous Lx-gauge with the Daniell property 

on L1(m). 

Here m(g,E) is defined as in part II of [7], and 

L1(m) = {g , g is P-measurable and J(#, • ) : <J(P) —> [0, ^-) is continuous} . 

In other words, the analog J : Lx(m) —* [0, ^ - ) of the Lj-pseudonorm f \f\ d/L 
T 

of the classical Lx(ii) in non linear integration theory is in general only a subad­
ditively continuous Z^-gauge. Let us note that here J(f) must in general depend 
on the multiples k/, k = 1, 2 , . . . , since, otherwise, L^m) will not be a linear 
space. 

1. Elementary Z^-gauges 

Suppose T is a non-empty set. A collection T of functions on T with values 
in R = (—oo,+oo) (in R* = [—oo,+oo]) is called an R- (R*-) function lattice 
if af + bg, / V g/f A g <E T provided f,g <G T and a, b G R. S(R) and C00(T) 
are the standard examples of R-function lattices. For more information about 
function lattices, see [12]. 

DEFINITION 1. By elementary Lx-gauge we mean a couple (T, J ) , where T 
is an R-function lattice on T , J : T —» R+ and has the following properties: 

(1) J(0) - 0 and J(f) = J(\f\) for each f eT. 
(2) 0<f<g = » J(f)<J(g). 

We say that J is monotone on T+ = {f, f G T, / > 0} . 
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(3) fn e T, n = 1,2,. . . , and J ( / n - fm) -» 0 as n,m -» oo =-=> 

•ICfJ ~ f(/m) ^ 0 as n, m ^ oo. 
We say that J is extendable subadditively continuous. 

(4) f,fneT+, / „ / / = > J(fn)/J(f). 
We say that J /ias £/ze Fatou property. 

(5) / n , p n G E, n = 1,2,. . . and J(/n) + j f o j - 0 as n - oo =4> 
J(fn + 9n) - > 0 as n ^ o o . 
We say that J lias f/ie pseudometric generating property. 

Clearly, (3) implies the subadditive continuity, or autocontinuity of J on T, 
i.e., 

f,fneT, n = 1 . 2 , . . . , and J ( / - / n ) - 0 ===> J(fJ-> J(f) 

«=> V/GJ" Ve>0 3<5>0 such that 

9 ^ and J(<?)<<5 =-=> j ( / ) - e < j ( / + 5 ) < j ( / ) + e . 

If J7 is complete in £, g(f^g) = J ( / — g), then the converse is also true. 
We now list subsequent strengthenings of (3). 

• J is uniformly subadditively continuous, or uniformly autocontinuous if 
for each e > 0 there is a 6 > 0 such that 
f,geT J(f-g)<6 =-=> | j ( / ) - J(cj)| < e. 
This property clearly implies (5). 

• J is K-subadditive if there is a K G [1, oo) such that 

J(f + 9)<J(f) + K-J(g) for each /,<7GJ=\ 

• J is subadditive if J ( / + g) < J(f) + J(g) for each f,g € T. 

• J is additive on .T^-clear. 

Note that a subadditive (additive) J is, in fact, countably subadditive 
(additive). 

We say that J is a Daniell elementary Lx-gauge if / G T^, n = 1,2, . . . , 
and / n \ 0 = > J(fn) \ 0. This Daniell property implies that J is mono-
tonically continuous on T+, and particularly the Fatou property of J. 

As we will see in Theorems 1 and 2 below, the following additional prop­
erties of J concerning multiplication by scalars from R determine the linear 
topological structure induced by J on T. 

• J is scalarly continuous if J(anf) —> J(af) whenever / E J7, a n , a G R, 

n = 1 ,2 , . . . , and a n —> a, or equivalently, lim J ( n ) = 0 for each 

/ G T. Obviously, each Daniell J has this property. 

• J is locally bounded if there exists a > 0, and for each n = 1,2, . . . there 

is a positive integer N(n) such that JI jfcfi) < ^ whenever / G J7 and 

J(/)<a. 
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• J is p-homogeneous if there is a p G (0,1] such that J(af) = \a\p • J(f) 
for each a G K and each / G T. 

• J is subhomogeneous if J(af) < \a\ • J(f) for each a G JR., f E T. 

• J is homogeneous if J(af) = \a\ • J ( / ) for each a G K, f € T. 

For JE? C T and / : T -> R put | | / | | E = s u p | / ( i ) | . Assertions (1) and (2) of 
teE 

the next lemma are immediate, while (3) follows from the well-known theorem 
of Dini. 

L E M M A 1. 

(1) Let 1 G T, and let each f G T be a bounded function. Then an ele­
mentary L1-gauge J: T —> K+ is scalarly continuous if and only if J(fn) —• 0 
whenever fn G T, n = 1, 2 , . . . , and | | / n | | T —* 0. 

(2) An elementary Lx-gauge J: S(M) —» IR+ zs scalarly continuous if and 
only if J(fn • XJS) ~> 0 whenever E G R, / n G S(R), n = 1,2,. . . , and 
11/nllE-O.' 

(3) An elementary L1-gauge J: CQ0(T) —> R + 25 scalarly continuous if and 
only if it is a Daniell L1-gauge. 

THEOREM 1. Suppose J : T -> R+ /ias £/ie properties (1), (2) and (5) o/ 
Definition 1. Then: 

(1) T/iere are ^ , 0 < c^ < 2 _ / c , k = 1, 2 , . . . , 8^c/i ibav 6k \ 0 , J(f + g) 
/ k+p \ 

< 5fc whenever f,g E T and both J(f),J(g) < O?
/e+1, and JI ]T fi) 

S:=k+i ' 
< c^ /or each k,p = 1,2, . . . whenever fkET and J(fk) < 6k for each 
k-1,2,.... 

(2) There is an invariant pseudometric pc: TxT—+ R + such that pc(f, g) —•» 0 
if and only if J(f — g) —> 0, / , g G J7 . (T,pc) is a pseudometric linear 
topological space if and only if J is scalarly continuous. 

P r o o f . 

(1) According to (5) of Definition 1, for each e > 0 there is a 6 = 6(e) such 
that J(f+g) < e whenever f,g E T and both J ( / ) , J(g) < 6(e). Take 6X so that 
0 < 6X < 2 " 1 , and put 62 = 2'161 A 6 ( 2 - 1 6 1 ) , . . . , <5n+1 = 2'16n A ^ " ^ J , . . . . 

(2) Take 6k, k = 1,2, . . . , from (1), and put Vk = { ( / ,# ) G T x J 7 , 
«^(/ "~5) < f̂c} * Clearly, V .̂, fc = 1, 2 , . . . , is a countable base of an invariant 
uniformity. It remains for us to use the metrization Lemma 12 and Problem N 
in [14; Chapter VI]. • 
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THEOREM 2. Suppose J: T —> R+ is a Daniell elementary Lx-gauge. Then 
there is a subadditive Daniell Lx-gauge Jc: T -* R + such that J(f) —• 0 if and 
ordyifJc(f)-+Q, f ET. 

If J is subhomogeneous (locally bounded), then Jc may be chosen so as to be 
homogeneous (p-homogeneous). 

P r o o f . Take pc as in Theorem 1, and put | | / | | = p c ( / , 0). Then clearly 
fn,gn G T, \gn\ < | / J , n = 1 ,2 , . . . , and | | /n | | -» 0 implies ||<?J| - 0. If 
An G R, n = 1,2, . . . , and An —> 0, then || A n / | | —> 0 for each / G J7 by scalar 
continuity of J . 

Hence, just as in the proof of Theorem VII.1.4 in [19], we obtain that J c , 
Jc(f) = sup{| |p| | , 0 < g < | / | } , has the required property. J c is clearly 
subhomogeneous (locally bounded) if and only if J is so. In that case, V — 
{/, / G J7 , J(f) < 1} is bounded convex neighbourhood of 0 . Hence Kol-
mogorov's theorem, see [16; Theorem III.2.1"], implies the existence of a homo­
geneous J c . 

The locally bounded case follows from Theorem III.2.1 in [16]. D 

Suppose J : T —> R + is uniformly autocontinuous and scalarly continuous. 
Then clearly, sup \J(f + g) — J(f)\ < oo for each g G T. Moreover, if J is 

locally bounded, then there is an a > 0 such that s u p { | J ( / + g) — J ( / ) | , 

/ 5 j e f , J(g) <a} < oo. 

Less obvious is the next lemma: 

LEMMA 2. Suppose J: T —> R+ is uniformly autocontinuous and p-homo­
geneous. Then there is a K G [l,oo) such that J(f + g) < J(f) + K • J(g) 
whenever / , cy G T and J(g) < 1. 

P r o o f . Take g G T so that 0 < J(g) < 1, and let e > 0. By the uniform 
autocontinuity of J , there is a 5, 0 < 6 < J (g ) , such that | J ( / ) — J ( ^ ) | < e 
whenever / , /i G T and J(f — h) < 6. 

Next take 6t > 0 so that J(/i) < 6 whenever h <E T and J(2~lh) < 6X. 
Since, by assumption J is scalarly continuous, there is a positive integer N > \ 
such that J((N - l)~lg) > 6 and J(N~1g) < 6. 

But then J(N~lg) > 6X since, otherwise, we have the contradiction: 
J((N - l)~lg) < J(2N~1g) < 6. Hence 6X < J(N~xg) = N'P • J{g) for 
some p G (0,1] by the assumed p-homogeneity of J . 

But then TV < (6~l • J (g ) )^ < 6~~ • J(p) since J(p) < 1. Hence J(f + g) = 

J(f + N- N-1 • g ) < J ( / ) + AT • £ < J(f) + e-6~* - J(g) for each f eT. D 
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2. Extension of L1-gauges 

In what follows, (J7, J ) will be a given elementary T1-gauge. All functions 
considered are defined on T and have values in [—00,00]. Unless otherwise 
specified, the arrows —-> ( /* or \ ) denote pointwise (monotone) convergence 
of functions considered. Denote 

- r ° = { / . 3 / n G E , n = l , 2 , . . . , such that fn / / } , 

~*u = {/> 3 / n G E , 7 1 = 1 , 2 , . . . , such that / n \ / } . 

For / e J r o + = {/ , / G E° and / > 0} we put J ° ( / ) = lim J ( L ) , where 
n—>oo 

fn G J7-*", n = 1, 2 , . . . , and fn/*f. The monotonicity and the Fatou property 
of J : T —> R imply that J ° : J70 —• [0, oo] is uniquely defined. Evidently, 
J ° extends J , is monotone and has the pseudometric generating property. In a 
standard way, see [18; 6.2.III.d], it follows that J° has the Fatou property. Hence 
J° is countably subadditive provided J is subadditive. Finally, J° has any of 
the properties: uniformly subadditively continuous, positively additive, locally 
bounded, p-homogeneous, subhomogeneous, homogeneous, provided J has the 
corresponding property. Note that , except for the Fatou property and positive 
additivity, the analogs hold for the outer Z^-gauge J* which we now define. 

Put 
T* = {/ , 3g£T°+ such that | / | < g) , 

and for / E J7* we define its outer Lj-gauge J * ( / ) by 

J * ( / ) = inf{J°(<7), geT°+, \f\<g}. 

We define the null functions M and the null sets by: 

N={/, / G E * and J* ( / ) = 0 } , and N = {N, N C T, X.N € N} . 

J7* is clearly a hereditary R*-function lattice, J* extends J ° , and J*(J7) = 
J* ( | / | ) for each / E T* . 

T H E O R E M 3 . 

(1) Let8k, fc = 1,2, . . . , be a s m Theorem I. If f,geF* and J * ( / ) , J* (3) < 
c5fc+1, ifcen J * ( / + g) < 6k, and if /• <E J7* and J * ( / J < 8i for i = 1, 2 , . . . , 

/ k+P \ / OO X 

then J* ( ^ fi) < $k and ^* ( zC fA <&k for eac^ fc>P = 1, 2 , . . . . 

(2) J\f is a hereditary a -sublattice of T* , N is a hereditary a-ring of subsets 
ofT,andfeAfif and only if the set {t, t 6 T , / ( T ) ^ 0} 6 JV. 

(3) J7* 25 complete in p* , p*(/ , #) — J* {f — g) • 
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(4) If / , / n E T*, n = 1,2, . . . , and J * ( / - fn) -> 0 as n -> oo, then 
there is a subsequence {fnk} of {fn} such that /nfc —> / almost everywhere N 
(a.e. IV) as fc-too. 

P r o o f . 
(1) If f,g,f{ e T°, i = 1,2,... , then the Fatou property of J ° implies the 

required assertions. From here, the general case easily follows from the definition 
of J* . 

(2) The first assertion follows from (1), while the equivalence is a consequence 
of the inequalities: 

l/l < lim n • |/| 
n—>oo 

= +oo • x{t, teT, /(t)#o} = n!i™,n " *{t, ter,/(t)*o} 

^ X{t , t£T, / ( t )#0}-

(3) Suppose fn e E*, n = 1,2,. . . , and J * ( / n - / J -> 0 as n , m - 0. 
Take a subsequence { / n J of {/n} such that J*(fnk+1 - / „ J < * f c+i' w h e r e 

6k, fc = 1,2, . . . , is from (1). 
oo 

Then £ | / n ; + i - fj = hk \ h, and J*(/.) = 0 since J * 0 ) < J*(/ifc) < Sk 
i=k 

for each fc = 1, 2, . .. by (1). 
Define / (f) = lim fn (t) if h(t) = 0, and f(t) = 0 if h(t) > 0. Obviously, 

k—voo fc 

p 
/nfc "^ / a-e- -V as fc -> oo. Since | / - / n J < lim ^ | / n . + i - / n J for each 

P~^°° i=k 

k = 1,2,. . . , J*(f-fnk) —> 0 as fc —> oo, hence also J * ( / - / n ) —> 0 as n —> oo. 
(4) From the proof of (3) it is evident that a subsequence {fnk} of {/n} such 

that J * ( / — fn ) < 8k for fc = 1,2, . . . has the required property. • 

DEFINITION 2. We denote by C the closure of T in (T*,J*), and for 
f e C we put J ( / ) = lim J ( / n ) , where / n G J7 , n = 1,2,... , is such 

n—>oo 

that J * ( / — / n ) —> 0 as n —> oo. 

The existence, finiteness and uniqueness of the above limit follow from the 
extendable subadditive continuity of J : T —> [0, oo) and the pseudometric gen­
erating property of J* : T* —» [0, oo]. £ is clearly an M*-function lattice. 

Using (4) of Theorem 3 we have the following equivalent: 

DEFINITION 2'. We say that / e C if / e T*, and there are fn€T, 
n = 1,2,... , such that fn —* f a.e. IV and J ( / n — / m ) —> 0 as n , m —> oo. In 
that case, we put J ( / ) = lim J(f ) . 

n—>oo n 

Using Definition 2 one easily checks the assertions of Theorem 4. 
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THEOREM 4. J : C —> [0, oo) extends J': T —> R + , i£ shares the properties 
(1). (2), (3). and (5) of J \ T —> R + /rora Definition 1. and. except for the 
Daniell property, it also shares any of the additional properties of J on T listed 
in Section 1. 

We note that the Fatou and Daniell properties of J on £ will be investigated 
in the Section 3 below. 

L E M M A 3 . 

(1) ^ = { / , feC and J ( / ) = 0 } . 

(2) Let f e C. Then {t, t eT, \f(t)\ = oo} e N, and the factor space 
L = C/Af is a linear lattice. 

P r o o f . 

(1) Clearly, Af C C, and J(f) = 0 for / e M. Suppose / e C and J ( / ) = 0. 
Take fneT, n = 1, 2 , . . . , so that J * ( / - / J - 0. Thus J* ( / ) = J * ( / - / n 

+ / n ) —> 0 by the pseudometric generating property of J* . Hence f e M. 

(2) Take fn e T, n = 1, 2 , . . . , so that J * ( / - / J -> 0. Since each fn, 
n = 1,2, . . . , is finite valued, we have J*(+oo«x { t i t e T > |/(t)|=+oo}) = J*(l[/~/n 
+ (-/ + / n - / + / J ] - [ a - / n - / + / J - / + /ji)<J r*(6'l/-/nl)-0. 
(We are using the convention (+oo) + (—oo) = (—oo) + (+oo) = 0.) 

The last assertion is evident. • 

Using Definition 2 one also easily checks the assertions of (1) of the next 
theorem. Assertion (2) of Theorem 5 follows in the same way as (2) in Theorem 1, 
and Theorem 2. 

T H E O R E M 5. 

(1) The analogs of assertions (1). (3). and (4) of Theorem 3 hold for (C,J) 
and p, p(f,g) = J(f - g), f,g e C. 

(2) There is an invariant metric pc on C x C equivalent with p. (C,pc) is 
a complete metric space for any such control metric pc. 

It is a linear topological space if J is scalarly continuous. The analog of 
Theorem 2 holds. 

3. Fatou and Daniell properties of the extension 

Theorem 6 below is of fundamental importance for showing that our extension 
J : C —> JR+ shares various convergence properties of the elementary Lj-gauge 
J : T —> IR+ , particularly those mentioned above. In Theorem 11, we prove 

274 



DANIELL TYPE EXTENSIONS OF Lx-GAUGES AND INTEGRALS 

that by applying the extension procedure to J: C —• R+, we obtain no further 
enlargement of C 

We will need the following notions. 

F° = {/ > there are fn G T, n = 1, 2 , . . . , such that 

^ / „ / / a n d J ° ( / - / J - > 0 } , 
•^i ^ {/ » there are / n G ̂ , n — 1, 2 , . . . , such that 

/ n \ / a n d J ° ( / n - / ) ^ 0 } , 

J" = {/ , there exists h e J*°+ such that | / | < h} , 

( E ° ) u = {/ , there are / „ € F>, n = 1,2,. . . , such that fn \ / } , 

(E u )° = {/ , there are fn 6 Eu , n = 1, 2 , . . . , such that / „ / / } • 

For / € E put 

J ( / ) = inf{J°( l i) , liC-T^, | / | < / . } , 

and let £ denote the closure of T in (-F, J), i.e., / € £ if / 6 T, and there 

are / „ G .F, n = 1, 2 , . . . , such that j(f _ / J -> 0. 

Clearly, J*(/) < j(f) for each / e T, hence 

N={/, / 6 j , J(/) = 0 } C N and N = {E, E C T, XE ^ J<[) C N • 

Further, J: T —» R+ = [0, oo), and J behaves similarly as J*: T* -+ K* • 

THEOREM 6. Suppose fn E T', n = 1 ,2 , . . . , and J(fn - fm) - • O^as 

n , m -> oo. Then there is a subsequence {fnk} C {fn}, a sequence fk e :F°> 

k = 1, 2 , . . . , and a sequence ipk € Tu, k = 1, 2 , . . . , such that: 

(1) tpk\tpe (?°)u, V* / V- e ( Jg ° , ^ < /Bh < v*, M each k = 

1 , 2 , . . . , a n d J°(<pk -V'fc) - » ° as A;-^ o o , 

(2) / n f c (0 -H. y>(f) a.e. N, and tp(t) = %jj(t) a.e. N, 

(3) J(/n-^) = J(/n-V')^0 a s n - ^ o o . 

P r o o f . Let 5k, k = 1 ,2 , . . . , be the sequence of Theorem 1, »n d take a 
subsequence { / n j C {/n} so that J(/nfc+1 - /„fc) < 6

k for each k *= -.2» • • • • 
Then 

J°(f;i/„,+1-/nj)<A-1<<v-2 
\'i=k 
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by the Fatou property of J ° : JF°+ —> [0, oo]. For k = 1, 2 , . . . p ^ 

(
OO \ oo 

fnk + _l l/n,+1 - /„, I ) + £ l/n<+1 ~ A J ' 
j=fc J i=k 

Clearly, fteP for each fc = 1 ,2 , . . . . If |v>fc(i)| < °°> t h e n l / ^ l < °° a n d 

1^.(01 < °° for t > k, hence 

Vfc(0 - Vfc+l(0 = /„.(*) - / „ , + 1(«) + - l / „ h + 1 C) -fnj-^ 

If ^ ( f ) = - c o , then / n . ( t ) = - o o for % > k, hence <pk+1(t) = - ° ° - T h u s 

vfc\ve(^)u. 
For fc = 1,2, . . . put 

(
OO \ oo 

/nfe - £ '/n.+1 ~ /nj ) - S '/«.+. " ̂  ' ' 
i=k J i=k 

Then tpk G ̂  for each fc = 1, 2 , . . . , and similarly as above, ipk / V> G (Eu ) . 

Obviously, i>k< fn < (pk for each fc = 1,2, . . . . Since 
CXD 

<̂fc - ^fc < 4 £ | /n ( + i - / B J , J°{<Pk - Vfc) < V 
i = k 

for fc = 7, 8, Hence <p(t) = xj)(t) a.e. IV. 
Since %j) = limir 

k 

/„„(*)-¥>(0 a-e. IV 

Since V = limmfV-i. < liminf L < lim sup f < lim sup <pk = y?, 
fc k - fc n f c fc k 

Clearly, 

|/„ - ^ l < l / „ -Vfcl + ^ f c - v l , 'n f c 7-1 — \J nk 

oo 

l/nfc-^fcl<-El/".+1-/^l' 
i=k 

and oo oo 

<r°k ~ * = S ( ^ i - Vi+l) < 3^3 l/ni+1 " /nj • 
i=k t=A: 

Hence J ( / n f c - <p) < Sk_7 for fc = 8, 9 , . . . . 

Thus J ( / n - ¥ > ) - > 0 as n —> oo by the pseudometric generating property of 

J on J7 , see (5) in Definition 1. D 

C O R O L L A R Y l . L is complete in p, p(f,g) = J{f-g), and f e C if and only 
if f eT, and there are fn € T, n = 1, 2 , . . . , such that fn(t) -> /(*) a.e. IV, 
and J ( / n - / m ) —> 0 as n, m —> oo. 
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COROLLARY 2. / <E C(C) if and only if f G T(T*), and for each e > 0 
there are g G T,, and h G T° svch that g(t) < f(t) < h(t) a.e. N (N) and 
J(h-g)<e. 

COROLLARY 3. T C T° © Tv © N C C C ((T°)u © N) D ( ( E J ° © N) , 

• E ° f f i E ^ © N C £ c ((E")„ © N) n ((-EJ" ®M), and C = C®M, where © 
means addition of elements. 

THEOREM 7. J ( / ) = J ( / ) /or / G £ . 

P r o o f . Let / G C, fn G E, n = 1 .2 , . . . , and J(f - / n ) -» 0. Then 

• /*(/ - / „ ) - 0, hence J ( / n ) - J ( / ) . Thus, by Theorem 6, J(f) = inf{J°( l i ) , 

heT°+, | / | < fc} < inf J°(^ f c) = lim J ( ^ ) = lim J(fnJ = J ( / ) . 
k k—KX> k—>oo K 

Conversely, for £ > 0 take h£ £ T° C C so that (/? < h£ and J(/i) = J°(/i) < 
J(if) + e, where <p is from Theorem 6. Then J ( / ) = J(<p) < J(h) = J°(/i) < 
J(v) + e = J(/) + e. • 

THEOREM 8. Suppose / , / n G £ F
7 n = 1,2,.. . , ana7 / n ( i ) / /(*) a.e. TV. 

Then J ( / n ) /* J ( / ) • In particular, J: C —> R + has the Fatou property. 

P r o o f . First we show that J: C —x WL+ has the Fatou property. Let 

/ , / n G £ + . n = 1,2,... , and fn / / . Take h G T° so that h > / , and 
let e > 0. Let finally <5fc, k = 1, 2 , . . . , be a sequence according to assertions (1) 
of Theorems 1 and 5. 

Owing to autocontinuity of J : C —> R + , see assertion (1) of Theorem 5, for 
each n = 1, 2 , . . . there is a kn > kn_x, k0 = 1, such that g G C and J(g) < 6k 

implies J ( / n + g) < J(fn) + £• According to Theorem 6, for each n = 1, 2, . .. 

there is an hn G T° such that hn > fn and J(hn — / n ) < ^ 

Obviously, ( \J h\ Ah / h! > f, hence 

•J ( ( V M A M = JO ( ( V M A M / JO(/l') -- J(/) = J(/) 

by the Fatou property of J°': T° —> [0, oo] and by Theorem 7. Clearly, 

3n=( V M A * - / n < D * . - / . ) . 
\ t = l / t = l 

hence, J (g n ) < <5fc . Thus 

•M ( V M A M = J(/n + 5 j < j ( / j + £, 
, г = i 
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hence, 

J(f) = J(f) < J°(ti) = Jim J M \ / /i< J A /i J < limGJ(fn) + e. 

Since £ > 0 was arbitrary, J(f) < lim J ( / n ) - Th.e converse inequality 
n—>oo 

follows from monotonicity of J on £ + . 
Suppose now / , fn G C+, n = 1, 2 , . . . , and fn/f a.e. IV. Take N G N 

so that fn / f on T - 1V, and put fn = fn- XT-N + / • Xjy for n = 1, 2 , . . . . 
Then / ; G £ + and J ( / J = J ( / n ) for n = 1, 2 , . . . , and fn / f on T. Now 

it is easy to verify that C — CN, where CN corresponds to JN: T ® N —> R + , 
JN(f + u) = J(f) for / G T and u e Af. 

Hence J ( / n ) = J ( / J / J(f) by the first part of the proof. • 

THEOREM 9. Suppose J : T —> R+ zs a Daniell elementary Lx-gauge. Then 

J(fn) \ 0 whenever fn G £ + . n = 1, 2 , . . . . ana7 / n ( i ) \ 0 a.e. IV. Hence 

J: C —> R + b,as tTie Daniell property, T° = J70 fl £ ana7 J7^ = TnH £ . 

P r o o f . Without loss of generality, suppose fn G £ + , n = 1, 2 , . . . , fn \ 0, 
and let e > 0. By the pseudometric generating property of J : C —> 1R"1", see 
Definition 1 and Theorem 4, take <5>0 so that J(f + g) < e whenever / , J G £ 
and both J ( / ) , J (#) < 5. Take a sequence <5fc, k — 1, 2 , . . . , as in assertions (1) 
of Theorems 1 and 5, and let k0 be such that 6ko < 6. By Corollary 2 of 

Theorem 6, there are hn G T° , n = 1, 2 , . . . , such that hjt) > fn(t) a.e. IV, 
and J(hn - / J < (5fco+n for each n = 1, 2 , . . . , and hn \ h. 

OO ^ _—^ 

Since /i = lim (hn - / J < £ fan ~ / J , J f a ) < **0 < 6' T a k e fe' G •F°> 
n — ° ° n = l 

n = 1, 2 , . . . , such that /i' > /i and J(/i ') < 5, and let u n G T+, n = 1, 2 , . . . , 
be such that un / h'. Then /in < (hn - u J + /*' for each n = 1, 2 , . . . , and 

K-un\o. ^ 
Since hn - un e T°, n = 1, 2 , . . . , there are vn G T+, n = 1,2, . . . , such 

that U n < /in - un and J ( ^ n - un - vn) < 6ko+1+n for each n = 1, 2, . .. . 
n 

Put LOn = / \ v{, n = 1, 2 , . . . . Then wn G J7"1" for each n = 1, 2, . .. , and 
i=i 

wn\0- Hence, by the Daniel property of J : T —> R+ , there is an n0 such that 
J K ) < ^ 0 + 1 for n > n 0 . 

n 
Since fcn-Un-u,n = / \ ( / i . - u j - A ^ < E C ^ - « . - « . ) , J ( / i n - u n - ^ n ) < 

x i=\ i=\ i=l 
°fe0+1 for each n — 1,2, . . . . Hence 

• I^n - Un) = J(hn ~ Un ~ Wn + Wn) < 6k0 < 6 for ™ > n 0 • 
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Thus J(fn) < J(hn) < e for n > nQ. Since e > 0 was arbitrary, the theorem is 
proved. • 

We now show that by applying our extension procedure to J : C —> R4" we 
obtain no further enlargement of C. This is of basic importance in connection 
with the Stone type representation of J : C —> R + . 

Denote by J ° the extension of J to C° D T°. Clearly, J*(f) < J*(f) for 
each / G J** = £* , where 

J*(f) = M{J?(h), he£°+, \f\<h} for fef*. 

THEOREM 10. Suppose J : T —> R+ zs uniformly autocontinuous. Then 

J*(f) = J * ( / ) / ° r e a c / l / 6 ^ * = £ * - # e n c e J ( / ) = J*(f) for f e T in 
this case. 

P r o o f . Let / G J7*, £ > 0, and u G C° be such that iz > / and J°(u) < 
J*(f)+3~l-e.Takeun G £ + , n = 1, 2 , . . . , so that un / u and J ( u J / J 0 ( u ) . 
Let 6fc, k = 1, 2 , . . . , be a sequence as in assertion (1) of Theorems 1 and 5, and 
take k0 so that 6ko < <5(3-1 -e) , where 5 ( 3 _ 1 -e) is such that \J*(v) — J*(w)\ < 
3~l • e whenever v,w G T* and J*(i> — w) < 6(3~l - e). By Corollary 2 of 
Theorem 6, for each n = 1,2,. . . there exists hn G J70 such that hn(t) > un(t) 

a.e. N and J*(/in - un) < 6ko+n. For n = 1,2,. . . put ^ = \ ) /i-. Then 
i=i 

h'n(t)/h'(t)>f(t) a.e. TV, and ^ - un < £ ( / i , - u . ) . 
i=i 

Hence J°(/i /) = J . ! ^ J°(h'n) and J°(/i /
n - u j < 6kQ < ^ S " 1 • e) for each 

n = 1, 2 , . . . . Since h'(t) > f(t) a.e. AT, there is a v G ̂ ° + such that h'+v> f 
and J°(v) <(5(3- x - e ) . 

Thus 

J* ( / ) < J°(/i ' + г>) < J°(/i') + 3 - i 
• є 

= 3 " 1 • e + lim J°(/iJ = 3 - 1 • e + lim J°(h'n -un + un) 

< 2 • 3 _ 1 • e + lim J(uj = 2 • 3 _ 1 • £ + J?(u) 

<Jr (/)+e. 
Since e > 0 was arbitrary, Jx*(/) = J * ( / ) . • 

THEOREM 11 . Suppose 4 G T* = C* , k = 1, 2 , . . . . Then J*(fk) -+ 0 if and 
only if J*(fk) —> 0. Hence, by applying the extension procedure to J: C —> R4", 
we obtain no further enlargement of C. 

P r o o f . Since J* < J* on T* = C*, consider fk~T*, k = 1, 2 , . . . , such 
that J*(fk) < 6k, where 6k, k = 1, 2 , . . . , is a sequence as in assertion (1) of 
Theorems 1 and 5. 
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By Theorem 8, for each k = 1,2, . . . there exists fk G C° and a sequence 
/ I n 6 £ + ' n = l , 2 , . . . , such that fk > fk and fkn / fk for each k, and 

j(fk,n)SW'k)<8k. 

By virtue of to Corollary 2 of Theorem 6, for each fc, n = 1, 2 , . . . there exists 

K,n e E°+ such that ftfe)n(i) > f'kJt) a.e. AT and J(/.fe>n - /fe>n) < <5fe+n. 

For k, n = 1, 2 , . . . put fcfe>n = \ / /.'*,, • Then hkn - / f e n < £ (h'k. - f ' k > l ) , 
i=l i=l 

hence J(hkn - fkn) < 8k and J(f'k>n) < 8k for each k, n = 1,2, . . . . 

Thus /ifein / ^fe e T°+, /ife(f) > f'k(t) a.e. AT, and J°(hk) = Jiim J(/zfc)n) < 

5fc_1 < 5 /c_2 for each k = 3 , 4 , . . . . 

Take i ^ G J70* so that hk + uk > f'k and J°{uk) < 8k_2, k = 3 , 4 , . . . . Then 
J*(fk) < J*Uk) < J(hk + uk) < 6k-3 f o r e a c h A: = 4, 5 , . . . , hence J * ( / J — 0 
as fc —> oo. 

The theorem is proved. • 
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