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BE A COVERING SYSTEM 

STEFAN P O R U B S K Y * — JOCHANAN SCHONHEIM** 

(Communicated by Stanislav Jakubec ) 

ABSTRACT. A covering system is a set of congruences n = ai (mod raj, i = 
1 , . . . k, such tha t every integer satisfies at least one of them. A new necessary 
and sufficient condition in order tha t a given set of congruences n = a- (mod raj 
be a covering system is established and its correlations to known conditions are 
studied. 

Let 
n = a{ (mod m-) , i = 1, 2 , . . . , k , (1) 

be a system of congruence classes. We shall always suppose that the offsets 
of congruences in (1) are standardized, that is that 0 < a{ < mi for every 
i G { 1 , 2 , . . . , k}, and use the shorthand notation (av m i )^ = 1 for (1). 

The covering function of (1) is defined through (cf. [4]) 

k 

m(n) = 2 j [ n = ai (mod m-)] , n € Z , 
i=l 

where the Iverson's brackets notation [n = a (mod b)] stands for the indicator 
of the class a (mod b). The function m is obviously periodic and its (least 
nonnegative) period will be denoted by m 0 . The period m0 always divides the 
number m = 1. c m . ^ , m 2 , . . . , mk]. In Table 1 one of the possible schemes for 
determination of the covering function of system 

0 (mod 2) , 0 (mod 3) , 1 (mod 4) , 1 (mod 6) , 11 (mod 12) (2) 
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is given. In the table the head row contains the complete set of residues modulo 
m 0 , the period of its covering function. Each middle row shows whether or not 
the residue at the top of the column belongs to the class given at the head of 
the row. 

T A B L E 1. 

C O V E R I N G F U N C T I O N O F (2). 

0 1 2 3 4 5 6 7 8 9 10 11 

(0,2) | 1 1 1 1 1 
(0,3) 1 1 1 
(1,4) 1 1 1 
(1,6) j | 

(ПД2) 1 
m 2 2 1 1 1 1 2 1 1 2 1 1 

The covering function and its properties can be used for various classifying 

systems (1). If 

(a) m(n) > 1 for every n G Z , then we say that (1) is a covering system. 
This is the class of systems (1) P a u l E r d o s had in mind when he 
introduced the concept. System (2) is covering with the least possible k 
when the moduli are distinct; 

(b) m(n) < 1 for every n G Z , then we say that (1) is a disjoint system; 
(c) m(n) = 1 for every n G Z , then we say that (1) is an exact covering 

system. 

If we replace number 1 by a general positive integer M , we get further notions: 

If 

(d) m(n) > M for every n G Z, then we say that (1) is an M covering 

system; 
(e) m(n) < M for every n G Z , then we say that (1) is an at most M 

covering system; 
(f) m(n) = M for every n G Z , then we say that (1) is an exact M covering 

system. 

There are also classification criteria based on properties of the involved congru
ence classes. Let us mention two of them (the reader is referred to [7] for other 
possibilities): 

(g) A congruence of the system (1) is called essential if there exists an integer 
which satisfies this and only this congruence. System (1) is called regular 
or irredundant if all its classes are essential. 

(h) System (1) is called incongruent if all its moduli are distinct. 
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Following [9], given a system (1), we assign it the additive group 

G = G ( r a 1 5 . . . , rafc) = Z/ra-Z x Z/ra 2 Z x • • • x Z/mkZ , (3) 

which is the Cartesian product of additive groups of the complete residue system 

modulo each modulus of (1). Denote by II its subgroup generated by the k-tuple 

h = ( 1 , 1 , . . . , 1). The order of G is mlm2-

l . c .m.[ ra 1 , ra 2 , . . . ,ra f c ]. 
• mk, while the order of II 1S 

TABLE 2 . 

T H E C O S E T G E N E R A T E D BY T H E O F F S E T S O F (2). 

n Z/2Z Z/ЗZ Z/4Z Z/6Z Z/12Z # o f 0's 

0 0 0 1 1 11 2 

1 1 1 2 2 0 1 

2 0 2 3 3 1 1 

3 1 0 0 4 2 2 

4 0 1 1 5 3 1 

5 1 2 2 0 4 1 

6 0 0 3 1 5 2 

7 1 1 0 2 6 1 

8 0 2 1 3 7 1 

9 1 0 2 4 8 1 

10 0 1 3 5 9 1 

11 1 2 0 0 10 2 

The coset generated in G by II and containing the offsets of (2) is given in 
Table 2. Here the first column indicates the multiple of h which is added to the 
original set of offsets. All the elements are standardized modulo the correspond
ing modulus. In [9] a coset C was denned as good if each element of C has at 
least one zero component. The last column of the table gives the number of zero 
components in the corresponding coset element, confirming again the fact that 
(2) is covering. 

Now we can modify the Table 1 as follows: On every place where the indicators 
stand we write zero and continue with filling in the row with shifted standardized 
offsets modulo the corresponding modulus of the class in the head of the row as 
shown in Table 3. The last row gives the number of zeros in the column. Clearly 
this row coincides with that of Table 1, but differs from the corresponding last 
column in Table 2. 
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TABLE 3 . 

0 1 2 3 4 5 6 7 8 9 10 11 

(0,2) 0 1 0 1 0 1 0 1 0 1 0 1 

(0,3) 0 1 2 0 1 2 0 1 2 0 1 2 

(1,4) 3 0 1 2 3 0 1 2 3 0 1 2 

(1,6) 5 0 1 2 3 4 5 0 1 2 3 4 
(11,12) 1 2 3 4 5 6 7 8 9 10 11 0 

# of 0's 2 2 1 1 1 1 2 1 1 2 1 1 

To see the reason for this difference, note that the main mechanism behind 
the construction of Table 2 is the function 

T-+(n) = n + a- (mod m.) 

applied to the zth column, i = 1, 2 , . . . , k. In Table 3 the same role plays the 
function 

T~{n) = n- a- (mod ra.) 

applied to the i th row. Thus starting with the system (—d i Jm i)
k

=1 in Table 3 
we get Table 2 as demonstrated in Table 4 using our selected sample system (2). 

TABLE 4 . 

0 1 2 3 4 5 6 7 8 9 10 11 

(0,2) 0 1 0 1 0 1 0 1 0 1 0 1 

(0,3) 0 1 2 0 1 2 0 1 2 0 1 2 

(3,4) 1 2 3 0 1 2 3 0 1 2 3 0 
(5,6) 1 2 3 4 5 0 1 2 3 4 5 0 

(1,12) 11 0 1 2 3 4 5 6 7 8 9 10 

# of 0's 2 1 1 2 1 1 2 1 1 1 1 2 

Given a coset C of H in G represented by k-tuple ( a 1 , . . . , a / c ) G G, de
fine the zeros counting functions 3(71) of C at n G Z_ as the number of zero 
components of the element ( o 1 , . . . , o f c ) + n h o f C. Since 

k 

3(n)= £[!;-(«) =0], 
2 = 1 

the above ideas in their general form lead to: 

THEOREM 1. If C is a coset of H represented by (—a1?..., — ak) G G, then 
the zeros counting function %{n) of C and the covering function rrt(n) of (1) 
coincide for all n G Z . 
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Given a system (1), the system x = —a{ (mod raj will be called the conju
gate of (1). Thus the previous result can be expressed in the form: 

The covering function of a system and the zeros counting function of 
its conjugate are the same. 

When considering the zeros counting function, we actually considered only 
the following values of the argument n = 0, l , . . . , r a — 1 . The zeros counting 
function can be in a natural way extended as a function of an arbitrary integer 
argument. 

Two systems ( ^ r a j ^ , and (b-,n-)s-=l will be called covering similar if 
their covering functions m1, and m2 , resp. are shifted, i.e. there is an integer s 
such that 

m1(n) = m2(n -F s) 

holds for every n £ Z. 

COROLLARY 1.1. If (a^..., ak) and (b^...,bk) are elements of the same 
coset C modulo H, then the systems n = a{ (mod raj and n = b{ (mod m- ) ; 

i = 1 , . . . , k, are covering similar. 

Notice that, by the above results, all systems with a given set of moduli 
ra1,ra2,... ,mk and prescribed covering function can be given, if any, as the 
members of certain (possibly more) cosets. 

For instance, if m1 = 3, ra2 = ra3 = 6, and ra4 = ra5 = ra6 = 9, we 
have 78 732 various systems of congruence classes which split into 4 374 cosets 
modulo FT. It is proved in [11] that with (1) also the system ra^-a^ —1 (mod ra.), 
i = 1 , . . . , k, is exact covering. Thus, for instance, both systems 

0 (mod 3) , 1 (mod 6) , 4 (mod 6), 2 (mod 9) , 5 (mod 9) , 8 (mod 9) 

and 

2 (mod 3) , 4 (mod 6) , 1 (mod 6) , 6 (mod 9) , 3 (mod 9) , 0 (mod 9) 

are exact covering, and therefore covering similar. However, the sixtuples of their 
offsets belong to different cosets modulo H. This shows that the last Corollary 
cannot be reversed. 

This gives another proof of the following result: 

COROLLARY 1.2. ([9; Theorem 1]) A set of positive integers 0 < rax < ra2 < 
- - <mk can serve as a set of moduli of a covering system if and only if among 
the cosets of H in G — G(mx,..., ra^) there is a good one. 

Moreover, if (ax,... ,ak) is an arbitrary element of a good coset, then 

n = - a . (mod ra.) , i = l , . . . , / c , (4) 
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is a covering system. Conversely, if (4) is a covering system, then the coset 
represented by ( a 1 ? . . . , ak) is good. 

The coset H has a special position, it is never good. It can be used to 
generalize the Chinese Remainder Theorem. Namely, (a15 a 2 , . . . , ak) Є H if and 
only if the system (1) has a solution. We believe also that the members of H 
answer the question which has been raised, namely, for what (aľìa2ì..., ak) 
system (1) is the worst one, that is one which leaves "most" integers uncovered. 

Theorem 1 enables us to rewrite the definitions depending on properties of 
covering function in terms of "number of zeros" of elements of sets, leading thus 
to a series of theorems having the spirit of Corollary 1.2. For instance: 

A set of positive inteдers 0 < mľ < m2 < • • • < mk can serve as a 
set of moduli of an exact covering if and only if among the cosets of 
H in G = Gim^... ,mk) there is one in which each element has a 
unique vanishing component, e t c 

In 1973, A. S. F r a e n k e l discovered a characterization of exact covering 
systems in terms of Bernoulli polynomials. This result was later extended to 
various systems of congruences by P o r u b s k ý [4], [5], [6], J. B e e b e e [1] and 
Z.-W. S u n [10]. For general systems (1) the following result was proved: 

LEMMA 2. ([4; Theorem 2], [6; Theorem 1]) Let n be any real number. Then 
a system (1) has covering function m if and only if 

7 7 1 0 - 1 / \ ^ / i \ 

4-' |>m(^)=£ҝ-ч(^) и 
holds for every non-negative integer r. 

For r = 0 and r = 1 we get from this result 

k л л rno — l 

£ S ; = £5:«M (e) 
2 = 1 l 0 t = 0 

and 

£«-±^ = £ y> m{t)(t_±n_l\ (7) 

h mi 2 h v ̂ o v 
Now we prove a result which we use to derive a new necessary and sufficient 

condition in order that a given set of congruences (1) be a covering system is 
established. We show that: 
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THEOREM 3. If 3 is the zeros counting function of a system (1). then 

_ _ _ _ _ _ _ ± _ _ t _ + _____: _з(ïг + 1) (8) 
_!__/ m . Z__/ 077. __-/ тr,. " V ' Ч У 

m- -̂ —' m- -—' m-
г=l г г=l г i=l г 

for every n = 0 , 1 , . . . , [m1,..., mk] — 1 ; where at + n + 1 and â  + n are always 
standardized modulo mi) i — 1, . . . , k. 

P r o o f . The proof will be based on the relation 

ys a{ + n + 1 _ A â  + n _ A J _ 

4 - ' m • --—' m • --"m/ 
^=l l i=l l i=l l 

which valid for any n £ Z. Relation (9) can be verified immediately by a direct 
computation, or using (6) and (7). It is important to note that in (9) the numbers 
a{ + n + 1, and a{-\-n are not standardized modulo mi, even if ai are supposed 
to be. 

To standardize the numerators, replace the numbers ai + n + 1 , and a{ + n for 
every i = 1 , . . . , k on left hand side of (9), by their least non-negative remainder. 
For those indices i G { 1 , . . . , k} for which mi \ a{ + n + 1 this can be done 
immediately, because for those a{ 's the difference 

ai + n + l _ ai + n
 ( 1 0 ) 

m- m i 

remains unchanged after substitution. Its value is l/mi: as it can be easily 
seen. This means that for index i such that mi \ ai + n + 1, the value of the 
difference (10) on the left hand side of (9) cancels with that of 1/m^ in sum of 
reciprocals of moduli on the right hand side of (9). 

On the other hand, for those i 's for which mi \ ai + n + 1, the difference (10) 
equals (mi — \)/mi. Together with the corresponding term in the sum of recip
rocals of moduli we get 1, as the final contribution of each such i. Therefore 

_ a 1 + n + l _ _ _ t _ ^ _ _ _ L _ ^ r - + i s _ a 4 ( m o d m i ) ] . 

The sum on the right is the covering function of the conjugate system to the 
original one evaluated at n + 1 and Theorem 1 finishes the proof. • 

The following simple necessary and sufficient condition on (ai,mi) in order 
that (1) be a covering system can be readily derived from the previous result: 
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COROLLARY 3 .1 . A system (1) is covering if and only if 

Y J_ > y ai+ n + 1 _ y- ai + n (11) 
~f m- ^-i m, -A-' ra• 
i= l l ^ = l l i= l L 

with the range of n and the standardization as above. 

P r o o f . The necessity is immediate because then the covering system has 
positive both covering and zeros counting functions. To prove the sufficiency, note 
that difference in (10) changes only if mi \ a{ + n + 1. Since the corresponding 
change always decreases the value on the left hand side of (9), two or more such 
divisibility relations cannot compensate mutual changes. Thus if (11) holds, we 
must have at least one such divisibility relation, which means that, in Table 2, 
we have at least one zero in each row, i.e. our system (1) is covering. • 

For exact M covering systems, where ]T ra^"1 = M and m(n) = M for 
z = l 

every n , we get the following generalization of the third part of [8; Theorem 2]: 

COROLLARY 3.2. A system (1) is exact M covering if and only if 
k 

ra-
i=l l 

and 

h mi ti mi 
with the range of n and the standardization as above. 

In a similar way we can adjust the statement of Theorem 3 also for some 
other types of systems of congruence classes mentioned in the introduction. 

What concerns the range of n in the statements, the interval n e {0 ,1 , . . . 
... ,ra — 1} cannot be contracted in general. This is due to the fact that there 
are systems of congruence classes with ra0 = ra. On the other hand the pe
riod ra0 of the covering function m is always a divisor of ra, but knowing the 
value ra0 we know an additional piece of information on (1), For instance, if we 
know that ra0 = 1, then the system is necessarily an exact M covering system 
and the value M can be determined using only (12) without to checking (13). 
Actually, we can discover ra0 due to verification of (13) over the whole range 
n G { 0 , 1 , . . . , ra — 1}. For instance, the system 

1 (mod 3) , 1 (mod 6) , 4 (mod 6) , 2 (mod 9), 5 (mod 9) , 8 (mod 9) 

satisfies (12) (it uses the same moduli as the above exact covering ones) and 
fulfills (13) for n — 0, but is not an exact covering one. 

348 



CONDITIONS ON {a^m^ IN ORDER THAT n = a{ (mod m j BE A COVERING SYSTEM 

R E F E R E N C E S 

[1] BEEBEE, J . : Bernoulli covers and exact covering systems, Amer. M a t h . Monthly 99 
(1992), 946-948. 

[2] E R D O S , P . — G R A H A M , R. L.: Old and New Problems in Combinatorial Number The
ory. Monographic No. 28 de L'Enseigment Mathematique, Universite Geneneve, 1980. 

[3] F R A E N K E L , A. S.: A characterization of exactly covering congruences, Discrete M a t h . 
4 (1973), 359-366. 

[4] P O R U B S K Y , S.: Covering systems and generating functions, Acta Arith. 26 (1975), 
223-231. 

[5] PORUBSKY, S.: On m-times covering systems, Acta Arith. 29 (1976), 159-169. 
[6] PORUBSKY, S.: Identities involving covering systems I, Math . Slovaca 4 4 (1994), 

153-162. 
[7] P O R U B S K Y , S . — S C H O N H E I M , J . : Covering systems of Paul Erdos: past, present and 

future. In: Proceeding of the International Conference Paul Erdos and his M a t h e m a t 
ics Budapest 1999 (G. Halasz, L. Lovasz, M. Simonovits, V .T. Sos, eds.), Bolyai Soc. 
Math. Stud. 11, Springer V e r l a g / J a n o s Bolyai Math. Society, Berlin-Heidelberg-New 
Y o r k / B u d a p e s t , 2002, pp . 581-627. 

[8] PORUBSKY, S . — S C H O N H E I M , J . : New necessary and sufficient conditions on (ai,mi) 
in order that x = ai (mod m^ be a covering system, Discrete Math. (To appear) . 

[9] SCHONHEIM, J . : Covering congruences related to modular arithmetic and error cor
recting codes, Ars Combin. 16-B (1983), 21-25. 

[10] SUN, Z.-W.: Several results and systems of residue classes, Math. China 18 (1989), 
251-252. 

[11] ZNAM, S.: A simple characterization of disjoint covering systems, Discrete Math. 12 
(1975), 89-91. 

Received October 10, 2002 * Institute of Computer Science 
Academy of Sciences of the Czech Republic 
Pod Vodárenskou věži 2 
CZ-182 07 Prague 8 
CZECH REPUBLIC 

E-mail: porubsky@cs.cas.cz 

! School of Mathematical Sciences 
Raymond and Beverly Sackler Faculty of Exact Sciences 
Tel Aviv University 
Ramat Aviv 
Tel Aviv 69978 
ISRAEL 

E-mail: shanan@math.tau.ac.i l 

349 


		webmaster@dml.cz
	2012-08-01T16:45:46+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




