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ON CONDITIONAL EXPECTATIONS OF VECTOR
VALUED VARIABLES

FRANTISEK RUBLIK

As proved in [1], the property of convergence of conditional expectations holds
also for vector valued variables and is used for proving the martingale convergence
theorem for such functions. We shall give a proof of convergence of conditional
expectations, which is based on commutation of a continuous linear operator and
a linear operator of conditional expectation.

We shall assume that we are given a probability space (22, %, P) and a separable
Banach space X. We shall use notions of step, measurable and integrable functions
defined in [3].

Lemma 1. Let f: 2 — X be an integrable function and € = & be a o-algebra. If
Y is a separable Banach space and T: X — Y is a continuous linear operator, then
E“(T(f)) = T(E*(f)) a.e.

Proof. If a function g: 2— X is integrable, then T(g) is also integrable and
fT(g)dP = T(fgdP). Since T(O)=O’, it is easy to see that for every set Ce €
we have

L E“(T(f))dP = L T(f)dP = f T(fyc)dP =

=T (LE*(f)dP) =fc T(E*(f))dP.

Since E*“(T(f)), T(E*(f)) are € measurable, E“(T(f)) = T(E“(f)) a.e. by
Lemma 3 in [2].
Let {€.}--: be an increasing sequence of o-algebras, i.e. for every n the

inclusion 6,  %,., < & is valid. If we denote the o-algebra generated by | 4, as

n=1

\7 %., the following lemma holds.

n=1

Lemma 2. Let Y be an m-dimensional normed linear space and {%€.}>., be an
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increasing sequence of g-algebras. If f: Q — Y is integrable and € = {o/ €., then
lim an‘f(f) — E“(f)||dP=0 and E*(f)=lim E“(f) a.e.

Proof. (I) Let Y=R™. If we denote IT,((y:, ..., ¥=))=1Y;, then this linear
functional is continuous and Lemma 1 implies that

n=1

IL(E“(f)) = E“(IL,()), IL(E“(f)=E*“L(f)), a.e.

forj=1, ..., mand every n. According to theorems about integrable functions with
real values the following equality

lim IL(E*(f)) = lim E*(TL,(f)) = E“(IL,(f)) = TL(E* ()

is valid a.e. for j=1, ..., m. Since the convergence in R™ is identical with the
coordinate convergence, we have

lim E“(f) = IL(E*(f)), ..., M. (E*(N) =E*(f) a.e.
Similarly, according to theorems about integrable functions with real values
lim [|E“(,(0) - E“IL¢)IdP=0 j=1,....m,
and since the norm in R™ is given by the formula ||(x,, ..., x.)|| = i} |x;|, we have
b=
tim [IE*()-E“()llaP=
=lim [ 3 1m,E“ () - T, (E“(7)]dP =

=3 tim [IE*(,0) - E-@L¢)|dP =0,

="

(IT) By the assumption Y is an m-dimensional normed linear space. It is proved
in [4] that there exists such a continuous linear operator T: Y — R™ that T~' exists
and is a continuous linear operator. Thus

E“(f)=T ™ E“(TP)=lim T"(E“(T) =lm E“(f) a.e.

by the first part of this proof and Lemma 1. Similarly, the first part of this proof
implies that
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0<tim [IE*()~E%()lldP=
lim fnT-'[T(E“(f) —E“(MlldP<

<t |77 [ IE“(T) - E*(1lldP=0.

Convergence Theorem for Conditional Expectations. If f: & — X is an integrable

function, {€,}7., is an increasing sequence of o-algebras and € =\/ 6., then

n=1
E“(f)=lim E*“(f) a.e. and lim fllE@(f)_EQ"(f)||dP=0.

Proof. As the function f is integrable, we can choose step functions {f,, }.-: such
that ||f —f.||—0 and ||f..|| <2||f]| for all m. Since X possesses a Hamel basis, the
step function f,, takes values in a finite-dimensional subspace of X. If we denote

E“(f)= Zx,P@(A,-) where f= Ex,x,\, and P“(A,) is a conditional probability, then
i= i=

we see we can choose variants of conditional expectations E“(f,,), E“(f,,)n =1, 2,
... so that they take values in the same finite-dimensional subspace as the function
f.n. Let us choose such functions for m =1, 2, ... and choose variants of conditional
expectations E“(f), E“(f), E*(|If — ), E“(|f —f.l|]) for n, m=1, 2, .... Pro-
perties of conditional expectations imply that there exists such a set A that
P(A)=1 and A has the following properties. If w € A, then for every integers n,
m=1 we have

O E“()w) - E“P @)l <
<IE“(F)(@) = E“(f)(@)]| + | E* (fn)(@) — E“ (fu)(w)]| +
+ | E“(f) (@) — E“(F)(@)| SE“(If — fa)(w) +
+IE*(fa)(@) = E“ () @)l + E“(Ifn — f)(®),

) lim E<(|If - fil)(@) =0,
@ lim [|E“(f.)() - E4(f)@)] =0,

av) lim E(lIf = fu (@) =E*(lIf — fm D(®)-

Since ||f —fm‘” <3|If ||, the property II is a consequence of a theorem about the
domination of random variables with real values. The property III is a consequence
of Lemma 2.
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Let o€ A and € be a positive number. Let m, be such an integer that m=m,
implies E“(||f — f||)(w)<e. If m=my,, then the properties III and I imply that

o0<iim sup [ E“ (@)~ E“(D@)]| <

<e+lim E“(lf —fI)(@) =+ E“(If ~fulD(@) <2¢

and this inequality completes the proof of the convergence a.e. Since P(A) =1, we
have

NE“(H)—E“OdP<2flIf = f.||dP + [IE“(f.) — E“(f.)||dP.
If €>0, then 2[||f — f.||dP <(g|2) for sufficiently large m, hence
JIE“()—E“(H)lldP<e

for sufficiently large n by Lemma 2.
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O YCIIOBHLIX MATEMATUYECKHX OXUOAHUAX ®YHKLHN
C BEKTOPHBIMH 3HAYEHHSMHU
®panTnek Py6nunk
Pesome
B pa6GoTe noka3biBaeTCA A0KA3aTENbCTBO TEOPEMBbI O CXOAHMOCTH YCJIOBHBIX MaTEMAaTHYECKHX

OXHJIaHHH 1S CJIy4aHHOW BEJIMYHHBI CO 3HaYEHUSIMH B MpocTpaHcTBe BaHaxa, ocHOBaHO Ha mepecTa-
HOBKE OTNIEPAaTOP2a YCIOBHOIO MaTEMaTHYECKOTO OXHAAHHS C HENPEPbIBHBIM THHEHHBIM ONEPAaTOPOM.
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