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(Communicated by Martin Škoviera ) 

A B S T R A C T . We complete the de termination of the chromatic number of 6-val-
ent circulants of the form C(n\ a,b,a + b) and show how this can be applied 
to improving the upper bound on the chromatic index of cyclic Steiner triple 
systems. 

Introduction 

A Steiner triple system STS(L>) is a pair (V, B), where V is a set of v points 
and B is a collection of sets of cardinality 3, called triples or blocks, satisfying 
the following condition: each pair x, y of points is contained in exactly one triple. 
It is well known that a Steiner triple system on v points exists if and only if 
v = 1 or 3 mod 6. 

A block-color class is a system of pairwise disjoint triples. An m -block-coloring 
is a partitioning of the set B into m color classes. The chromatic index x'(S) 
of a Steiner triple system S is the least m for which an m-block-coloring exists. 
The block intersection graph of a Steiner triple system S = (V, B) is a graph 
with the vertex set B; the vertices are adjacent if and only if the respective 
triples intersect. Since the degree of a block intersection graph equals 3(v — 3)/2, 
Brooks' theorem (see, e.g., [10]) gives an upper bound x'(S) < 3(v — 3)/2 for 
v > 7. An obvious lower bound is x'(S) > (v — l)/2 if v = 3 (mod 6), and 
(v + l)/2 for v = 1 (mod 6). Hence we have (v - l )/2 < x'(S) < 3(v - 3)/2 if 
v = 3 (mod 6) and (v + 1 ) / 2 < X'(S) < 3(v - 3)/2 if v = 1 (mod 6). The lower 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 05B07, 05C15. 
K e y w o r d s : circulant, Steiner triple system, chromatic index. 

This research was done while the first and second author were visiting Department of Mathe­
matics and Statistics, McMaster University. 
The second author was partially supported by the grant APVV51-009605. 
The third author 's research was supported by NSERC of Canada Grant No. OGP007268. 

371 



MARIUSZ MESZKA — ROMAN NEDELA — ALEX ROSA 

bound x'(S) — (v ~ l ) / 2 is reached if and only if the Steiner triple system is 
resolvable. 

The upper bound x ' (5) < 3(U — 3)/2 seems to be wreak in general. In fact, 
using probabilistic methods P i p p e n g e r and S p e n c e r in [8] proved that 
X1 (STS(L>)) is asymptotic to v/2. Also no examples of STS with v > 7 exceeding 
the above lower bounds by more than two are known. For more information 
on the chromatic index of Steiner triple systems the reader is referred to [4: 
Chap. 18]. 

Tor some classes of STS the upper bound was improved. In particular, 
C o l b o u r n and C o l b o u r n [3] improved it for cyclic STS(U) by pro\ing 
^ /(STS(L ')) < v. A Steiner triple system STS(U) is called cyclic if it is isomorphic 
to the one whose points are 0 , 1 , . . . , v—1 and the mapping i i-> i + 1 (mod u) 
is an automorphism. The result in [3] is based on the following idea. Let 
S =• STS(U) be a cyclic Steiner triple system. The block intersection graph 
has v{v — l ) /6 vertices and it admits an induced action of the cyclic group 
of order v. Then the orbits of the induced action decompose the intersection 
graph into [v — l ) / 6 six-valent circulants of order v if v = 1 (mod 6), and into 
(u — 3)/6 six-valent circulants of order v and one short orbit if v = 3 (mod 6). 
By Brooks' theorem each of the circulants (with one exception) can be colored 
by 6 colors. Taking different sets of colors for different orbits one gets a v -block 
coloring of any cyclic STS. Using some known results on the chromatic num­
ber of toroidal triangulations we derive that, with two exceptions, the 6-valent 
circulants coming from a cyclic STS(f) can be 5-colored. Consequently, the 
upper bound for the chromatic index can be improved. Furthermore, wre discuss 
colorability of 6-valent circulants in which one of the three generators is the 
sum of the other two. The results are applied to get better upper bounds on the 
chromatic index for some classes of cyclic STS(f). 

Coloring 6-valent circulants with connection set {a,b,a+b} 

It is not difficult to see that the induced subgraph of an orbit of length v 
in a Steiner triple system STS(U) in the block intersection graph is a circulant 
G — C(n; a, b, c), where one of the generators, say c, is the sum of the others (up 
to replacing c by n — c). In what follows we assume w.l.o.g. c — a -h b. We may 
think of each edge as being colored by one of the generators. A triangle of G is 
3-edge-colored if its edges are colored by the three colors a, b and c. Each edge 
lies in exactly two 3-edge-colored triangles. The six 3-edge-colored triangles 
based at a vertex j induce a cyclic rotation of the neighbours; up to replacing 
some of a, b, c by —a, —b, —c, it has a form (j+a,j+b,j+c,j—a,j—b,j—c) 
for each vertex j G Zn. Clearly the 3-edge-colored cycles as well as the local 
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rotation of colors (a, b, c, —a, —b, —c) are preserved by the cyclic automorphism 
j r—> j + 1 . By Euler-Poincare theorem a component of G is a one-skeleton of 
a vertex-transitive triangulation of the torus. Note that there are ri/gcd(a, b, c) 
components of G, and they are all isomorphic to C = (n'; a', b', c'), wrhere 
n' = n/d, a' = a/d, b' = b/d, cJ = c/d for d = gcd(a, b, c). Many papers were 
devoted to the problem to determine the chromatic number of triangulations of 
surfaces satisfying certain conditions. Here we mention only few of those which 
are closely related to our problem. 

Note that the complete graph K7 can be expressed as K7 = (7(7; 1, 2, 3), and 
let Tu be the circulant C ( l l ; 1, 2, 3). It is important to note that the chromatic 
number of K7 is seven and the chromatic number of Tu is 6. A l b e r t s o n 
and H u t c h i n s o n [1] (see [9] as well) proved that these two graphs are the 
only 6-valent graphs on the torus which cannot be 5-colored. 

THEOREM 1. ([1; Theorem 4.4]) Let G be a toroidal 6-valent graph other than 
K7 and Tu . Then G is 5 -colorable. 

COROLLARY 2. Let S = STS(U) be a cyclic Steiner triple system. Then 

(a) \f(S)<5-^ ifv = l (mod6) , 

(b) x'(S) < ^ t 9 ifv = z ( m od 6) . 

P r o o f . As already mentioned, the vertices of the block intersection graph 
decompose into (v — l)/6 orbits of length v if v = 1 (mod 6), and into (v — 3)/6 
orbits of length v and one short orbit if v = 3 (mod 6). The subgraph induced 
on a full orbit is a six-valent circulant C(v\ a, b, c) with c = a -[- b for some 
a, b. A connectivity component of such a circulant triangulates the torus. By 
Theorem 1 each such circulant can be 5-colored except when it is a disjoint 
union of K7 's, or a disjoint union of Tu 's. This can happen only if 7\v or 11 \v, 
respectively. Moreover, at most one orbit can be a union of K7 's and at most 
one orbit can be a union of Tu 's. We color the vertices of the block intersection 
graph by using distinct sets of five colors for each full orbit which is neither a 
union of i\~7's, nor a union of Tu

:s. For the latter two orbits, if they appear, 
wre use 7 and 6 colors, respectively. Finally, in case v = 3 (mod 6) we use one 
color to color the short orbit. By adding the number of colors used we get the 
upper bounds. • 

The bound in Corollary 2(b) cannot be improved in general by the method 
used in the proof of Corollary 2. To see this, let v = 3p, p a prime, such that 

(*) p = 3 (mod 4), x is such that the order of x mod p is f~-, and the 
order of x mod Zp is p — 1; such x always exists. 

Now, for each prime p and x satisfying (*) and v = 3p. there exist cyclic 
Steiner triple systems of order v such that for each full orbit of triples the 
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corresponding 6-valent circulant is 5-chromatic, so that the bound of Corollary 2 
becomes x'(S) < ^ - . Indeed, the set {{x2\ 2 • x2\ 3 • x2%} : i = 0 , 1 , . . . . ^ } 
is a solution to the 2nd Heffter's difference problem (cf. [4]); note the crucial fact 
lhat ^Y~ is odd. Clearly, all circulants corresponding to the full orbits of any 
cyclic STS(U) whose difference triples are as above are multiplier-isomorphic to 
C(v;l,2,3). 

The first few values of v satisfying condition (*) writh x = 2 are v = 
21,69,141,213,237,309,501. . . . There are infinitely many primes p and cor­
responding x satisfying (*). Let us note that there exist cyclic STSs also of 
orders = 1 (mod 6) (e.g. v = 37) for which the circulants corresponding to any 
full orbit are 5-chromatic. 

T A B L E 

Order Spectrum 

7 7 

9 -

13 10 

15 9 

19 12,15 

21 13,14,16 

25 18,20 

27 18 

31 20,21,22,23 

33 21,22,23,25,26 

37 24,25,26,27,28,30 

39 23,24,25,26,27,28,29 

43 28,29,30,31,32,33,34 

45 26 ,27 ,28 ,29 ,30 ,31 

On the other hand, for many cyclic STSs our method gives a much better 
upper bound. For example, for the projective STS of order 31 (whose blocks are 
the lines of PG(4, 2)), the bound of Corollary 2 yields the value of 20. We found 
an 18-block-colouring of PG(4, 2), which implies that the chromatic index of 
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PG(4,2) equals 18 (x' > 18 follows from Wilson's argument, see [4; p. 345]). 
The spectrum of values for bounds obtained by adding the chromatic numbers 
of circulants corresponding to the individual orbits of STSs of small orders is 
given in the table above. 

Let min^ = ^ - if v = 3 (mod 6) and minv = ^ ^ if v = 1 (mod 6). We 
checked on a computer that for all cyclic Steiner triple systems of order v < 43 
(note that the number of cyclic Steiner triple systems of order 43 is known to 
be 9508, not a small number [4]), we have for the chromatic index the bounds 
min l < x' < niin^ +2- This suggests that the following could be true: 

CONJECTURE. The chromatic index of every cyclic STS(U). v > 7. takes on 
one of three values: mmv . min^ + 1 . minl? +2 . 

It would be tempting to conjecture that the same holds for any Steiner triple 
system but admittedly the evidence for such a claim is scarce. 

Let us note that the problem of determining the chromatic number of general 
circulants is NP-hard ([2]). However, we are able to say more in the special case 
that wTe consider, namely for the 6-valent circulants C(n; a, 6, a+b ) . 

Some recent results proved by C o l l i n s and H u t c h i n s o n [6] and in 
more general setting by H u t c h i n s o n , R i c h t e r and S e y m o u r [7] suggest 
that most of the considered circulants are even 4-colorable. Indeed, Y e h and 
Z h u [11; Theorem 5] proved the following statement conjectured by C o l l i n s , 
F i s h e r and H u t c h i n s o n in [5]: 

THEOREM 3. ( Y e h , Z h u [11]) Let G = C(n; l , r , r + 1). n > 2(r + l) > 6, be 
a circulant (possibly with multiple edges for n = 2 ( r + l ) ) . Then G is 4-colorable 
except when one of the following cases occurs: 

(1) n = 2r + 2. n = 2r + 3 , n = 3r + 1 or 3r + 2. 
and n is not divisible by 4 . 

(2) r = 2 . and 4 does not divide n, 

(3) (r,n) ^s one of (3,13), (3,17), (3,18), (3, 25), (4,17), (6,17), (6, 25), 

(6, 33), (7,19), (7, 25), (7, 26), (9, 25), (10, 25), (10, 26), (10, 37), (14, 33). 

Using the above theorem one can classify k-chromatic 6-valent circulants for 
all admissible integers k, 3 < k < 7, as follows. 

THEOREM 4. Let G = C(n; a, 6, c) be a connected 6-valent circulant, where 
n > 7. c = a + b orn — c = a-\-b are pairwise distinct positive integers different 
from n / 2 . Let x(G) be the chromatic number of G. Then 

(1) X(G) = 7 if and only if G =" K7 = C(7; 1, 2, 3) . 

(2) x(G) = 6 if and only if G =" T n = C ( l l ; 1, 2, 3) . 
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(3) x(G) = 5 if and only if G •= (7(n; 1, 2, 3) and n ^ 7,11 is not divisible 
by 4 . or G is isomorphic to one of the following circulants: (7(13; 1, 3, 4), 
(7(17; 1,3,4), C7(18;l,3,4), (7(19; 1, 7, 8) . (7(25; 1, 3 ,4) . (7(26; 1, 7, 8), 
(7(33; 1,6, 7) . (7(37; 1,10,11). 

(4) x(G) = 3 if and only if 3|n and none of a, b, c is divisible by 3 . 

(5) x(G) = 4 in all the remaining cases. 

P r o o f . 
(1) follows from Brooks' theorem. 
(2) comes from A l b e r t s o n and H u t c h i n s o n [1]. It is easy to see that 

none of the circulants listed in (3) is 4-colorable. Assume G is not 4-colorable. If 
gcd(n,a) = 1, gcd(n,b) = 1 or gcd(n, c) = 1, then G is (multiplier-)isomorphic 
to (7(n; 1, r, r + 1 ) . Applying Theorem 3 and reducing the number of exceptions 
by taking representatives up to isomorphism we get the list of 5-chromatic six-
talent circulants. Assume the greatest common divisors gcd(n, a), gcd(n, b) and 
gcd(n, c) to be all > 1. We show that in this case G can be 4-colored. Let, say, 
gcd(n, a) = d > 1. Since each of the pairs (a, b), (b, c), (a^c) generates Zn, 
it follows that at most one of gcd(a,n) , gcd(b, n) and gcd(c, n) is even. Hence 
we may assume that both gcd(a, n) = d and gcd(6, n) = k are odd. Clearly 
db £ (a), hence db = xa for some x, 0 < x < r a — 1, where ra = n/d. If 
gcd(x,ra) = 1, then k = gcd(n, b) = 1, which is a contradiction. Moreover, 
gcd(ra,x) ^ 2 because gcd(ra,x) = 2 would imply |b| = n /2 = n/gcd(6, n ) , 
forcing gcd(b, n) = 2 contradicting the assumptions. Hence, gcd(ra,x) > 2. 
Let x = 0. Then the circulant G forms a so-called right diagonal ra x d grid, 
ra,d > 3, which by [6; Theorem 3.3] is 4-colorable. If x ^ 0, then consider the 
factor of G by (xa). It is a 6-valent circulant G = (7(n;a,b , c) such that one 
of the generators is the sum of the other two, (a) is a subgroup of index d and 
of cardinality ra = n/d > 3. Moreover, db = 0, and consequently, the order 
of b is d. As above, the 4-colorability of G follows from [6; Theorem 3.3]. The 
4-coloring of the original circulant G can be constructed by lifting the 4-coloring 
of G along the covering G —> G. 

If 3|n and none of the generators is divisible by 3, then the assignment j i—>• j , 
where j is the residue class of j mod 3, defines a 3-coloring of the circulant G. 

Assume there is a 3-coloring of G. If one of the gcd(n, a), gcd(n, b) or 
gcd(n, c) equals one, then the circulant is isomorphic to (7(n; 1, r, r+1) for some 
l < r < r + l < n / 2 . The vertices 0, r , r + 1 are colored by three different 
colors, say A, B and (7, respectively. It follows that the vertex 1 is colored 
by B, vertex r + 2 by A,.... It is easy to see that this coloring extends to a 
coloring of G if and only if 3|n and r = 1 (mod 3). Hence, all the generators are 
not = 0 mod 3, and this property remains valid when multiplying by integers 
coprime to n as well as when replacing generators by their inverses. Assume now 
that none of gcd(n, a), gcd(n, b), gcd(n, c) equals one. If, say, gcd(n, a) = d > 1, 
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then considering 3-colorability of the subgraph H induced by (a) J (6+ (a)) we 
see that H can be 3-colored only if 3 | n/d. Hence 3|n. Moreover, 1he 3-coloring 
is unique up to a permutation of colors. Since a is a generator of a cyclic subgroup 
of order divisible by 3, it is coprime to 3. The same argument applies to b and c, 
proving that all a, b and c are coprime to 3. • 

Let us call circulants of type (1), (2) or (3) from Theorem 4 exceptional. 

COROLLARY 5. Let S = STS(U) be a cyclic Steiner triple system of order v, 
and assume that no circulant induced on an orbit of the block intersection graph 
contains as a component an exceptional circulant. Then x'($) < \{v ~ 1) */ 
v = 1 (mod 6), and x'(S) <\v-l if v = 3 (mod 6). 
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