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GRAPH ISOMORPHISM OF ORDERED SETS 

CHAWEWAN RATANAPRASERT 

(Communicated by Pavol Zlatoš) 

ABSTRACT. Two discrete (semi)lattices having isomorphic graphs, are compat­
ible (semi)lattice orders of each other if and only if all their sub(semi)lattices 
of certain types are preserved or reversed. In the paper, we show that all con­
nected compatible orderings of a lattice have graphs isomorphic to the graph of 
the lattice; and then we characterize all compatible orderings of a lattice in term 
of subgraphs of the lattice. It turns out that the consideration of certain types 
of sublattices of a lattice L leads to necessary and sufficient conditions for all 
ordered sets whose graphs are isomorphic to L to be compatible orderings of L. 
The results cover all the cases of compatible lattice orderings. 

An ordered set is called discrete if all its bounded chains are finite. All ordered 
sets which are dealt with in this paper are assumed to be discrete. 

Let P = (P;<) be an ordered set. For a,b € P with a < b, the interval 
[a, b] is the set {x £ P : a < x < b}; for the case when [a, b] = {a, b} and a^b 
we will write a -< b or b >- a and we say that a is covered by b or b covers a, 
respectively. 

A subset X of an ordered set P = (P; <) is called a c-subset if, whenever 
a, b G X and a -< b in (K*; <) , then a •< b in P . The definition of c-sublattice is 
analogous. 

Let u, v, xx,..., xm, yx,..., yn be distinct elements in P such that 

(i) u<xx< <xm <v, u <yx < <yn<v, 
(ii) either v is the least upper bound of xx and yl (denoted by v = xx \/yl) 

or u is the greatest lower bound of xm and yn (denoted by u = xmAyn). 

Then the set C = {u,v,xx,... ,xm,yl,... ,yn} is said to be a cell of P . If 
x\ v y\ ~ v » w e c a ^ C a ce^ °f tyPe V(m>n) - Dually, if xm Ayn = u, we call C 
a cell of type A(m, n). If xx V yx = v and x m Ay n = w,we call C a cell of type 
0(m, n). A cell C is called proper if m > 1 or n > 1 • 

2000 M a t h e m a t i c s S u b j e c t C la s s i f i c a t i on : Primary 06A12, 06B99. 
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By the graph G ( P ) , we mean the (undirected) graph whose vertex set is P 
and whose edges are those pairs {a, b} which satisfy either a -< b or b -< a. 

Let P and Q be ordered sets. It is said that G(P) is isomorphic to G(Q) 
if there is a bijection ip: P -» Q such that for all a, b G P, {a, b} is an edge of 
G(P) if and only if {ip(a),i/j(b)} is an edge of G(Q). Without loss of generality, 
throughout this paper we may assume that P = Q and that ip is the identity 
map if G(P) is isomorphic to G(Q) , whence G(P) = G(Q); in this case, ip is 
called a graph isomorphism of P onto Q. 

Let V! be a graph isomorphism of P onto Q and let X C P. We say that 
X is preserved (reversed) under ip if, whenever x,y G X and x -< y, then 
ip(x) -< ip(y) (or ip(x) y ip(y), respectively). 

J. J a k u b i k proved in [3] that if L and M are discrete modular lattices, 
then G(L) = G(M) if and only if the following Condition (a) holds. 

(a) There are lattices Lx and L2 and a direct product representation via 
which L is isomorphic to Lx x L2 and M is isomorphic to hf x L 2 . 

Note that this yields a solution to B i r k h o f f ' s problem ([1; Problem 8]) 
within the class of discrete modular lattices since a modular lattice L will be 
uniquely determined by its graph if and only if every direct factor of L is self 
dual. 

J. J a k u b i k also proved in [4] that for discrete lattices (with no assumption 
of modularity), Condition (a) is equivalent to Condition (b). 

(b) L and M have isomorphic graphs and all proper cells of L and all proper 
cells of M are either preserved or reversed. 

In [5] and [7], the preservation of certain types of sublattices of the lattices 
L and M was given for the case when L and M are semimodular. 

In [6], K o l i b i a r proved that for discrete semimodular semilattices S and 
S t on the same underlying set 5 , the graphs G(S) and G(SX) are isomorphic 
if and only if the following Conditions (c) holds. 

(c) There exist a lattice A = (A; -f, •), a semilattice B = (B; V) and a map 
ip: S -» A x B via which ip is a subdirect embedding of S into A x B 
and Sl into Ad x B . 

In [8], we gave a new characterization of Condition (c) by proving that Condi­
tion (c) holds if and only if G(S) = G(S1) and the graph isomorphism preserves 
the order on some special types of cells and proper cells. 

An order < is said to be a compatible ordering of a (semi)lattice L if < is a 
sub(semi)lattice of L 2 . If a compatible ordering < of a (semi)lattice L is also 
a (semi)lattice order, we call < a compatible (semi)lattice order of L. 

In [9], we characterized all compatible orderings of a lattice. In this paper, 
we will show that all connected compatible orderings of a lattice L have graph 
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isomorphic to G(L), and then we characterize all compatible orderings of a lat­
tice in terms of subgraphs of the lattice. It turns out that consideration of the 
types of sublattices of a lattice which are mentioned in [4] and [5] leads to neces­
sary and sufficient conditions for all ordered sets whose graphs are isomorphic to 
G(L) to be compatible orderings of L . The results shown in [4] and [5] become 
a special case when those orders are compatible lattice orders. 

A 4-element subset {a, b,c,d} of an ordered set P is said to be a quadrilateral 
if a -< b -< d and a < c -< d; and it is called a crisscross if a,b -< c,d. We will 
denote these by (a,b,c,d) and (ab;cd) respectively. If G(P) = G(Q), then a 
quadrilateral of P can either be preserved, be reversed, be rotated through 90° , 
or be bent into a crisscross in Q. We have the following lemma. 

LEMMA 1. Let P and Q be ordered sets with G(P) = G(Q) and let (a, b,c,d) 
be a quadrilateral of P. If Q contains no crisscross, then the set {a, b} is 
preserved (reversed) if and only if the set {c,d} is preserved (reversed). 

COROLLARY 1. ([3], [4], [5]) Let P and Q be lattices with G(P) = G(Q). If 
(a,b,c,d) is a quadrilateral in P, then the set {a,b} is preserved (reversed) if 
and only if the set {c, d} is preserved (reversed). 

COROLLARY 2. Let P and Q be ordered sets with G(P) = G(Q). If Q 
contains no crisscross, then every c-subset of P which is isomorphic to M n 

(the ordered set shown in Figure 1) is preserved or reversed in Q. 

P r o o f . It is enough to prove that the subset {0, l,a1,a2,a3} of Figure 1 
is preserved or reversed. We may assume that { 0 ^ } is preserved. It follows 
from Lemma 1 that {a2 ,1} and {0,a3} are preserved since (0, a 1 , a 2 , l ) and 
(0, a2,a3,1) are quadrilaterals. Now consider the quadrilateral (0, al,a3,1). The 
preservation of {0, ax} and {0, a3} implies the preservation of {a L , l } and 
{a 3 , 1} . Hence, in the quadrilateral (0, a1,a2,1), the preservation of {a1,1} im­
plies the preservation of {0, a 2 } . So {0,1, a l5 a2, a3J ls preserved. • 
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We proved in [9] that for a connected compatible ordering < of a lattice 
L — (P]<*) there corresponds a pair (61,92) of complementary congruence 
relations of L. Thus, if a <* b in L, then there are elements a = ax -<* a2 -<* 
• • • -<* an = b in L such that either a{ 9X a-+1 or a{ 92 ai+l for all 0 < i < n. 
Hence, if a -<* 6, then a6xb or a62b which together with Corollary 3 and [9; 
Lemma 1] yield [a, b]* = [a, b] or [a, b]* = [b, a]; thus a -< b or b -< a. We have 
the following Condition (A): 

(A) G(P) = G(L). 

Although Condition (A) is necessary, it is not sufficient for P to be a com­
patible ordered set of L even when P itself is a lattice. 

Let C = {u -<* xx -<*• . . •<* xm -<* v y* yn y* • • • y* yx y* u} be a 
proper cell of L where m > 1 and n > 1 and let us suppose that xk > u > yt 

for some 1 < k < m and 1 < t < n. For the case xx V yx = U, we have that 
v = x1Vyt < xx Vw = x1 and yt = uVyx < xkVy1 =v,so[y1,v] = [yx,v]*, that 
is> y\ < 2/2 - " " - 2/n • Since v < xx implies that yn = yn A i; < yn A xx = u, 
we have [yn, w] = [u, yn]*, which yields yn < yn_x < • - • < yx • This shows that 
yx z=z y 2 — . . . — y n ? which contradicts n > 1. In the case xm Ayn = u, we 
have ^ = x m V yt < xm V u = xm and yn = ^ V yn < xk V yn = i;, which yield 
yn = yn A v < yn A x m = u and tz = xm A yn < a:m A v = xm. Since u < xm 

implies that yx = yx V u < yx V xm = v, we also have [yn,w] = [w,2/J* and 
[i/j, v] = [y l 3f]*, which lead to the same contradiction as above. We shall get a 
similar contradiction if we suppose other cases. This means that a proper cell of 
L cannot be "bent" in P . That is: 

(B) All proper cells of L are preserved or reversed in P . 

We say that an ordered set P satisfies the lower bound property (LBP) if any 
pairs of elements of P which have a lower bound have a greatest lower bound. 
Dually, P satisfies the upper bound property (UBP) if any pairs of elements of 
P which have an upper bound have a least upper bound. 

In [9], we proved that if P is a compatible ordered set of a lattice L, then P 
satisfies both LBP and UBP, and hence, the following Condition (C) holds: 

(C) P contains no crisscross as a c-subset. 

We shall now prove that Conditions (A), (B) and (C) altogether are equivalent 
to the following Condition (D): 

(D) P is a compatible ordered set of L. 

For a pair of discrete lattices L and M , Condition (B) is equivalent to the 
following Condition (B'): 

(B') All proper cells of L and all proper cells of M are preserved or reversed. 

Thus, we answer a question raised by J a k u b 1 k. 
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LEMMA 2. Let P = (P; <) be a connected compatible ordering of a lattice 
L = (P; <*) . Then G(P) = G(L) and all proper cells of P and all proper cells 
of L are preserved or reversed. 

P r o o f. By [9], P satisfies LBP and UBP. Let a A 6 and a V b denote the 
greatest lower bound and the least upper bound of any a and b in P if they 
are bounded below or bounded above, respectively. 

Let C = {u -< xx -< • • • -< xm -< v y yn >-•••>- yx >- u} be a proper cell 
of P , that is, m > 1 or n > 1 and x1\/y1 = v or xm A yn = u. We may assume 
that x1 V yx = v (if xm Ayn = u we can argue analogously). Let w = xm A yn. 
Since u < xx A w < x1, u -< xx and xxW yx = v ^ yn, we have xx A w = u. 
Similarly, yx Aw = u. Hence, A = (A = {u,v,x1)xm)yl)yn,w}') V, A, <) is a 
lattice and <* is a compatible ordering of A . 

Suppose xx >* u >* yx. Then yx <* v <* xx. Since < is a compatible 
ordering of L, we have [xx,v] = ^ , x j * and [yl,v] = [y1,v]*] hence, yx <* 
yn <* v a n d v <* xm <* xx. Since <* is a compatible ordering of A , we have 
[xm <* xx = > w = xm A w <* xx A w = u) & (yx <* yn = > u = w A y1 

<* w A yn = w), which yield w = u. Now, (v <* xm = > yn <* u) yields 
[u^yJ - b n ' u ] * ' t h a t i s ' 2/i = 2/2 = " • = yn- Similarly, we have xx= x2 = 
• • • = xm. Thus, m = 1 and n = 1, which is a contradiction. We will get a 
similar contradiction if xx <* u <* yx. Hence, xx >* u <* yx or xx <* u>* yx. 
In either cases, C is preserved or reversed. 

The argument before Condition (B) prove that all proper cells of L are 
preserved or reversed in P . • 

In the following three lemmata, we assume that an ordered set P satisfies 
Condition (C). 

LEMMA 3. Let L = (P ;V,A,<*) be a discrete lattice and P = (P; <) be a 
discrete ordered set with G(P) -= G(L). Assume that all proper cells of L are 
preserved or reversed in P . 

(i) (ay*c^*b) = > ((c-<a = > b < a V b) & (a -< c = > aWb<b)). 
(ii) (a^*cy*b) = > ((c-<a ==> b<aAb) & (a -< c = > a A b < b)) . 

P r o o f . 

(i) If a -<* a V b >*-* 6, then the lemma follows by Lemma 1. We may assume 
that a = x1 -<* x2 -<* • • • -<* xm -<* aVb and b = yx -<* y2 -<*••• -<* ym -<* aVb 
for some x2,..., x m , y 2 , . . . , yn € P . Then the set {c, aVb, x^ ..., x m , ^ , . . . , yn} 
is a proper cell of L. Hence, the interval [6, a V 6] is preserved (reversed) if the 
interval [c^a] is preserved (reversed). 

We can prove (ii) analogously. • 

495 



CHAWEWAN RATANAPRASERT 

LEMMA 4. Let L = (P;V,A,<*) be a discrete lattice and P = (P; <) be a 
discrete ordered set with G(P) = G(L). Assume that all proper cells of L are 
preserved or reversed in P . If a -<* b, then for all c G P 

(i) a -< b implies a\/ c <b\/ c and a A c < b A c. 
(ii) b -< a implies bW c < a V c and b Ac < a Ac. 

Moreover, if a,b,c E P, then a <b implies a\/ c<b\/ c and a A c < b A c. 

P r o o f , (i) and (ii) follow directly from Lemma 3. Let a < b and c £ P. 
We may assume that a = a0 -< ax -< • • • -< an = b for some a l5 a 2 , . . . , an G F. 
Since G(P) = G(L), we have a- -<* ai+1 or a-+1 -<:* a- for all 0 < i < n. So, 
we obtain either (ai -<* a i + 1 & a i -< a?+1) or (a i + 1 -<* at &z at •< a-+1) 
for each 0 < i < n. In either cases, it follows by (i) and (ii) respectively that 
at\J c < a-+1 V c and a• A c < a i + 1 A c for all 0 < i < n. Hence, by induction, 
aV c <bV c and a Ac < b Ac. • 

THEOREM 1. Fe£ L be a discrete lattice and P be a discrete connected or­
dered set having no crisscross as a c-subset. Then the following statements are 
equivalent: 

(i) P is a compatible ordered set of L. 
(ii) G(P) = G(L) and all proper cells of L and all proper cells of P are 

preserved or reversed. 
(iii) G(P) = G(L) and all proper cells of L are preserved or reversed in P . 

P r o o f , (i) =-=-> (ii) is a consequence of Lemma 2, (ii) = > (iii) is 
immediate and we can prove (iii) -==-> (i) by using Lemma 4 to show that < is 
a sublattice of L2 . • 

In [9] we proved that if P is also a lattice, then condition (i) of Theorem 1 
is equivalent to Condition (a). We obtain the following corollary, which answrer 
in the affirmative a question posed by J a k u b i k [3]. 

COROLLARY 3. Let L and Lx be discrete lattices. Then the following state­
ments are equivalent: 

(i) G(L) = G(LX) and all proper cells of L and all proper cells of Lx are 
preserved or reversed. 

(ii) G(L) = G(LX) and all proper cells of L are preserved or reversed in L1 . 

If P is a compatible ordered set of both lattices L and L 1 , then G(L) = 
G(P) = G(LX) and all proper cells of L are preserved or reversed in P ; hence, 
by the equivalence of conditions (i) and (ii) of Theorem 1, they are preserved 
or reversed in L x . Therefore, L is a compatible lattice order of Lx and the 
converse also holds (see [7]). Hence, we obtain the following theorem. 

496 



GRAPH ISOMORPHISM OF ORDERED SETS 

THEOREM 2. Let L and Lx be discrete lattices and P be a discrete connected 
ordered set. If P is a compatible ordered set of L, then P is a compatible ordered 
set of Lx if and only if L is a compatible lattice order of L1. 

An ordered set P is said to be upper semimodular if P satisfies the following 
Upper Covering Condition (UCC): 

(UCC) If a and b cover c with a ^ b and a least upper bound of a and b 
(denoted by a V b) exists in P , then both a and b are covered by a V b. 

Dually, P is said to be lower semimodular if P satisfies the dual of (UCC) 
which is called the Lower Covering Condition (LCC). If P satisfies both (UCC) 
and (LCC), then P is said to be modular. 

Let L be a discrete modular lattice; then L contains no proper cells. Hence, 
if P is a discrete ordered set having the same graph as L, then conditions (iii) 
of Theorem 1 holds. We obtain the following corollaries. 

COROLLARY 4. Let L be a discrete modular lattice and P be a discrete ordered 
set satisfying Condition (C). Then G(P) = G(L) if and only ifP is a connected 
compatible ordered set of L. 

COROLLARY 5. Let L be a discrete lattice and P = (P; <) be a discrete 
ordered set having the same graph as L and satisfying Condition (C). If L is 
modular, then so is P . 

P r o o f . It follows from [9] that P is a compatible ordered set of L. Suppose 
that P is not modular. Then P fails either (UCC) or (LCC), that is, there exist 
a, b, c with a ^ b such that either 

(i) a -< cy b but a ^ a A b o r b ^ a A b , 

or 

(ii) ay c<b but a-fiaVb or b^aVb, 

where aAb and aVb denote the greatest lower bound and the least upper bound 
of a and b in P respectively. Hence, P contains a proper cell C = {a A b -< 
x1 -< • • • -< xm = a -< c y b = yn >- • • • >- yx y a A b} or D = {c -< a = x1 -< . . . 
< xm <a\/by yny •-• y yx=by c] for some xx,..., xm, yY,..., yn e P . So 
C, Cd, D or Dd is a proper cell in L, which is a contradiction. • 

COROLLARY 6. ([3]) Let L and L1 be discrete lattices whose graphs are iso­
morphic. If L is modular (distributive). then so is L x . 

As J a k u b f k has observed in [5], the modularity condition in Corollary 4 
cannot be replaced by semimodularity. In fact, we have examples (see Figure 2 
(a) and (b)) of semimodular lattices whose graphs are isomorphic, but one is 
not a compatible ordering of the other. 
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Уn 

Уi 

(c) 

In [4], J a k u b f k has shown that a discrete lattice L is modular if and only 
if L does not contain a c-sublattice isomorphic to one of the lattices in Figure 2. 
In fact, all c-sublattices of a lattice L which are isomorphic to one of the lattice 
in Figure 2 are proper cells of L. It is interesting to ask whether for a discrete 
lattice L and a discrete connected ordered set P , P is a compatible ordered 
set of L if and only if L and P have the same graphs and the isomorphism 
preserves the order on all c-sublattices of L which are isomorphic to one of the 
lattices in Figure 2. Unfortunately, Figure 3 and Figure 4 show that this is not 
the story. 

Figure 3. Figure 4. 
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