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DIRECT VARIATIONAL METHODS
IN NONREFLEXIVE SPACES

J. KACUR, J. SOUCEK

In the present paper we investigate the variational problems of the type of
a nonparametric minimal surface by means of direct methods.

Let us consider the nonparametric minimal surface problem. We are looking for
the minimum of the functional '

J(u, Q)=j (1 +|Vul)"* dx
2

on the set of functions with a prescribed boundary condition u =@ on 9€2.

It is natural to look in the case of this problem for a weak solution in the Sobolev
space Wi(£2) and to take the boundary condition ¢ from L,(3€). But it is clear
that we cannot use here the direct methods because of the nonreflexivity of Wi(Q).
This difficulty can be removed if we extend the functional J to the larger space
W, > Wi, which has a compact ball in some weak topology.

The following conditions must be satisfied if we want to use the direct methods
for a larger space W > W;:

i) it is possible to choose a convergent subsequence from the minimizing
sequence in some topology (weak topology in W,);

ii) the limit element of this subsequence satisfies the boundary condition;
iii) the extended functional is lower semicontinuous with respect to the
{opology mentioned in point i).

If u, e Wi, n=1, 2, ... is a minimizing sequence of our problem, then ||u, ||w," is
uniformly bounded (this is the only a priori information) and hence the derivative

% is a bounded sequence in L,(£2). A space with a weakly compact ball, which

Xi
contains the space L,(£2), is the space L, (£2) of all bounded Borel measures on Q
with a usually weak topology. We define a weak convergence in W,, as the weak
convergence of the functions together with their derivatives in L, (£2) and we define
W, as the closure of Wi(€) in this convergence. But there is a problem to
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guarantee point ii) concerning the notion of the traces for the elements of W,.

Consider the following example. Let {u,} be the sequence
_ 1
0 for 0sx<1 n

Un(x) = {l—n(l—x)

for l—lsxs 1
n

Thus u,(0)=0and u,(1)=1forn =1, 2, .... The function u =0 is the limit of {u,}
(in the weak convergence as well as in each reasonable convergence). The trace of
the function u =0 is zero (in each reasonable definition of the trace). In what sense
can point ii) be satisfied? Let us consider the derivatives of the functions u,. It is

du, . . .
easy to see that the sequence ar convereges to the Dirac measure in the point

1 (in a weak convergence in L,. ({0, 1))). Thus, the Dirac measure forms some side
(in the point 1) of the element u =0. This fact allows us to define the trace in
point 1 (of the limit element) as the usual trace of the function u =0 (the socalled
inner trace) plus the magnitude of the side in point 1. Now it is clear that the
,.function*‘ from W; is a generalized function; to determine this ‘‘function” we
must define the values. of this function in  and at the same time its derivative s—xu
(which are generally measures) on Q. In the domain £ the derivatives of i € W,
are determined as the distributive derivatives of u but on 32 these derivative are
independent of u. The trace of an element of W, can then be defined by Green’s
theorem. This trace clearly depends also on the derivatives of u.

The space W, (and its generalization W) is defined and investigated in [1].

To guarantee point iii) we assume that the functional J on W} is weakly lower
semicontinuous and coercive. We extend the functional J on W, so that the
condition iii) will be satisfied. The extension F (for u € W,.) of J is defined by

F(u)=inf lim J(u,)

where we take the infimum over all sequence u, € W1 such that u,—u in W}, It will
be proved that this functional is weakly lower semicontinuous and coercive on the
space W.,. (see §1). In § 2 we prove the solvability of our variational problem (with
the functional F) in the space W,.. In § 3 we consider the functional J in the form

J(u)=J f(x, D'u)ydx, li|<k, ueWr,
L \

where f(x, €) is convex in the vector &, Q c E" is a bounded domain with the
boundary 3R from the class C'.

In § 4 we study the uniqueness (in some special cases) of the generalized solution
of our variational problem. More detailed results can be found in [2], but in special
cases of the function f and for k =1.

210



In paper [3] it is proved that in some special cases of the functional J there exists
no weak solution in Wi of our variational problem.
Thus, the definition of the spaces W, and the extension F of the functional J is

substantial.
For the case of minimal surfaces stronger results have been obtained in [5], [6],

see also [7].
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§1. ‘The spaces W,

In this paragraf we recapitulate for the reader some basic definitions and
theorem from [1], which will be used latter.

Let L,(E) be the space of all o-additive bounded Borel measures defined on
a compact set E c Ey with the norm

”a”Lu(E)=Ia|(E)’

(la| is the total variation of the measure a).
Asually, we denote

d.—a in L,(E), iff f @ da,.—»f @ da forall ¢ € C(E).
E E

We shall identify each absolutely continuous measure a € L,(£2) (with respect to
the N-dimensional Lebesgue measure) with its density and each absolutely
continuous measure f§ € L,(3Q) (with respect to the (N — 1)-dimensional Haus-
dorff measure dS on 3Q) with its density.

Definition A. W,(Q) is the space of all (N + 1)-tuples (u ay, ..., an) for which
i) uelL(R), ai, ..., an € L, (Q),
ii) there exists a measure 3 € L,(3€2) such that

f (pv.-dﬁ=f u(px,dx+f @ dao;, i=1,..,N
oq Q Q

for all @ € C'(2) (where v =(v1, ..., vn) is the exterior normal to 3%2).
The measure § which is clearly uniquely determined by (u, a;) will be called the
trace of the element (u, a;). :
The space W,.(£2) is the space of all elements from W(£2) with the trace § = 0.

Definition B. Lete,, =(0, ...,0,1,0, ... 0) be the N-dimensional vector with 1
on the m-th place and let » be the number of all multiindices i for which |i| =k
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Wi () is the space of all (x + 1)-tuples (u, ai),}|=k such that
i) ueWi '(Q), aeL.(Q), |il=k,
ii) the element

(Diuy al'+¢n LR ] ai+e,,,)

belongs to the space W(Q) for each mutliindex i, |i| =k — 1. Wi(Q) is the space
of all (u, a;)e W(Q) for which ue Wi™'(2) and

(Diua Qite,,) € W;(Q)
for all i, |il=k—1and m=1, ...,N.
The norm in Wi is defined by

1t @)l = Ntllwes+ 3 Nl

We shall define in W the pseudonorm as well:

l(u, @)W = lzk”ai"h‘ :
The elements from Wi(£2) will be called the functions and we shall denote
i=(u,a) = (u, a:)-«. We shall define the weak convergence in W(Q) by
(Un, O)—=(u, ai) in Wi(Q) if
D'u,—D'u in L,‘(Q.), forall |i|< k — 1 and
an—oa; inL,(Q), forall |i ¥k

Theorem A. The unit ball in W5(Q) is weakly compact. The space Wi(Q) is

weakly closed in W(Q) and hence the unit ball in W(Q) is weakly compact as
well.

Theorem B. The imbedding W(R2) into W, '(Q):

K k-1
(u, ai)il-ke Wy ue W,

is continuous for q < and compact for q <

N-1 N-1

Theorem C. For all 6ie Wi (respectively it € Wy) there exists a sequence
U, € Wi (u, € W) such that

Un—u in Wi, [[tn||wic < [|82]| we n=1,2, ...
wk

Remark. The assertion of this theorem is proved in [1] only for k =1 but the
proof for k>1 is exactly the same as for k =1.
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Theorem D. The pseudonorm ||ul|w,k is the equivalent norm in the space wr.
In §4. some further theorems about the space Wy(£2), will be needed.

Definition C. Let E c Exy be a compact subset, a e L,(E), ¢ € C(E), then we
define @.a usually:

fwd(q;a):f v da, forall y € C(E)
E E

Let (u, a;) € Wi(2). The side of (u, a;) is the measure
a, = v1a1|39+ U VNanlaQEL,‘(aQ),

where a;|sq is the restriction a; on 3Q.

We shall define the measures @i, ..., av by
a; =0 on 3Q
' . i=1,..,N.
d,~=a,~ on Q} ! 1,

The inner trace 8° of (u, a;) is defined as the trace of the function (u, @). (In [1]
it is proved that (u, @) belongs really to W,).

Remark. Itis easy to see that a:|o and hence also B° are uniquely determined
by the function #. On the other hand the side a, of (¥, &) and the trace 3 are
independent of u. The measures a;|sq are independent of u but they must satisfy
the following conditions:

Theorem E. Let 8, 8° and a, be the trace, the inner trace and the side of (u, a:).
Then there holds

ailsa=via,, i=1,..,N,
B=pB"+a,

and the inner trace B° belongs to L,(3R).
Let :

V4
x>
-h

K"(x)=’—‘%ne -t for |x|<h

K"(x)=0 for|x|=h

where x is chosen in order that K"(x) dx =1 holds.
. En

Theorem F. Suppose (u, a:;) € Wa(R2) such that the trace  of (u, a:) belongs to
L,(3R2). Let 2*>5 Q be a bounded domain with a sufficiently smooth boundary.

213



Then there exists the function (u*, a*)e W,i(.Q*), which is ,,the extension‘‘ of
(u, a;) in the following sense :

u*=u on Q
a¥*=a; on Q

a*=2a, on ag} i=1,..,N

Then for the function (for h >0 small)
m.(x):f K'(x—y)u*(y)dy, xeQ
e

there holds u, —— (u, a:) in W.(2) and

Il ets [ w2 - I(u, a)|lw, -

Very often we shall write |[u], ||u|l’ istead of |lu||wx, ||ul|lwx respectively, for
ue W; (also for u e Wi(Q)).

§2. The abstract calculus of variations over the space W1 and W/,

Let J(u) be a functional on the space W3(£2). We shall try to solve the following
variational problem: to find the minimum of the functional J on the set of all the
functions u satisfying the boundary condition u —uo€ W%, where the function
uoe Wi is fixed.

We shall consider only the functionals J satisfying the following conditions:

A) the functional J is weakly lower semicontinuous in this sense:
if u,, u € Wi, and u,—u (in Wy), then J(u)< lim J (u,),

B) the functional J is coercive, i. e.
T =9,
where 9(¢) is a nondecreasing function in (0, ),
d(t)> o fort— o,
C) the functional J satisfies the condition
J(u)s C(A+[Jullwr).

The unit ball of the space W3 is not weakly compact, hence, if we want to use
direct methods, we must consider our variational problem on the space W,'f(Q).
First, we must suitably extend the definition of the functional J on the space Wi;.
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Definition 1. If i € W, we define
F(@)=F(a, Q)=inf_"l_i_:1%1(u,., Q),
where the infimum is taken over all the sequences {u»} € W4 such that u,—i in
Wi.
Lemma 1.

i) Suppose A),
then F(u)=J(u) for all ue W4.
ii) Suppose B),
then F(2)=0(||u|lwx) for all i € W.
iii) Suppose C),
then F(2)< C(1+ ||it|lwx) for all i e Wi

Proof. Assertion i) is evident.
ii) Suppose u, e W1, u,—a,

then [|a < lim [lu, |’

and lim J(u,)= lim ¢(l|a]’),

hence the desired inequality must hold for F(i2).
iii) From Theorem C it follows that there exist functions u, € W% such that

u,—1, ||u.|= Cll4],

hence F(2)< lim J(u,)<|C(1 +lim [lu. )< C(1+ [|l).
Remark. It is clear now that the value of F(&) is finite for all & e W&.
Lemma 2. Let us denote Kx ={ti € Wi ; ||i||< R}. There exists a functional

o (1) on Wi (o*(x, y)=o0(x —y) is a metric) such that for i, @i, @,, ... €K there
holds

f,—0 in Wi iff o (un —u)—0.

Proof. For & =(u, a,—)|,-|=keW,'f and for @ ={q:; |i|< k, . e C(L2)} let us
denote

7 = D'u. @ dx + f da;.
(i, @) |ils§k:—lL u. @ “Z,katp:

Suppose that {@“™}m-: is dense in [C(£2)]"' (where x’ is the number of all
multiindices i, |i|< k).
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Let us denote

(M)>

R S (X
0(@)= 3 5w 1+ [(u, @™

If 0 (11,)— 0, then (i, qa(’"’)—:: 0 for all m and because &, € Kr, we have 4,—0.

Suppose i,—0, i, € Kg, then (&,, ™) — 0 for all m and by the limit process
we obtain g (é.)—0.

Lemma 3. Suppose B). Then for all it e W; there exists a sequence of functions
u, e Wi, n=1, 2, ..., such that

u,—t in Wy and J (u,)— F(&).

Proof. By Definition 1 there exists functions wx € Wi, n,k = 1,2, ... such that
wZ—k——: 4 in Wk and
J(w2)<F(12)+% foralln, k.
From B) we obtain

lwel's R, foralln, k.

From w; > @, by Theorem B on imbedding, we have

. k—1
wi —> uin Wi~ foralln,
k—o

where 4 = (u, o).
Hence there exists a sequence of integers k;, k2, ... such that

[|Wkllwi—<|lu|lw<1+1 foralln, k=k,.
From this we obtain the estimate
1 Iwillwx <R foralln, k=k,.

Hence there holds

Q(wl‘—u)k—> 0 foralln,

where g is the functional from Lemma 2.
For all n there exists /(n) such that for u, =wim) there holds

1 |
o (un —u)<;, J(u,.)<F(u)+;.
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From (1) we obtain

u—it, lim J(u,)< F().
The opposite inequality lim J(u.)=F (@) follows immediately from Definition 1.

Theorem 1. Suppose B). Then F is weakly lower semicontinuous on the space
Wi, i.e., if

ln, it € W, ll,—i in W then F(4)< lim F(d,).

Proof. Suppose i, i, € W, fn—10.
By Definition 1 there exist functions wy e wh (n,k=1,2,...) such that

k—>c0

Wk — Un, ](wﬁ)<F(12,,)+’%, foralln, k.

First, we must estimate the norms ||wg||w,*.

There is no loss of generality in assuming that F(éi,)< R, (for we want to prove
the inequality F(&)< lim F(u,)). Hence J(wi)< R,+1 for all n, k.

From B) we obtain ||wi||’'s R..

Since @,—1, we have by Theorem B that

. k—1
u,—u in Wy

(where G, = (Un, o), 0= (u, a;)).
Hence ||un||wr-'< R for al n.

From w; - ii. we obtain by Theorem B on imbedding

. k—
Wi —= Uy in wi™,
hence
[[willwk-1< Rs+1 foralln,k=k,,

where {k,} is a suitable sequence of positive integers.
Hence we have

|[willwk<s R foralln, k=k,.
With the functional o from Lemma 2 there holds
o(ita, —0)—0, o(wk—i,) —0 foralln.
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For all n there exists e(n) such that for w, = wc there holds

1 . 1
— 1 — < " —
o(wa u,.)<n, J(wa)s F(a )+n

and hence
o(wn—0)s 0(n — )+ 0(Wn — i) — 0.

From ||w.|lw,x< R it follows w,—#, and

F@a)s _l_i_rp_J(w,,)Sli_m’F(ﬁ,.)+’lT]=lim F(a,).

Theorem 2. Suppose B). Let itloe Wi
Then there exists it e W,; such that

F(@)= min F(d), feio+ Wi.

L o
U elg+ Wi

Proof. We can find a minimizing sequence {i,}. From B) we obtain ||4.]|'s R,
for all n and by Theorem D it is clear that

|, |lw < R .

The ball Kr is weakly compact by Theorem A and it is sufficient to use Theorem 1.

Remark. Choose a boundary condition uoe W'. Let & be the solution from
Theorem 2. The question is whether

F@)= inf J(u).
ueuo+€Vk

We must suppose A) (in order that F(u)=J(u) on W), but it is not clear if it is
sufficient. This is a consequence of the definition of F. In this definition we want
only u, €e W, u,—a and we do not require u, — it € W,. This is a reason why we
shall define a new functional F,.

Definition 2. Let us denote
W= {ii e WE; thereexists ve Wi, i —veW,).

The space Wi is thus the space of functions from W which have the same traces
(i. e. the traces of derivatives up to the (k — 1)-th order) as some function from Wi
In the case of k = 1 the space W, is the space of functions, the traces of which are

from L,(392).
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Definition 3. Let us define for it € Wi,
Fi(d)=inf {lim J(u,); for all u,e W up—i, u, —u € W

Clearly Fi(u)=F(u). If u ¢ Wy, then there exists no sequence with the desired
properties and the definition has no sense.

Lemma 4.

i) A) implies Fi(u)=J(u) for all ue W+.

ii) B) implies Fi(2)=9(||d|") for all ue Wy,
iiiy C) implies Fi(i)< C(1+|@l)).

Lemma 5. Suppose B). Then for all it e W there exist functions u, € W’ such
that

Up — it € Wi, uy—i1, J(un)— Fi(22).

Theorem 3. Suppose B) and i,, ie Wi, 4, —iie Wk, n=1, 2, ... Then from
t,—u it follows that

Fi(@)< lim Fi(d,).

n

Theorem 4. Suppose B) and let uoe W4.
Then there exists it € W, such that

Fi(1)= min F,(¥), 4 € uo+ W

U €ug 4 M
Moreover,

Fi(@)= inf J().

0
v €ug+ Wk

Proof. The proofs are the same as for the functional F. The only difference is
that the boundary condition is satisfied for all the considered sequences. This
allows us to simplify the parts of proofs in which we prove inequalities of the type
|lwkllw,x< R. Here it is sufficient to use Theorem D on equivalents norms. In the
proof of iii) from Lemma 4 we must of course use Theorem C.

Remark. There is now a new problem if F = F; holds on Wj. In [2] it will be
proved that F=F,; on W, in the case of k=1 if the functional J has the form

; ou ou
J(u)—Lf(é-x—l,...,axN)dx,
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where f is a continuous nonnegative convex function for which there holds

f(p)<C1+|pl), p € En.

Let us suppose A), B), C).
The assertion F=F, on W, has the following important consequences :

1) inf F(u)= inf , uoe W fixed.

u€eug+ Wu u €ug+ Wi

2) If u e Wi is the solution of our variational problem over the space Wi:

J(u)= min J(v),u€cuo+ W1, uoe Wi fixed,

v €U0+ Wi

then u is the solution of our variational problem over the space W, as well :

J(u)= minﬂ F(v).

ﬁeuo.;wlf

§ 3. The variational problem of the type of the minimal surface

Nov we shall consider the functional J in the form:

@) J(u)=fg f(x, D'u) dx, |i| <k, u € W".

We want to find some sufficient conditions for the functional J to satisfy the
conditions A), B), C) from the last paragraph.
A’) 1) f(x, &) (li|s k) is a continuous function in all variables and a nonnegative

one
2) for all x, & the function f is convex in the variables & (for 0<[i|< k)

3) if k>1, suppose that f(x, &) is independent of &, and that there holds
lf(x, E)—f(y, E)< A(lx—y]) (1 +f(x, &)),

where A(t) is a continuous function at 0 and l‘u{)l A@)=0.
B’) f(x,&)=C Z |E/| — C; for al x, &, where C;, C,>0.
lil=k

C) f(x,&)sC(l+ Z |&]) for all x, &.
lilsk
It is clear that B’) implies B) and C’) implies C). We prove that A’)

implies A). _
In the case of k = 1 the assertion is a consequence of the theorem from [4].

In the case of k>1 it is possible (if we suppose A’)) to prove the same
Theorem as in [4] by the same method.
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Now we can apply the results from §2 to the functional (2). Hence we have the
existence Theorem for the extended functional F over the space Wi for all domains
€ with a sufficiently smooth boundary and for all boundary conditions u,e W7.

§4. The uniquenéss and the example

In this paragraph we whall assume that k =1 and that the functional J has the
form

J(u, Q)= f X, u, au’ du

ox; axN) dx,

where the function f(x, &o, &1, ..., &) satisfy the conditions A’), B’), C') from § 3.
In [4] J. Serrin defined another extension F(u, ) of the functional J(u, Q).
Susspose that {Q,} is a sequence of open sets Q, = Q such that for all K =

compact there exist no such that Q, oK for all n =no.

Suppose that u € L1,,.(£2) (the space of local intergrable functions) is fixed and
that ui, Uz, ... € C*() are such functions that u, — u in the space L1,..(€2). Then
we shall define '

F(u, Q)=inf1i_nl](un, Qn)9

where the infimum is taken over all the sequences {u.}, {L2.} with the properties
required above.

From Theorem 1 it follows immediately that for & = (u, a,) € W,(Q) there holds
F(u, Q)<IF(a, Q).

Theorem 5. Let it = (u, a;) be a function from the space W.(Q) the side a, of
which (see §1.) is equal to zero (i.e. |a,|(32)=0). Then there holds

F(a, @)=F(u, Q).

Proof. By Theorem E the inner trace B° of u is from L,(3Q) and from the
formula 8 =B°+ a, we see that the trace f of & is from L,(3€2) as well. Hence we
can apply Theorem F and for the functions

w@)= [ K'x-yur)dy.xe@
Q* :
we have
Uy —— i in wWi(Q),
where (u*, at)e W,(2*) is a suitable extension of Theorem F.
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Let us denote
S, ={xeQ*;dist (x,3Q)< h}.

From the Green theorem (see Def. A) we obtain that for 4 > 0 small there holds

un(@)= = [ K"(x=y) dat(y).

We want to prove that J(ux, Sv)— 0. By the assumption C') we have

J(un, S,,)=J f(x, un, un,) dx<
'Sh

. N
$C(meas S;.+f [un| dx + > | |ung| dx).
Sh

i=1 Jsn

The first and second term clearly converge to zero for A — 0. The third term is
estimated as

Lluh,,.ldxsj; L K"(x —y) d|a*|(y) dx<

< j 1-dla*|(y)=|a|(Sm) — 0
San h—0

For S,,—93Q and |a*|(3Q)=0 (see Theorem E and F).
Hence
F(a, Q—)S ]_ir_n](u;,, Q)S l_llT_l [J(u;., Q —S;.)+J(u;., S;,)]S LJ(uh, Q_S;.).

But in Serrin’s work [4] it is proved that
F(u, Q)=!‘ln'(l) J(u;., Q—Sh).

Now we are able to prove a partial uniqueness for the solution of our variational
problem.

Theorem 6. Suppose that the function f(x, &o, &1, ..., En) satisfies the conditions
A'), B"), C') and in addition let f be strictly convex in the variables &, ..., &x.

Suppose that uoe Wi(2) and it, € W,(Q) are two solutions of our problem, i. e.
Uo, thheii + W, it e Wi,

F(uo, @)=F(i;, )= min_F(3, Q).

Vel 4+ Wy

Suppose further that the side of i, is equal to zero. Then uo= ;.
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Proof. Let usset i, =(1—t)uo+ tit,, 0< t< 1. The functions &, have clearly the
sides equal to zero and by preceding theorem we have (i, = (u, a.))

F(u, Q)=F(4, 2), Ost<1.

Suppose (u, a;) € W.(). We can decompose (as in the work [2]) the measure a;
into absolutely continuous and singular parts with respect to Lebesgue measure.
The density of absolutely continuous part of a; we denote u,, and we set

J(u, Q)=J' f(x, u, u,) dx

(it clear that this definition is correct for u e Wy).
In the work [4] there are proved (with assumptions of Theorem 6) two following
assertions:

I. Suppose that for some ¢, 0 <t <1 there holds
F(u,, Q)= (1—t)F(uo, Q)+ tF(u, 2).

Then uo,, = U1y, a.e. in ,i=1, ..., N. .

II. There holds
J(ul, Q)SF(ul, Q)

with equality if and only if the derivatives ai|e of u; (in the sense of
distributions) are absolutely continuous with respect to Lebesgue measure.

The assumptions from I are satisfied here for u, and i, are the solutions of our
variational problem, hence we have

Uoy = Uiy . €.I0 Q, i=1,..,N
and from this it follows that
J(uo, 2)=J(u,, Q).
By II we have
F(uo, 2) = F(tto, 2)=J(tto, Q) =J (1, Q)<F (w1, 2)=F(its, Q),

but F(uo)=F (i), hence from II it follows that u, is from Wi(Q).
As the side of &, is equal to zero, we obtain by Theorem E a.:("Q2) =0, hence

(see §1) au(E) = f Ui, dx for all E, which implies &, =u,e Wi(£). Since
E

~ o ~ A :
Uolsa=1itlsa, B=B"=illse and uo ,=u, ., we have uo=u, =, and the proof is
complete.
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Remark. In the following work [2] there will be proved a similar theorem on
uniqueness, but without the assumption that the side of u, is equal to zero. Of
course we will have to suppose more about the function f. A general theorem on
uniqueness (i. e. without the assumption that one solution is a priori from W3)
cannot be proved in the usual way, because the functional F need not be strictly
convex on W, in the case when f is strictly convex. This assertion, with the
example, will be introduced in [2].

Example. Suppose Q =(0,1)%(0,1), g(x:)e C5(0,1), x =(x1,x2) and L=
(0,1) x{0} = {(x1, x;)€Q2; x,=0}. We define

g(xi) (1—nx;) for O0sx;<'1, O0<x.< %
u,.(xl,xz)={

0 for 0< x;s=|1, %s x,< 1

Clearly u, € Wi. Now we define the function (u, ai, az) € Wi(Q) by the following

way _ _
u=0o0nQ, a;=00onL and a,=00nL —L,

a(E)= —j g(x;) dx, for all EcL, E is a Borel set. The measure a. can be
E

equivalently defined by the formula

J'}P(x) da,= —Jol(p(xu 0)g(x:) dx;, forallg eC(Q).

Q

We prove that u,—(u, a;) in W(£2), which impliess (see § 1) (u, a1, a2) € W.(€2).
For all ¢ € C(22) we have '

f Un@ dx——>0=fu(pdx
Q n—o o j
fu“‘wd‘_)0=f @ da,
Q n—o a

1
f lp dx —> —f g ()P (s, O)dx1=j @ das,
Q n—» 0 a

which impliess u,—(u, ai, a,). The function g is the density of the measure a.|.
(with respect to the one-dimensional measure dx;). The side of the function (u, a,
a,) equals a, = —a;|L.=g.

The inner trace 8° (see §1) of (u, a1, a,) equals zero since u =0. The trace 8 of
(u, ai, a;) is obtained from the formula

B=B°+a,, B=g on L, =0 on 32 —L.
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Now we investigate the functionals J(u.) and F((u, a;)), (J is defined in the
introduction). We have the estimates

1 1/n
J(u,.)=1—l+J J [1+un, +ui,]"?dx=
n o Jo

1 1 1/n 1 1 1
21———+Jf |u,lx2|dx=l——+f g(x,)dx1—>1+j lg| dx,.
n 0 JO n 0 n—o 0

On the other hand we have

1 1 1/n
J(un)sl——+ff (1+ [ty | + |t |) dx <
n o Jo
1 1/n 1 1
sl+f |g’|dx1-j |1—nx2|dx2+J |g|dx.———>1+f lg| dx,.
0 0 0 n—o 0

1
Hence J(u,) —> 1 +f |g| dx,. Since u.—(u, ai, a,) in W, and u, have the same
n—® (1]

traces as (u, a;, a;) we conclude
1
1< F((u, a))<IFi((u, ai))< 1+f lg]| dx;.
o

(The first inequality follows from the estimate J(u)=1). From the results proved in

[2] we easily deduce
1

F((u,al, az))=1+f |g| dxl.
0

In the formula for the surface of (u, a, a.) the first term corresponds to the surface

1
of Q and the term f |g| dx, corresponds to the surface of the side.
0

Remark. The boundary of the domain  (from the example) is not of the class
C', but all the considered functions are equal to zero in a neighbourhood of vertices
(uniformly). Thus all the results remain true. '
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