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(Communicated by Tibor Katrindk)

ABSTRACT. For any semigroup (S,-) the relation: @ < b if an only if a =
xb = by, ra = a for some z,y € S! is called the natural partial order of S (see
[8]). The relationship between the structure of S and certain properties of its
natural partial order is investigated: trivial or total order, principal order ideals
defined by 2-related elements, compatibility with multiplication, primitive or
completely simple or group congruences, retract extensions of regular semigroups,
and strong semilattices of semigroups.

1. Introduction

For any semigroup (S,-) a partial order was defined in [8] by
a<b <<= a=xzb=by, za=a for some z,y € S!,

the so called natural partial order of S. Its restriction to the subset Fg of
all idempotents of S (if it exists) coincides with the usual ordering: e < f
if and only if e = ef = fe. If S is a regular semigroup, then the relation
< on S is equal to the natural partial order found by Hartwig [5] and
Nambooripad [10], independently:

a<b <= a=eb=1>bf for some e, f € Eg.

If S is group-bound (in particular, periodic), then its natural partial order has
the same form as that for regular semigroups (Higgins [7; 1.4.6]).

AMS Subject Classification (1991): Primary 20M10.
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HEINZ MITSCH

By [8; Theorem 4, Corollary] for an arbitrary semigroup S and its natural
partial order the following are equivalent:

(1) a<b.
(i) a=xb=by, ay = a for some z,y € St.
(iii) @ =zb=0by, za = a = ay for some r,y € St.

In the following, < will always denote the natural partial order of the semi-
group S.

It is the purpose of this note to study the natural partial order with respect to
the structure of the semigroup and to provide some applications of this concept.
In Section 2, the semigroups totally ordered by < are characterized. Furtler.
it is shown that for every semigroup S the principal order ideals defined by
any two Z-related elements of S are order-isomorphic. This vields an exten-
sion of the Corollary of Green’s lemma on the equipotency of the J#-classes
of such elements (enlarged by the corresponding order ideals). Section 3 deals
with the problem of (right-, left-) compatibility of the natural partial order with
multiplication. After two criteria for compatibility, some classes of semigroups
are shown to have this property in general: commutative or centric semigroups.
inflations of rectangular, periodic groups, or monoids which are strong semi-
lattices of trivially ordered semigroups. Section 4 contains three applications.
First, the least primitive congruence is investigated. showing that for certain
semigroups this relation can be defined by means of the natural ordering {for
regular semigroups, see Nambooripad [10]). Then retract exteusions of
regular semigroups are characterized by an order-theoretical property (general-
izing a result of Petrich [11]). Finally, order properties of strong semilattices
of semigroups S, satisfying some mild conditions are proved (for the case that
each S, is regular and simple. see Petrich [12]).

2. General properties

First we make some elementary observations concerning idempotents and
regular elements (if they exist) —see also Higgins [7: 1.4.4.

LEMMA 2.1. For every semigroup S the following hold:

(i) a<e,ae 8, ec Fg imply a€ Es;
(i) a<b, be S, b regular imply a reqular;
(i) a<b, a,be S, a reqular imply a =eb=hbf. c.f e Eg. ¢ f.
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Proof.

(i) a<e, a€S, c€Es = a=zxe=¢ey, zra=a=ay (z,y€S")
== a'=ure-ey=re-y=a-y=a => a€ Eg.

(i) a < b, b regular = a =ab="0by, a =ay = for every inverse
element b of b: a =ay=xb-y=x-bb'b-y=1ab-b -by =aba = a regular.

(i) a <b, a regular = a=xb="by, ra=a=ay (x,ye S') =
for every inverse element a’ of a: a = aa’a = aa’ - b = eb for ¢ = aa’x € Ey;
similarly. a = bf for f == ya'a € Es. Finally, e# a since ¢ =a-a'z, a =¢-b,
and «.Z f since a=b-f, f=ya'-a;hence e? f.

Remark. The natural partial order is trivial if all elements are incompa-
rable (note that the zero, if it exists, is the least element). For example, this
occurs if

(1) S is weakly cancellative (i.e. ax = bx, xa = xb imply a =b);

a<b = a=ab=by, ra=a=ay (xz,y €S, otherwise a =b)

—= yr-a=ya=yr-b, o« -yr=ar=b-yr = a=>».
(2) S is right- (left-) simple;

a<b., a®b = a=xb=by, ra=a, b=az (z.y,z€ S")

—> a=axb=r-az=xa-z=a-z=25b.

(3) S is right- (left-) stratified (i.e. a € abS for all a,b € S);

if S contains an idempotent, then by Clifford-Preston [2; The-
orem 8.14], S is completely simple, hence by Petrich [13; IV.2.4],
weakly cancellative, thus (5, <) is trivially ordered by (1);

if S is idempotent-free, then by Clifford-Preston [2;
Lemma 8.15], the equation za = a cannot hold for a,x € S thus
a < b is impossible in S. (Note that by [2; Theorem 6.36], S is
right-stratified if and only if S is simple and contains a minimal right
ideal.)

The class of semigroups having a trivial natural partial order is not known
vet. But in the class of all F-inversive semigroups S without zero (i.e. for every
a € 85 thereis @ € 9 such that az € Eg ), the trivially ordered semigroups are
exactly the completely simple ones (see Mitsch [9; Proposition 3]). Note that
every regular and every periodic (in particular, finite) semigroup is E-inversive.
Thus we have

PROPOSITION 2.2. A periodic semigroup s trivially ordered if and only if il
is completely simple. In particular, a finite semigroup 1s trivially ordered if and
only if it is simple.
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For the other extreme, where all elements of the semigroup S are comparable.
i.e. (S, <) is a chain, we have the following

THEOREM 2.3. A semigroup S is totally ordered with respect to its natural
partial order if and only if S is one of the following:

(i) S=EFEs and (Es,<) is a chain,
or

(i) S = EsU{a} for some a ¢ Es such that ca = ae = ¢ for cvery
e € Es, and Eg is a chain with a greatest element a”

Proof. If S isof type (i) or (ii), then (S, <) is a chain since in the second
case e < a for every e € Eg.
Conversely, suppose that (5, <) is totally ordered. Then we have:
(1) ef = feforall e, f € Fg:
e< f or f<e impliesthat e =ef = fe or f = fe =c¢f:
thus, ef = fe.
(2) a® € Eg for every a € S:
if a <a?,then a =2a?, za=a (x € S') and a® = ra-a = ra? = a:

2:

. : . 2 o
if a® < a, then a® = za, za? = a® (x € S') and «? - a? = ra-a* =

za’-a=a%-a=za-a=xa®>=a’.
(3) e<a forevery e€ Es, a ¢ Eg:
if a <e, then a € E5 by Lemma 2.1.(1).
(4) ea=ae=ce forall e € Fs, a ¢ Fg:
e < a by (3), hence ¢ = fa = ag for some f,g € F's by Lemma 2.1.(iii):
thus, fe =e, and by (1), ef = ¢; consequently. ¢ = e =¢- fa = ca.
and similarly, ae =¢.
(5) [S\Es|<1:
if a,b ¢ Es and a < b, then a =x2b=0by, za=a (x.y € S):
thus z?a = za = a; since 2 € Eg by (2), it follows that ?a = »
by (4), and a = z?a = 22 € Eg, which is a contradiction.
5| =0, then S = Eg, and (Egs, <) is totally ordered. If |[S\Es| = 1.
then there is only one a € S such that a ¢ Eg; by (4). it follows that ea = ae
= ¢ for every e € Eg. Finally, a®> € Eg by (2), and a® is the greatest element
of Es because ca = ¢ implies ea® = ea = ¢ and a?c = ¢ for all ¢ € Eg.

Bl

For any semigroup S the partially ordered set (S, <) shows some remarkably
strong symmetries; for any a € S the principal order ideal defined by « is the
set (a] ={z eS| z<a}.

PROPOSITION 2.4. Let S be a semigroup, and a,b € S such that a 2b: then
there is a bijection from (a] onto (b].
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Proof. We will not give the details of calculations here, since the result
follows from Theorem 2.6 below. But we will indicate a bijection because we will
need it later. Since a 2 b, there is some ¢ € S such that a #Z ¢ and ¢.Z b. Hence
there exist s.t,u,v € S' such that as = ¢, ¢t = a, uc = b, vb = c¢. Then the
mappings

v (a] = (b], 2p=uzs and Y: (b] — (a], xyp =vxt

are mutually inverse functions.

The last result leads to the following extension of a corollary of Green’s
lemma. Recall that this states that for any semigroup S and every pair of
“-related elements a,b € S there is a bijection between the 5#-classes H, and
H;, in S. Enlarging the J#-class H, by (a] we observe that H, N (a] = {a}
for any a € S. In fact, by the Remark (2) above, all elements of an arbitrary
A~ or L -class, hence of any #-class of S, are incomparable. Thus, extending
the bijection f: H, — H, given by the Corollary of Green’s lemma (see for
example [2; Theorem 2.3]) by the bijection ¢: (a] — (b] specified in the proof
of Proposition 2.4, we obtain

THEOREM 2.5. For every semigroup S and all a,b € S such that a 2 b there
is a bijection between H, U (a] and Hy U (b].

Remark. It is interesting to note that f and ¢ above are given by the
same elements by which each z € H, or x € (a] is multiplied on the left and
on the right, respectively.

By Proposition 2.4, the principal order ideals defined by two Z-related ele-
ments of a semigroup are equipotent. Since these ideals are also partially ordered
sets, 1t is natural to ask if they are even order-isomorphic. In case that e, f are
¢-related idempotents of a semigroup S, Fares [3] showed that indeed, (¢
and (f] are order-isomorphic. For arbitrary %-related elements of a regular
semigroup this was proved by Hickey [6]. P. R. Jones generalized this prop-
erty of principal order ideals to arbitrary semigroups, in fact proving a more
general result. T am grateful to him for providing me with the following proof.

THEOREM 2.6. (P. R. Jones) Let S be a semigroup, and a,b € S such
that @ 2b. Then there exists ¢ € S such that aZc, ¢ b, and there are
sclou v € SYosuch that as = ¢, et =a, uc =b, vb=c. Let o,: S'a — S'c,
ro. = as. o0 Ste — Sta, xo; = xt; then

(1) o5 and o, are mutually winverse order-isomorphisms; dually for the
left-translations A, : ¢St — bSYt, A\, : bSt — ¢St ;
(i1) the partially ordered sets  |J (a'] and |J (V] are order-isomoeiphic;
a'eH, b’eH,
in particular, (a] and (b] are order-isomorphic.
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Proof.

(i) By Green’s lemma [4], os and p; are mutually inverse bijections he-
tween the principal ideals S'a and S'c of S. These mappings are also order-
preserving; in fact:

Let z,y € S'a such that = < y. Then = = py = yq, pr == (p.q € S').
Thus, xs = p-ys = yqs, where yqs = yst - gs, since y € Sla implies yst =
y(os o 0r) =y. It follows that s =p-ys =ys-z (z € S'). and p-rs = »s.
That is, zs < ys, and zps < yp,. Similarly, for o;, Ay, As.

(i) Let d € U (a']; then d € (a'] for some @’ € H,. Thus, d < a’ and
a’€H,

Sla’ = S'a. Hence d € S'a’ = S'a, so that by (i) - with d instead of .« and
with ' instead of y — ds = dps < a’p, = a's.

We next show that a's € H. for ¢ = as (specified in the statement):

o Ha = d=ra=ay (z,yeS') = d's =ras = ays.

where ays =ast-ys=as-z (z€ S') = d's =rc=rcz:
similarly,

ad = a=wd =dr (w,r€S') = as=wa's=drs.

where a'rs =da'st-rs=a'sm (me S') = c=w-ds=a's -m:
consequently,

a's Hc.

Thus we have proved that dos € (] for ¢ = a’s € H,.; it follows that

U (a’])gs QCIQHC(C’]. Similarly, < U (c'])gt c U (].

a'€H, c'eH,. a’€eH,

Applying o5 to the latter inclusion we obtain by (i) equality in the first
inclusion. Dually, using the mappings \,, A, we get

The composed function g,0)\, thus yields the desired order-isomorphism. These
arguments applied to a single order-ideal (a] (related with (c]) and (b] (related
with (c]) give again the order-isomorphism g o A, since as = ¢ and wuc =b.
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3. Compatibility

A useful property of the natural partial order would be its compatibility with
multiplication:

a<b => ac<bc and ca<cb forall ceS.

But already for regular semigroups these implications do not hold, in general.
Nambooripad [10] proved that for a regular semigroup S the natural par-
tial order is compatible (on both sides) if and only if S is locally inverse (that is,
cach local submonoid eSe, e € Fg, of S is an inverse semigroup). The regular
semigroups satisfying the one-sided implication were characterized by Bly t h -
Gomes [1] as those S for which in each local submonoid eSe, e € Eg, every
Y- (#-) class contains exactly one idempotent. — For general semigroups we
give the following characterization of compatibility which is quite close to the
definition.

PROPOSITION 3.1. For a semigroup S the natural partial order is compatible
on the right with multiplication if and only if for all a,b,z,y € S such that
r%a = ra = ay there is some z € S* such that ayb = abz.

Proof.

Sufficiency: Let a < b in S; then a = b = by, za = a (x,y € 5). Thus,
%b = ra = a = zb = by, and by hypothesis, for each ¢ € S there is some z € S*
such that bye = bez. Hence, ac = z - be = byc = bc - z and zac = ac; that is,
ac < be.

Necessity: Let a,b,z,y € S such that z2a = za = ay. Then the element
¢ = ra = ay satisfies ¢ < a (since zc = z%a = za = ¢). Thus ¢b < ab by
hypothesis, and ¢b = ab - z for some z € S'. But ¢ = ay implies cb = ayb, so
that ayb = abz.

COROLLARY 3.2. For every commutative semigroup the natural partial order
is compatible with multiplication.

COROLLARY 3.3. For every semigroup S which is an inflation of a rectangular
band, the natural partial order is compatible with multiplication. More precisely,
a <b in S implies ac =bc and ca = cb for all c€ S.

Proof. By Petrich [13; [I1.4.10.4], S satisfies the identity zyz = zz
(for all @,y,z € S). Consequently, a < b in S implies a = b =by (z,y € 9)

and ac = by - ¢ = be; similarly, ca = c¢-xb = cb.
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Remark. Note that < is not trivial if the inflation S of the rectangular
band B is not trivial. In fact: let S = (|J Za,, * ). Za the inflation of o € B:
then o < a foreach a € Z,, a # a, because o € Fg and a = ca = axa = axa.

For periodic semigroups, Proposition 3.1 takes the following form:

PROPOSITION 3.4. Let S be a periodic (in particular, finite) semigroup. Then
the natural partial order of S is compatible on the right if and only if for all
a,b,z,y € S such that xa = ay there is some n € N. = € S' such thut
ay"b = abz.

Proof.

Sufficiency: Let a < b in S; then a = xb = by, vra =a =ay (r.y € 5).
Hence ac = x - be = byc for every ¢ € S. Also a = ay = by®> = by*. and
ac = byFe for every k € N. Since xb = by, by hypothesis there is n € M and

z € St such that by"c = bez. Thus, ac = 2 -be = be - 2 and & - ac = ac: hence
ac < be.

Necessity: Let a,b,x.y € S such that za = ay. Then 2% = rra = ray =
za-y = ay® and rFa = ay® for every k € N. Let n € N such that »" = ¢ € .
Then the element ¢ = ea = ay™ satisfies ¢ < a. Thus, by hypothesis. ¢b < ab.
Hence ¢b = ab - z for some z € S'. But ¢ = ay” implies that ¢b = ay”b: i
follows that ay"b = abz.

Remark. Note that the condition in 3.4 is suflicient for right compatibility
in every semigroup. Furthermore, it can be formulated in the following way: for
all a,b,r,y € S such that za = ay there is some n < . = € St such tha
y* =e € Fs and aeb = abz. This form is more appropriate {or its application
to the more general inflations of rectangular groups:

COROLLARY 3.5. Let S be a semigrovp which is an inflation of a rectan-
gular, periodic group. Then the natural partial order of S is compatible with
multiplication; more precisely, a < b implies that ac = be and ca = cb for cvory
ces.

Prool. First note that S is a periodic semigroup since the group ¢ in
the rectangular group T = R x G (R a rectangular band) is periodic: « £ 5 =
U7y = a € Z, for some o = (e.g) € T == i ¢g" = 1. a" =" =
(c.g") = (e,1) € ET = FEg. Let a < b in S; then by Remark in Section 1.
a=cb=>bf forsome e, f € Eg. Now. by Petrich [13: IV.3.12.5. S satishies
the identity xey = xy (for all x.y € S, ¢ € Egj. lt follows that ac = bfc = be
and ca = ceb = c¢b.
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Remark. Again, < on S is not trivial if the inflation of the rectangular
group T'= R x G is not trivial: o < a for every « € T, a € Z,, a # «,
because a = (e,g) = (e,1)(e,g) = (e,9)(e,1) = a = (e,1)a = ale,1) =
a=(c.l)xa=ax(e, 1) with (e,1) € Fs = a <a.

In the following, some further classes of semigroups are specified for which <
is compatible on the right or left or both.

PROPOSITION 3.6. Let S be a semigroup such that Sa C aS for every a € S.
Then the natural partial order of S is compatible on the right with multiplication.

Proof. a<b = a=zb=by, za=a (z,y€S) = ac=1z-bec =
by-c=b-yec=bcz (z€S), r-ac=ac = ac < be.

COROLLARY 3.7. For every centric semigroup S (i.e. aS = Sa for every
a € 8) the natural partial order is compatible with multiplication.

Examples of semigroups satisfying the condition of 3.6 are given by semi-
lattices of right-simple semigroups (see Petrich [13; 11.4.9]). Note that by
Remark (2) in Section 2, the natural partial order on a right-simple semi-
group is trivial. (For further properties of centric semigroups see Clifford-
Preston [2; Theorem 10.29]). Considering strong semilattices of trivially or-
dered semigroups we first show

THEOREM 3.8. Let S be a strong semilattice Y of monoids S, (a € Y).
Then the natural partial order on S is compatible on the right with multiplication
iof and only if the natural partial order <, s compatible on the right in each S,

(e l).

—

Proof. We first prove: @ < b (a € So, b € Sz) if and only if o < 3,
a <, bpy.a, where @y ,: Sz — S, is the given structure homomorphism.

If a=b,then a =0 and a =b=by,..Let a <bin §; then a = zb = by,
ra =a = ay for some x € S, y € Ss. Since a = b € S5, we have o = vj3;
similarly, «« = 36; thus, o < 8 and a < ~. It follows that

0= 1b = (2 21 (b2ys) = (207,0)(bppa) = wlbpsa)  with we S, .

a = by = (bogps)(ypsss) = (bos.a)Ypsa) = (bps,a)z with z€ S,

=

wa = (1o, .0)a = (29y,0)(@0a,a) = (T0y.ay) (@00 ay) = 20 = a.

Hence o < 3, and a <, bpg.a in S,. Conversely, let « < 3 in Y, and
a <, bpya. Then a = w(bpga) = (bppa)z, wa = a for some w,z € S,
(since S, is a monoid). Thus, a = (Wa.o)(b@s.a) = (WPa.ap)(bos.as) = wb;
similarly, @ = bz. Since wa = a, it follows that ¢ < b in §.
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By the argument above, the restriction of < on S to S, coincides with
<, on S, for each « € Y: for, if a,b € S,, then a < b in S if and only if
a <, bpa.a =b in S,. Thus for the proof of the statement. we onlv have 1o
show sufficiency.

Let a <bin S and ¢ € S. Then a € Sy, b € Sz, ¢ € .5, sayv. and thus
a < 3 and a < bpg in S, . Applying the homomorphism 24.a~ to the last
inequality we obtain:

o

APy < ([)(P;/‘»’,a)@a.n'y = bP,{'—l,(vy in
and by hypothesis,

(aPa,07)(€Pr.07) < (b95.07) (€95 .a7) -
Thus, since ay < 3v:

ac < [([)'\P,‘“IJ‘I* )P!-]w,uq] [(‘)kr:‘y./'i‘/‘)‘\r:;fmn'y}

= {(b'\‘jd./i‘/)(C/\r'j’)'.ﬂ“,')pgf”y'.(r,' - (,/b()')#':.ff,.nj .

Since ac € Sa~, be € S3, and av < 3v. we conclude that ae < be.
As‘ a consequence, this result implies for the case of a trivial partial order on
each S,, (which evidently is compatible with munltiplication) the fullowing

COROLLARY 3.9. Let S be a strong scmilattice of trecially ordered monoids,
Then the natural partial order on S 1s compatible with multipiicetion.

Remarks.

1) If the semilattice Y has at least two elemeuts. o > 3. sav. then the
natural p(ntu' order on S is not trivial. Indeed. for any a € S, we trivially have
Afag 2w, +. which by the proof of 3.8, means that a > ap2, 5 fayo, = S

2) The 'ws‘ult 3.9 can be seen as an order-theoretical genecralization o
Cliftord-semigroips, that is, strong semilattices of groups. [ fact. evers gronp

ordered monoid with respect to its natural partial order .

s @
Remark (1) in Section 2). But a strong semilattice of gronps is an invers
semrigroup, and the natural partial order on every ivverse somig uup s o

patible with multipbcation {see CHiff{ord-Ure~ton 20 Corollary 7.05 ane
Lemma 7.2)).
3) Theorem 3.8 and Corollary 3.9 also hold for wmopaids N whick are sivong

semilattices of semigroups. Vo see this, et 5 be o semigronp with wdentin
which is the strong semilattice Y of semigroups S, (o« Voo Then o &5, 0=
The proof of 3.8 runs through up to: Conversely, let « ;?} Af'. IR T [N
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is not a monoid, then a problem arises in the case when o < 3 and a = by, -
But a = ca = e(bps.o) implies that o <y and

a = (('—”Y’)’y.(vy)[{b\P,’i,(,v)(P(v,ﬂ.w] = (6907,(1)(690[1,(1) = C(y(b()oﬂ,(x)
= (fﬂrpa.n’)(b%‘ﬂ‘w) - (e(y¢a,rv/3)(b@/3,(x;’1) = (3(yb7

where ¢, € Fg denotes the image of e € S, under the homomorphism @« -

Similarly, a = be,, ; consequently, a < b in S. Thus the characterization of
the natural partial order on S given in the proof of 3.8 also holds in this case.

Our last result concerning the compatibility of < on a semigroup S is re-
lated with the so called .Z-majorization in Fgs: if e, f,g € Es are such that
¢ > f.c>g and f.Zg¢g, then f = g. For regular semigroups this property
of idempotents is equivalent to the fact that in every local submonoid eSe.
« € I'g.of 9 each .Z-class contains exactly one idempotent. But this property
of S is equivalent to right-compatibility of < on S by the result of Blyth-
G omes [1] mentioned at the beginning of this section. Now, M. Petrich
pointed out that for regular semigroups S, .Z-majorization in Fg is equiva-
lent to Y-majorization in S: if a,b,¢c € S are such that a > b, a > ¢ and
h.¢ ¢. then b = ¢. Following his ideas, we will show that for certain non-regular
semigroups this last property is equivalent to right-compatibility of the natural
partial order. too.

THEOREM 3.10. Let S be a semigroup such that S* is reqular. Then the
natural partial order on S is compatible on the right with multiplication if and
only if S salisfies £ -majorization.

Proof. Let < on S be right-compatible, and let a,b,¢ € S such that
a>boa>»ce. b ce. Then b=ra=ay, tb=b=0by, cy <ay and ¢ = zb for
some vy 2 € ST Thus ¢ =z2b=2z-by = 2b-y = cy < ay = b. Together with
L.« ¢. this implies by Remark (2) in Section 2 that b = c.

Conversely, suppose that S satisfies .Z-majorization, and let « < b, ¢ € 5.

e \ . . 1) .
Phen a = b = by. ra = a = ay for some x,y € S. Since ac € S°, there is
some 7 S such that ac - z-ac = ac and z-ac-z = z. Consequently,

acza b because acza = acz - xb = by - cza and

GOZX - ACZA = ACZ - 0+ C20 = ACZAC - 24 == AC2d;
heza < b becanse beza = bez - ab = b - cza and
i

heza - beza = beza - cza = be - zacz - a = beza

acza.Y heza  because acza = rb-cza, beza = be - zacz-a = bez-ae - a.
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By hypothesis, it follows that acza = beza. Thus.

ac =z - be, ac=acza-c=bcza-c=bc-w (w e SYY and  rac = ac.

This means that ac < be.

Remark. Note that without regularity of S?, for any semigroup S right-
compatibility of < implies .Z-majorization.

4. Applications

In this section, we will make use of the concept of a natural partial order to
show how structural properties of a semigroup can be described by its natural
order.

The first application concerns the following binary relation. which can be
defined on every semigroup S:

B={(a,b) e Sx S| ¢c<a and ¢ <b for some c & S}.
For an inverse semigroup S, 3 is the least group congruence on S as described
by V. V. Vagner [14]. For regular semigroups S, this relation was studied
by Nambooripad [10], who showed, in particular, that for locally inverse
semigroups (see Section 3) /3 is the least primitive, and hence completely siimple
congruence. For general semigroups S, similar to [10: 4.2] we have

LEMMA 4.1. Let S be a semigroup. Then 3 is an equivalence on S if and
only if each principal order ideal (a] of S is directed downwards.

A sufficient condition for 3 to be an equivalence is the compatibility of <
on S with multiplication. This also ensures that 3 is a congruence:

LEMMA 4.2. Let S be a semigroup such that the natural partial order on S s
compatible with multiplication. Then (3 is a congruence on S .

Proof. Notethat if S has a zero, then (3 is the universal relation. Triviallv.
(3 is reflexive and symmetric. In order to show transitivity. let a 3b and b c.
Then there are s,t € S such that s < a, s < b and ¢t < b. t < ¢. Thus.
s=uaxb=by, t =wb= bz for some z,y,w,z € S'. Consequently. sz = rb-: =
x-bz = at; let u = sz = xt (this idea is due to S. Reither). Then by hypothesis.
s < b implies that uw = sz < bz =t, and ¢t < b implies that u = xt < b = s.
From v < s <a and u <t <c¢ it follows that a3 c.

Together with Lemma 4.1, this result implies the following
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COROLLARY 4.3. If the natural partial order of a semigroup S 1is compatible,
then cach principal order ideal of S is directed downwards.

Remark. The converse of 4.3 (4.2) does not hold: let S = (T>,0), the
(regular) transformation semigroup on two elements, and consider S°. Then /3
is the universal relation on SY, hence by 4.1, each principal order ideal of S"
is directed downwards, but < on SY is not compatible (on the left).

Nambooripad [10] called a mapping f: X — Y of a quasi-ordered set
(X. <) into a quasi-ordered set (Y, <) reflecting if for all y,y’ € X f such that
y <y and r € X with #f = y there is some 2’ € X such that ' < z and
2 f = y'. An essential property of homomorphisms of reqular semigroups is that
they reflect the natural partial order (see [10; Theorem 1.8]).

THEOREM 4.4. Let S be a semigroup such that B is a congruence and the
natural homomorphism for [ is reflecting the natural partial order. Then j3
is the least primitive congruence on S, that is, such that (S/8,<) is trivially
ordered.

Proof. Let ¢ denote the natural homomorphism defined by 3, i.e.
1S —= T = 5/3, ap = af. Suppose that s < t in T. Since ¢ reflects
the natural partial order, there exist a < b in S such that ap = s, bp =1t. But
a < b implies that a 8b, thus s =ap = a3 = b3 = by =t. Hence < on T is
trivial. Let o be any congruence on T such that (S/p, <) is trivially ordered.
If ¢+ denotes the natural homomorphism corresponding to g, then we have:

adb = c<a, ¢c<b forsome c€S = c¥<ay, cy by in S/p

= ey =a=by = ap=bp = apb, ie. FCp.

For F-inversive semigroups (see Section 2) § gives the following type of
congruence:

COROLLARY 4.5. Let S be an FE-inversive semigroup such that 3 is a con-
grucnce whose natural homomorphism reflects the natural partial order. Then 3
is the least completely simple congruence on S'.

IProof. Since S is E-inversive. S/ is E-inversive, too. By 4.4, the natural
partial order on S/3 is trivial. Hence, by [9; Proposition 3], S/3 is completely
simple. The relation 3 is the least such congruence because for each such con-
cruence p on S. (S/p. =) is trivially ordered (see [9; Proposition 3]), and thus
7 C o0 by 1.4,

For IJ-dense monoids, that is, E-inversive monoids S with commuting idem-
potents (see [9]). 3 is of the following form:
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THEOREM 4.6. Let S be an E-dense monoid such that 3 is a congruence:
then B is a group congruence on S. If, furthermore, S is group-bound. then 3
1s the least group congruence on S.

Proof. First we will show that S/ is a group. By hypothesis. we have for
g=ef = fe (e,f € Es) that g <e and g < f; thus e f forall e. f € L.
Consequently, the 3-class of S containing the identity 1 of S contains all the
idempotents of S and, further, is the identity of S/3. Since S is E-inversive.
for every a € S there exists x € S such that ax = ¢ € Eg. It follows that
(aB)(zB) = (ax)B =eB =13, and S/3 is a group.

Let, furthermore, S be group-bound and suppose that g is any group congru-
ence on S. If aBb for some a,b € S, then there exists ¢ € S such that ¢ < a.
¢ < b. Since S is group-bound, there are e, f € Fg such that ¢ = ca = fb
(Higgins [7; 1.4.6]). Now p being a group congruence, ep = fo is the iden-
tity of S/p. Consequently, (eg)(ap) = (fo)(bo) implies that ap = bo. hence
apb and 3 C p.

By Lemma 4.2 and Corollary 3.2, the conditions of 4.6 are satisfied for every
periodic (finite), commutative monoid; for example, the residue class semigroups
(Zy,-), n € N. Thus we have

COROLLARY 4.7. For every periodic, commutative monoid S the least group
congruence is given by 3 = {(a, b)e Sx S| c<a, ¢<b for some c€ S} .

The second application deals with an order-theoretical characterization of
retract extensions of regular semigroups. Recall that a semigroup T is called a
tdeal extension of a semigroup S if S is an ideal of T'. Further, an ideal exten-
sion T of S is called a retract extension if there is a (surjective) homomorphism
@: T — S whose restriction to S is the identity mapping. The following charac-
terization involves the principal order ideals of T'. Restricted to principal order
ideals generated by idempotents, this result was proved by Petrich (11! im-
posing some mild restriction on 7': for each a € T there are e, f ¢ Er such
that ea = a = af. Note that such a semigroup T is necessarily weakly reductive
(i.e. for any a,b € T, ax = br and za = b for all € T" imply a = b). Indeed.
we have more generally:

a =ra =as (r,s € T) implies that a = rb = bs, ra = a. thus a < b:
similarly, b < a, and the equality follows.

THEOREM 4.8. Let T be an ideal extension of a reqular semigroup S sich
that for each a € T there are e,f € Ep with ea = a = af. Then T is a
retract extension of S if and only if (a] NS admits a greatest element for each
aeT\S.
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Proof. Sufficiency is clear by Petrich [11] (see also Petrich [13;
[11.4.7]). Conversely, let T' be a retract extension of S. Then by Petrich
[11]. (¢] NS admits a greatest element e’ for each e € Fr\s. Note that by
Lemma 2.1.(i), every element in (e] NS, in particular €', is an idempotent of
S. Let a € T\ S; then there are e, f € E7 such that ea =a =af. Let x € 5
then ax € S since S is an ideal of T'. Since S is regular, ax = ax - u - ax for
some u € S. Put t = azxue; then t € S (S is an ideal). But azu € Eg; thus
[ = axu-e = e-arue implies that ¢t <e. Since e ¢ S (otherwise, a = ea € 5),
it follows that ¢ < e; hence t < ¢’ the greatest element of (e]N.S. Now we will
show:

(1) ax =¢cax:

/ / i !/
AL = aLUAr = aru-ea-r =tar =€t -axr =€ -arue-ar =€ -aruaxr = € ax;

(2) za=zxea:
Since * € S, ze € S and ze = zevre for some v € S; then s = evze
satisfies s € S, s < e, and s < ¢’; consequently, since e’ < e, it follows that
ra=r-caqa=1xevre-a=x-sa==x-s5¢ -a=2- evre -ea=ze-e'a=uzxea;
(3) axr = af'z, ra = zaf’, where f’ denotes the greatest element of
(f1N S:
The proof of (3) is similar to that of (1) and (2).

Put + = f' € S in (1); then af’ = e’af’. Put x = ¢ € S in (3); then
c'a = ¢'af’. It follows that af’ = e’a = e’af’ and ¢’af’ < a. Since ¢’ € S, we
have e'af’ € S. Thus, a € T'\ S implies that e'af’ < a and €'af’ € (a]NS.

Finally, we show that €’af’ is the greatest element of (a]NS. Let b € (a]NS;
then b€ S and b < a (b= a implies b =a € T\ S). Hence b = za = ay,
rb =b = by for some x,y € T. We can choose z,y € S because:

b= gb=>bh for g=0bb', h =bbe Es (S is regular) implies that

b=gb=g- -ra=1a for 2’ =greS (sinceg="bt €59),
b=0bh=ay-h=ay for y' =yh €S (since h=0b'bc S);

furthermore, z'b = gz - b = gb = b. Consequently, b = za = ay implies by (2)
that b = 2z - €’a, and by (1) that b = €’a-y. Together with zb = b it follows
that b < e'a = c'af’.

The third application describes order-theoretical properties of strong semni-
lattices of semigroups. For semigroups $ which are strong semilattices of regular
and simple semigroups S, , Petrich [12; 3.5] found two such properties con-
cerning the J-classes of S (note that for such semigroups S, Green’s relation
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J yields the semilattice decomposition of S into the subsemigroups S, : sce
[12; 3.2]). We will show these properties for strong semilattices of semigroups
satisfying a condition weaker than that of Theorem 4.8 (note that every regular
semigroup fulfills this condition).

THEOREM 4.9. Let S be a strong semilattice Y of semigroups S, (o € Y
such that for every a € S, there are r,s € S, with ra =a =as (« € Y ): then
(i) forany a € Sy and all 3 < « in Y, the partially ovdered set (a] ™ 55
admits a greatest element;
(ii) foralla >3 >~v inY and any a € Sy, ¢ € 5, such that a > ¢. if
a is the greatest element of (a]N Sz, then a > c.

Proof.

(i) Let a € S,; then there are r,s € S, such that ra = a = as. Let r € 5
with 3 < «; then we have for v’ =rp, 3 € Ss:

o — (-’Fﬁﬁ.ad)(‘I'“pn-,m") = -'K((“Pu.:i) = - (:r'u,)L,?u..d =x(reag)las, 1)
=xr'(apa.y),
wr'a = (295,08 (r' Pp.08) (0a,0p) = 21" (ava.3) ¢

it follows that
(1) xza=xr'a for every x € Sy with 3 < a;
(2) similarly: ax = r'ax for every = € S; with J < a;
(3) similarly: for ¢ = sp, 3 € Sg

ra = zas’ and ar =as'z for every €55 with J3<a.

"in (3): then r'a = r'us’.

Put x = s in (2); then as’ = r'as’. Put = = r
Hence, as’ = r'a =r'as’ € Sy; since r'-as’ = as’. it follows that r'as’ < a and
r'as’ € (a] N Sy.

We show that r’as’ is the greatest element of (a]NS;. Let b € («]NSy: then
be Sy and b < a (b= a implies b € S,,). Hence, b = ua = av. ub = b = br
for some u,v € 5. We can choose u,v € 53. Indeed, by hypothesis. for b & .
there are p.q € Sy such that pb = b = bg; thus. b = pb = p - va = za lor
= pu: whence b = pu-b=pb=>0 and z &€ S, (becanse p e 53, w e 5.
say, == z = pu € Sy, and b = zb € Sy,5 = Sy, == J = I} Similarly.
for © € S. Thus, b == ua = av implies by (1) that b = u-»'a and by (2) that
b=r'a-v. Together with ub = b, it follows that & < ’a == as’.

(i) Let a > 3>~y in Y. a€e S,. ce€S,, a>c. Then by {i). (a ™S5 has
a greatest element @ = r'a = as’ = r'as’, where 1’ = ron 3, 8 = so,.5. We
have to show that ¢ < a:
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Since ¢ < a, there are =,y € S such that ¢ = za = ay, rc = ¢ = cy.
Consequently,

Il

¢=ra = reas =cs (CLP’)’,(Y')')(S‘P(Lw'y) - C(S\Pu,'y) = (C(P“y‘,/h) [(s@rv,/-})@/i,ﬁ'y]

= (8pa.4) =cs =za-s =za.

Similarly. ¢ = ay. Since xc¢ = ¢, it follows that ¢ < a. But ¢ € S, and
a=1'a €8Sy, =5z with v < 3; whence ¢ < a.

Note added in proof. Corollary 3.5 can be generalized as follows:

[f S is an inflation of a semigroup T', then the natural partial order of
is (right-, left-) compatible if and only if that of T is (right-, left-) compatible.
Since a rectangular group T is trivially ordered, every inflation S of T has a
compatible natural partial order.
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