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INVARIANT MEASURES ON LOCALLY COMPACT
SPACES AND A TOPOLOGICAL CHARACTERIZATION
OF UNIMODULAR LIE GROUPS

PETER MALICKY

The present paper considers the following problem. There is given a locally
compact topological space X and a system & of homeomorphisms of X. Under
what conditions on the system & does there exist a nonzero % -invariant Borel
measure on X ? This problem was fully solved for compact spaces in Roberts’
work [7].

For locally compact spaces the existence of an invariant measure is known
in two cases. The first requires that the topology on X is induced by a unifor-
mity, which has an % -invariant base (see [2, p. 123] and [8]), the last work is
based on weaker assumptions, but the idea of the construction is the same.

The second case requires X to be a homogeneous space of some locally
compact group and a necessary and sufficient condition for the existence of an
invariant measure is a classical result of H. Weyl (see [1, p. 172]).

We may assume that & is a group under the composition of mappings (see
Proposition 2) and & is denoted by . This paper considers only groups ¢ of
homeomorphisms such that the orbit ¥ (x) is a dense subset of X for every point
xe€ X. For such groups we define two set functions (B:A4) and [B: A]. The first
denotes the minimal number of %-images of the set A covering the set B. The
second is the maximal number of pairwise disjoint ¥-images of the set 4 which
are contained in the set B. The main result of this paper, Theorem 12, states that
the existence of ae€(0, 1) such that the inequalities a(U:A4) < [U:4] < (U:A)
are satisfied for sufficiently many Borel sets guarantees the existence and the
uniqueness of a nonzero ¥-invariant measure.

The right inequality, denoted by (X), is a necessary condition for the exis-
tence of a ¥-invariant measure. The left inequality is denoted by (C) and it has
a complementary character with respect to the condition (N). Proposition 11
and Theorem 16 give nontrivial examples of groups of homeomorphisms which
satisfy the condition (C).

The paper ends with a topological characterization of unimodular Lie groups
(Theorem 19).

345 .



1. Definitions and preliminary results

For a locally compact space X the symbol #(X) denotes the minimal o-ring
containing all compact subsets of X. The members of Z(X) are called Borel sets
in X.

A set A is called bounded if its closure 4 is a compact subset of X.

A Borel measure m on the locally compact space X is a set function
m: B(X) — <0, 0) such that

m(@) =0,
m<U A,) = Y m(A,) for every sequence {4,}, | of pairwise disjoint Borel sets,
i—1 / i—1
m(K) < oo for every compact set K < X.
A Borel measure m on X is called regular if for every Borel set 4

m(A) =sup{m(K): K < A, K is compact} =
=inf{m(U): A < U, U is open Borel}.

A mapping F: X — X is measurable if F '(A4) is a Borel set for every Borel
set 4 < X.

If the mapping F: X — X is measurable and m is a Borel measure on X, then
m is called F-invariant if m(A4) = m(F~'(A)) for every Borel set A € A(X).

If # is a system of measurable mappings of the space X, then a Borel measure
is called # -invariant if it is F-invariant for every Fe & .

A system % of homeomorphisms of a locally space X is called a group of
homeomorphisms if it is a group under the composition of mappings.

Proposition 1. Let X be a locally compact space and F: X — X be a homeomor-
phism. Then F is measurable and a Borel measure m is F-invariant if and only if
m(A) = m(F(A)) for every Ae A(X).

Proposition 2. Let X be a locally compact space, & be a system of homeomor-
phisms of X and 4(F ) be the group of homeomorphisms which is generated by the
system & . Every Borel measure m is F -invariant if and only if it is G(F )-in-
variant.

Definition 3. Let X be a locally compact space and 4 be a group of homeomor-
phisms of X. The group 9 is called transitive on X if for every x,y € X there exists
Fe % such that F(x) = y. 9 is called minimal if for every xe X the set 4 (x) =
={y: 3Fe9: F(x) = y} is dense in X.

Proposition 4. Every transitive group is minimal. The group ¥ is minimal if and
only if for every nonempty open subset U < X the system {F(U): Fe¥%} covers X.

Definition 5. Let X be a locally compact space and 4 be a group of homeomor-
phisms of X and m be a nonzero Borel 4-invariant measure on X. We say that 4
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is metrically transitive with respect to m if for every pair of Borel sets A, B such
that m(A)-m(B) > 0 there exists Fe % such that m(A n F(B)) > 0.

Definition 6. Let X be a locally compact space and 4 be a minimal group of
homeomorphisms of X. For any bounded set B = X and any bounded Borel set A
with nonempty interior put:

(B:A) =min{neN: 3T,,...,T,e%: B < () T(A)}
i=1

[B: Al =sup{neN:3T,,...,T,e%:( ) T(A) < B,

TA)AT(A) =0 for i#J).

We say that 9 satisfies the condition (N) if the inequality [B: A] < (B: A) holds
for any bounded set B < X and any bounded Borel set A with the nonempty
interior.

2. Construction of an invariant measure

In this section we shall prove the necessity of the condition (N) for the
existence of a %-invariant measure and then we shall give a construction of an
invariant measure under a complementary condition (C).

Theorem 7. Let X be a locally compact space and 4 be a minimal group of
homeomorphisms of X. Then:

(1) 0<(B:4)< o0, 0 <[B:4]

(i) 0:4)=[0:4]=0
(iii) B, < B,=(B,:A) < (B,: A), [B,: A < [B,: 4]

@iv) (BijuB,):A)<(B,:A)+ (B,: A)

(V) BBnB,=0=[(B,u B,): Al = [B,: A] + [B,: 4]

(i) [F(B):A]=[B:A], (F(B):A) =(B:A)

(vii) (B:4) < (B:0)-(C: A),

where B, B,, B, are arbitrary bounded sets, A, C are arbitrary bounded Borel sets
with nonempty interiors and F is an arbitrary homeomorphism from 4.

(viii) The condition (N) is necessary for the existence of a nonzero %-invariant
Borel measure.

(ix) If %’ is another group of homeomorphisms of X which contains 4 and the
numbers (B:A), [B:A) are determined by %', then the inequalities
[B: AY > [B: A), (B: A)Y < (B: A) hold for any bounded set B and any bounded
Borel set A with the nonempty interior.

Proof. We shall prove only the statement (viii), because the others follow
immediately from the last definition. Suppose we have a locally compact space
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X, a minimal group ¥ of homeomorphisms of X and a nonzero ¥-invariant
Borel measure m. We shall prove that m(U) > 0 for any nonempty open Borel
set U c X.

Let m(U) = 0 for some nonempty open Borel set U = X. Take a compact set
K < X. Since ¢ is minimal the system { F(U): Fe ¥} covers X and K as well. As

K is compact there exist £, ..., F,€% such that K < () F(U). The properties of

i=1

the measure m imply the following inequalities: 0 < m(K) < m(U F,(U)) <

1=1

< Z mF(U) = n-m(U) = 0, which means m(K) = 0 for the arbitrary compact
i=1
set K < X.
If A is a bounded Borel set, then n(A4) = 0 because m(A) = 0. Since every
Borel set 4 < X is o-bounded the measure m is zero, which is a contradiction.
Let B be any bounded subset of X and A4 be any bounded Borel set with the
nonempty interior. Then 0 < m(A4) < oo because m(int A) > 0 and m(A) < oo.

Let £, ...,F,, T,,..., T, be homeomorphisms from % such that ( ) F(4) <
i—1

k
< Bc () T(A), and F(A) N F(A) = 0 for i # j. Then n-m(A) = ) m(F(A)) =

i=1 i=1

= m(o E(A)) <m(B) < m<o 7:(A)>.

i=1 i=1

It means that k > n. This inequality implies the inequality (B: A) > [B: A].
The proof is complete.

Suppose we have a locally compact space X and a minimal group ¥ of
homeomorphisms on X, which satisfies the condition (N). There is a question
whether there exists a nonzero ¢-invariant Borel measure. We can construct a
%-invariant Borel measure but it is not clear if this measure is nonzero. We are
going to formulate the condition (C), which guarantees the nontriviality of the
measure.

Definition 8. Let X he a nonempty set and % be a nonempty system of nonempty
subsets of X. # is called a filter base if VAe BYBe# ICe%: C < An B.

Definition 9. Let X be a locally compact space, W be a nonempty open subset
of X and & be a system of open subsets of X. & is called separating on W if for
any compact set K ¢ W and any open subset U < X such that K < U there exists
Ue$ such that K< U’ < U.

Definition 10. Let X be a locally compact space and 4 be a minimal group of
homeomorphisms of the space X. We say that 4 satisfies the condition (C) if there
exist B, S, W and a such that:

(1) # is a filter base on X. All elements of # are bounded Borel sets with
nonempty interiors.
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(ii) W is a nonempty open subset of X. ¥ is a system which consists of bounded
open subsets of X. & is separating on W.

(iii) a is a real number from (0, 1).

(iv) VUe¥ JAeB VA eB . A c A=[U:A'1=>a(U:A").

Comparing the conditions (N) and (C) we see that (C) is nearly opposite to
(N). If the group ¢ of homeomorphisms satisfies both conditions (N) and (C),
it means roughly speaking that the numbers (U: 4) and [U: 4] are of the “same
order” for sufficiently many U and A.

Proposition 11. Let X be a locally compact spaced and 4,9’ be minimal groups
of homeomorphisms of X. If 4 satisfies the condition (C) and 4 < 9’, then 4’
satisfies the condition (C) as well.

Theorem 12. Let X be a locally compact space and % be a minimal group of
homeomorphisms which satisfies the condition (C) and the following variant of the
condition (N): [U: A] < (U: A) for every bounded open subset U = X and every
A€ B, where B is the filter base from Definition 10. Then:

(i) There exists a nonzero regular Borel 9-invariant measure m.
(ii) Every regular Borel %-invariant measure is a constant multiple of the measure
m.
(iii) The group % is metrically transitive with respect to the measure m.

Proof. Let W, &, # and a be from Definition 10. There exists' U e &
such that 0 # U, c U, = W. For any bounded open subset U c X and any
Ae P put:

=104l 4y = A
(Uy: A) (Uy: A)

We obtain two systems of set functions {A,}4e#> {A4}4ca- The set functions 1,
and A, have the following properties:

1) 0<A,U)<AU)<(U:Up)

) YUeS¥ 1Ac B NA' € B: A’ c A= 21,(U) = a-A,(U)
3) 2,0)=A,0)=0

) U,c Uy= A, (U) < 4,(Uy), Au(U) < Al (U,)

(5) AU, 0 Uy) < A (Uy) + Ag(U2)

(6) 0= U, U= 4,(U 0 Uy) = 4(U) + 2,(U2)

@) A(F(U)) = A,(U), A (U)=ALF()) forany Fe¥
@®) AUy = 1.
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From the systems {A,},.,, {A,}4c4 Of set functions we can construct two
“limit” set functions A and A.

The construction of A and A is the same as the construction of the Haar
content in [3, pp. 245—248], the only difference is that we have two systems of

set functions and we construct two set functions. The “limit’” set functions A and
A have the properties:

(1) 0 < A(U) < A(U) < (U: Uy)

) VUeS: AU) > a-A(U)

(3) A@) = A@®) =0

@) U, © Uy= AU, < AU,), AU, < A(U,)
(5 AU, U Uy) < AU, + A(U,)

(6) U U, =0= AU, 0 U) > AU,) + AU,)
(7) MEU)) = AU), A(F(U)) = A(U) for any Fe%
(8) AU, = 1.

For any compact subset K < X put:
A(K) = inf{A(U): K< U, U is a bounded open subset)}
A(K) = inf{A(U): K< U, U is a bounded open subset}.

If some compact set is also open, then we obtain the same values of A1(K), A(K)
as we had before.

For any compact sets K, K,, K, = X we have:

1" 0 < AK) < A(K) < ©

2" Kc W= AK) = a A(K)

(3" A0)=A@0)=0

4" K, c K,= A(K)) < AK,), AK)) < A(K,)
;") A(K,UK,) < A(K)) + A(K,)

(6") KinK,=0=AK,UK,) > MK,) + AK,)
(7" AF(K)) = A(K), A(F(K)) = A(K) for any Fe%
8" ATy = 1.

All properties (1")—(8") follow from (1°)-(8’) and the construction. The
implication (2’) = (2") holds because the system & is separating on W and the
set functions 4 and A are monotone. The implication (6”) = (6”) holds because
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in a locally compact space every pair of disjoint compact sets may be separated
by a pair of disjoint bounded open subsets. The other properties are obvious.
For every compact set K < X put:

u(K) = inf{ Y. A(K): all K; are compact sets such that K = | ) K,}.
i=1

i=1

For any compact sets K, L we have:

) 0 < u(K) < AMK)< oo

(10) @ =0

(11) K< L=pu(K) < pu(L)

(12) KU L)< p(K)+ pu(L)

(13) KnL=0=puKuL)=upK)+ pulL)
(14) K< W= u(K) > aA(K), u(Uy) > a
(15) U(F(K)) = u(K) for any Fe%.

All properties (9)—(15) follow from (1”7)—(8"). The inequality u(U,) > a
follows from the fact that U, is a compact subset of W and A(U,) > 1. The
properties (9)—(15) say that y is a nontrivial ¥-invariant content. If we put
m*(U) = sup{m(K): K< U, K is compact} for every open Borel set and
m(A) = inf{m*(U): A < U, U is open Borel} for every Borel set A < X, then we
obtain a regular Borel %-invariant measure on X which is nonzero because
m(0y) = p(Uy) > a.

Now we are going to prove that for any ¢-invariant regular Borel measure
m’ on X there exists a constant C > 0 such that m’(4) = C-m(A) for every Borel
subset 4 = X. If m’ is the zero measure, then C is equal to zero. If m’ is nonzero,
then oo > m’(U,) > 0 (see the proof of Theorem 7). We may assume that
m’(U,) = 1. From Definition 6 and the properties of measure m’ it follows that
[B: A]-m’(A) < m’(B) < (B:A)-m’(A) for any bounded Borel subset Bc X
and any 4 € 4. Therefore

[U:A] <m’(U)_ m’(A) —

A U) = < .
O= oy < mwy muy - "

Since Uye & there exists A,€ & such that (U,: 4) < a~'[U,: 4] for any 4 < 4,,
AeB. For such A we have

w:d) U4 m ) mA) _
(Uo:d)  [Up:d]l  m'(4) m'(Uy)

AU) = m’(U).
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Take Ue & . There exists A,€% such that A,(U) > a-A,(U) for any A€,
A < A,. Since A4 is a filter base for any Ue % there exists 4,e€.8 such that

m'(U) > 2,(U)> a-A,(U)> a’m’(U) forany Ae. B Ac A,.
For the “limit” set functions 4, A we have the following inequalities
m'(U) > AU) > a- A(U) > a*-m’(U) for any Ue ¥

Since m’ is regular and & is separating on W we have: m (K) > A(K) >
> a- A(K) > a*-m’(K) for any compact subset K = W. From the last inequality
and the properties of u it follows that m’(K) > u(K)> a’-m (K) for any
compact subset K = W.

The regularity of the measure m’ gives m’(U) > m*(U) > a’-m’(U) for any
open subset U = W and m’(A4) > m(A) > a*-m’(A) for any Borel A ¢ W. The
last inequality holds in the case when A = F(B), where B = W is a Borel set and
F is a homeomorphism from %.

Let 4 be an arbitrary Borel set in X. Since every Borel set 1s o bounded and
% is a minimal group there exists a sequence {£}* , of homeomorphisms from

% such that 4 U E(Uy).
i=1

Put A, = An F(U,) and

n—1

A,=(4 ﬁF,.(Uo))\< U F,(Uo)> for n>2
=1
We have a sequence {4,}* , of pairwise disjoint Borel sets such that

A=) A, F '(4,) c Uyc W for all natural n.
1=1
Since m’(A4,) > m(4;) > a*-m’(A,), we have m’(A4) > m(A) > a*-m’(A). When
the assumption m’(U,) = 1 is not true, then the last inequality must be replaced
by

Cim’'(A) = m(A4) > C,m’(4) because 0 < m’(U;) < co.

Now we are going to prove part (iii) and then we shall finish the proof of

uniqueness.
Let A and B be Borel sets such that m(A4) > 0, m(B) > 0. If m(A N T(B)) =0
for every Te %, then the set function m” defined for Borel sets £ by the formula:

m"(E) = sup{m(Eﬁ C) 7:(B)> 1, ..., I,Gg}

i=1

is a regular Borel ¢-invariant measure such that m”(4) = 0, m"(B) = m(B) > 0
and this contradicts the inequality C,m"(A4) > m(A) > C,m’ (A).
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Therefore m(A n T(B)) > 0 fore some Te% and part (iii) is proved.
Let E be a Borel set such that 0 < m(F) < 0. Since C,m’(4A) = m(A) =
> C,m’(A) there exists a measurable function ¢ : E — {0, 00) such that

m'(A) = J ¢ (x) dm(x) forany A < E and ¢(x)e{C;',C;">

almost everywhere with respect to m.

Let the function @: <0,00) — {0,00) be defined by the formula
D(t)=m({xeE: p(x) <t}).
Obviously @(t) =0 for te(0,C; ",

@(t) = m(E) for te(C, ', ) and
@ is a nondecreasing function.

We shall prove that @(<0, c0)) = {0, m(E)}.

Suppose that 0 # @D (t,) # m(E) for some t,e€ {0, 00).
Then 0 < @(t)) < m(E), 0 < t, < 0.

Put 4, ={xeE: ¢(x) < t,}, B, = E\ 4,.

Then m(A4,) = @(t)) > 0, m(B,) = m(E) — D(¢,) > 0.
There exists some Te€¥% for which m(4,n T(B,)) > 0.
We have two inequalities:

m'(4yn T(By)) = L i @ (x) dm(x) < tym(A,n T(B,))
and
m' (T~ (A" T(By)) = m’'(T~"(4g) N By) = L e )(P(x) dm(x) >

> t5-m(T~'(Ay) N By) = to-m(T~"'(Ay N T(By)),

which contradicts the ¢-invariantness of the measures m and m’.
Therefore @ (<0, c0)) = {0, m(E)}.
It means @(x) = sup{te{0,0): @(t) = 0} = const almost everywhere on E
with respect to the measure m.

We have just proved that for any Borel measure E < X such that
0 < m(E) < oo there exists a constant C > 0 such that m’(4) = C-m(A) for any
Borel set A — E. It is clear that a constant C must be the same for all Borel sets
E <= X such that 0 < m(E) < co. This proves the equality m’(E) = C-m(E) for
the Borel sets E < X with the property 0 < m(E) < co. But the equality
m’(E) = C-m(E) holds also in the case when m(E) = 0 or m(E) = oo because
of the inequality C,-m’(E) > m(E) > C,-m’(E).

The proof of Theorem 12 is complete.
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3. Examples and applications

We are going to prove that the group of all translations of the Euclidean

space R" satisfies the condition (C). We begin the proof with a construction of
a separating system on R".

For every natural number i let %, denote the system of all closed hypercubes

of the form [ {(@27", (¢, + 1)27"), where g; are arbitrary integers.

Jj=1

Let &, denote the system of all sets U of the form U = int <U K_\.>, where

s=1

K. e, for all s =1,...,m and int is the interior with respect to the standard
topology. Let ¥ = ) ..

i=1

Proposition 13. For any nonempty open subset W the system &, = {U: Ue &,
U < W} is separating on W.

Proof. We are to prove that for any compact set K < W and for any
open set V' which contains the set K there exists Ue ¥}, such that Kc Uc V.,
Let K be an arbitrary compact set in W and V its open neighbourhood. If

VAW =R"leti=1 1If Vn W # R", we take a natural number i such that
271 < 8(y/n)"", where

0 =inf{||x — y||: xeK, ye R"\(V n W)}.

Let ./ be the system {K,: K,e %, K, K # 0}. The system ./ is finite because
K is compact, and

Kcint{ K, )e )k, =K, cvaw.
c1n (9 > kﬂ) \ c (@)

The first inclusion holds because every point xe R" is contained in the interior
of the union of all K,e % which contain the point x. The last statement holds
particularly for every xe K. But every hypercube K, % which contains xe K

belongs to .#. The equality u K, =[] K, is true because all K, are closed and

A is a finite system. If xe| ) K,, then |x — y| < \/;2" < 6 for some yeK,
M
which means that xe U n W because | x — y|| = dforevery xe R"\ (V' n W)and

every ye K. The set U = int (U Ka) has the required properties.
M

Proposition 14. Let X be R" with the standard topology, || || be the Euclidean
norm, % be the group of all translations and B, = {xe R": ||x|| < r} for r > 0.

354



Then the system {B,}, .  is a filter base and for any Ue & and re (0, 27+ V) we
have:

[U:B]>m2 i+
(U:B) <m(/ny2""r" and
[U:B)] > (4/n)""(U:B,).

m depends on U and denotes the number of pairwise different cubes K € £,

s=1,...,m, such that U = int (O KS>.>

s=1

Proof. Since ) int K; < int () K; we have

i=1 ji=1

[int <U Kj): B,] > [U (intKj):B,:|.
j=1 j=1
int (K)) are pairwise disjoint because K;e %, are pairwise different.

Obviously, every open cube int K] is obtained by some translation of the open
cube K, = (0,277)". From the statements (v) and (vi) of Theorem 7 we have the
inequality [(U int K,) B,:I >m-[K,: B].

j=1

Let 0< ; <27@+D  Let k be that nonnegative integer for which

2-U+k+D < p < 2-G+k+ D This k is unique.

Consider the system of open cubes { IT(a-27%*9, (o, + 1)-27%* “)} , where

s=1
a, are arbitrary numbers from {0, ..., 2* — 1}. Then we have 2*" pairwise disjoint
cubes with vertices of the length 2=%+9 which are contained in K,. If we place
the closed Euclidean balls with the radius r into the centre of every “small”” cube

n

[1 (@,-27%*, (a,+ 1)-27**?), then we obtain 2*" pairwise disjoint closed

s=1

Euclidean balls with radius r. This follows from the inequality r < 2=¢*+%+1 j e,
2r <2-0+M  We have an inequality [K,:B,]> (2*)". From the inequality
2-0+k+2 < it follows that 2 > p=12-0+2),

Therefore [K,: B,] > 27"+ ?r =" which means

[U:B]>m-27"+Dp=n,

The second inequality holds also for re (0, /n-2~7) not only for re (0, 27¢+")
and may be proved in a similar way. The third inequality is a consequence of
the preceding ones.

Proposition 15. Let X be R" with the standard topology and 4 be the group of
all translations. Then % satisfies the condition (C).
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This is a consequence of Propositions 13 and 14,

Theorem 16. Let (X, d) be a locally compact metric space and % be a transitiie
group of isometric homeomorphisms of X.

Let (X, d) satisfy the condition:
there exist nonempty open W < R", W’ < X, a homeomorphism @ : W — W’ and
C,, C,> 0 such that

Cillx = yll =2 d(@(x), @(y)) = Gyllx — yll for all x,yeW.

Then 9 satisfies the condition (C).

Proof. Let x,e X be arbitrary but fixed. Consider the system {4,},. ,,
where 4, = {ye X: d(y, x,) < r}. Since X is locally compact, for some r, > 0 the
set 4, is compact. So, we have a filter base {A,}O<,S,0 which consists of the
bounded Borel sets with nonempty interiors. By Proposition 13 the system %,
is separating on W. Then the system &’ = {@(U): Ue ¥, } is separating on W,
We need to prove that

dae(0,1) VU €&’ Fre(0,ry): Vs: 0 <s<r=[U:4]=> a(U : A)).

Let U'e¥’. Then U = ®(U), where Uc W and Ue ¥, for some natural
number .
Let s€(0,r,> be such that

Cyls <270+ s <inf{d(x,y): xeU’, ye X\ W'}.

The infinum in the last inequality is positive because the set U is compact in R",
Uc W and U’ = ®(U) « ®(U). By Proposition 14 there exist N pairwise
disjoint closed Euclidean balls B,, ..., B, with the radius C, 's which are con-
tained in U and N > m-2="'*2(C;"-5)~". (m denotes the number of the cubes
from , from which the set U is constructed.)

Let the centre of the ball B;be a point b,e Uforj —1,...,N. Puta, = @(b)). Since
% is transitive on X there exists a sequence F, ..., Fy € % such that a, = F(x,) for
J=1, ..., N. Since F are isometric homeomorphisms,

F(4,) ={yeX:d(a;, y) < s}.

Moreover F(A,) = {ye X: d(a;, y) < s} = W’ because a,= @(b)e ®?(U) = U’
and s was chosen so that s < d(U’, X\ W). We shall show that F(4,) = @(B)
forj=1,...,N. Let yoe F(4,), i.e. y,e{y: d(a;, y) < s} = W’. Then y, = @(z,)
some z,€ W. Therefore

lzg — bl = 1@~ '(y9) — @~ (@)l < C7'd(yo,a) < C; ',

which means that z,€ B, i.e. y,e @(B).
Since F(A4,) = @(B)) and the balls B, are pairwise disjoint the sets F(A4,) are
pairwise disjoint. Since B, are contained in U, F(A4,) are contained in @(U) = U".
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Therefore [U: 4,] > N > m-27"¢+2.(C5's)~" for every s such that se (0,7 ~
A0, d(U’, X\ W) (0, C'- 274+ D) If s < C,-274* D and s < C,-inf{lx —
— yl: xe U, ye R"\ W}, then in a similar way it may be proved that (U: 4;) <
< m(/n)"-27"-(C;'s)™". Whenever

0 <s <min(C,-27%*Y d(U’, X\W’), C,-27%*Y C,-d(U,R"\ W))
we have both inequalities:
[U:A4]=m- 27"+ (Cyls)™"
(U':4,) < m-(/n)y-27"-(C's) ™",
which imply:
[U:A]>@"n " C-C7Y-(U': 4,).

There is a natural question: Which locally compact spaces satisfy the assump-
tion of Theorem 16? The Riemann spaces satisfy this condition which is explicit-
ly proved in [2, p.281], but this fact is well known.

Theorem 17. Let X be a locally compact space and 4 be a group of homeomor-
phisms of X which contains some minimal group 4’. If 4’ satisfies the condition
(C), then a nonzero 9-invariant Borel measure on X exists if and only if 4 satisfies
the condition (N).

Proof. The necessity of the condition (N) follows from Theorem 7. Theo-
rem 12 and Proposition 11 say that (N) is also sufficient.

Theorem 18. Let (X, d) be a Riemann space and 4 be a group of homeomor-
phisms which contains some transitive group of isometric homeomorphisms. Then
a nonzero 4 -invariant Borel measure exists if and only if 9 satisfies the condition
(N).

This Theorem follows from Theorems 16 and 17.

Corollary. Let ¥ be a group of homeomorphisms of R" which contains all
translations. A 9-invariant Borel measure exists if and only if 9 satisfies the
condition (N). In this case the %-invariant measure may be only the Lebesgue
measure or its constant multiple.

Now we are going to show that Theorem 12 gives a possibility to charac-
terized the class of unimodular Lie groups in terms of the general topology.

A Lie group is a group which is simultaneously a smooth manifold such that
group operations (multiplication and inversion) are smooth mappings. Every
Lie group G is locally compact and there is a left and a right Har measure on
G. This two measures need not be the same. See [4, p.259]. If the left Haar
measure is also a right Haar measure, then this measure is T-invariant for every
mapping T: G — G of the form T(x) = g-x-h, where g, 1€ G. Such Lie groups
are called unimodular.

Theorem 19. Let G be a Lie group and % be the group of all homeomorphisms
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T of G of the form T(x) = g-x-h, where g,he G. The following properties are
equivalent:
(1) G is unimodular
(i) % satisfies the condition (N)
(iii) For any compact subset K = G with the nonempty interior and any a,, ...,
Ay, by by 0y dyy L, dEG
n+1 n
aK-bjna-K-b,=0 forall i#j=()a-K-b¢ | )c;-K-d,.
i=1 i—1
Proof. The implications (i) = (ii), (ii) = (iii) are obvious. We shall proved
the implication (ii1) = (1). If G satisfies (1), then [U: K] < (U: K) for every open
set U < G and every compact set K < G with the nonempty interior. (U: K) and
[U: K] are constructed by ¥, (see Definition 6).
Theorem 12 says that for the existence of a ¢-invariant measure it suffices to
find a, W, &, # such that:
& is a separating system on a nonempty open subset W < G,
4 is a filter base which consists of the compact sets with nonempty interiors,

ae(0,1) and
VUe¥ dA€B. YA eRB: A cA=[U.A1>a-(U:A").

It suffices to find such a, W, &, # for some transitive subgroup %’ of ¥ (see
statement (ix) of Theorem 7). Let 4’ be a group of all left translations 7 on G,
ie.

T(x)=g-x.

Obviously 4" < % and ¥’ is transitive. There is a left invariant Riemann metric
on G [6, p.186]. By Theorem 16 there exist a, &, W, # with the required
properties, which completes the proof.
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WUHBAPUAHTHBIE MEPbI HA JIOKAJIBHO KOMITAKTHBIX IMPOCTPAHCTBAX
U TOMOJIOTNYECKAS XAPAKTEPU3AUUSA YHUMOAYJIAPHBIX JIMEBBIX I'PVIII

Peter Mali¢ky
Pe3rome
B paboTe paccMOTpeHbI MEPbI Ha JT0KAJIbHO KOMIAKTHOM NMPOCTPAHCTBE HHBAPHAHTHBIE OTHO-
CHTEJIbHO 3aJaHHOM rpynnbl roMeoMopdusmom. HaiineHs! 1Ba yCI0BUS JOCTATOYHbIE AJIS CyLLeC-
TBOBAHHS MHBAapHMaHTHOH Mepbl. IlepBoe M3 HUX SBJSETCA Takxke HeoOxoaumbiM. [IpuBeneHs

CJICACTBHSA NOKA3aHHBIX TEOPEM. OaHUM U3 HHX SIBJISETCH TOMOJIOrHYecKas XapaKTE€pu3alus YHHU-
MO, 1yJISPHBIX JIMEBBIX IPYIIL.

359



		webmaster@dml.cz
	2012-08-01T04:46:20+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




