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Abstract

By an equivalence system is meant a couple A = (A, θ) where A is a
non-void set and θ is an equivalence on A. A mapping h of an equivalence
system A into B is called a class preserving mapping if h([a]θ) = [h(a)]θ′

for each a ∈ A. We will characterize class preserving mappings by means
of permutability of θ with the equivalence Φh induced by h.
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lences.
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For the basic concepts, the reader is referred to [1],[2],[3]. Let R and S
be binary relations on a non-void set A. As usually, their relational product
will be denoted by R ◦ S, i.e. R ◦ S = {〈a, b〉 ∈ A2; ∃c ∈ A with 〈a, c〉〉 ∈ R
and 〈c, b〉 ∈ S}. We will say that R, S permute (or they are permutable) if
R ◦ S = S ◦R.

Lemma 1 Let R, S be symmetric relations on A. Then R ◦ S ⊆ S ◦ R is
equivalent to R ◦ S = S ◦R.

Proof If R ◦ S ⊆ S ◦R then, due to symmetry,

S ◦R = S−1 ◦R−1 = (R ◦ S)−1 ⊆ (S ◦R)−1 = R−1 ◦ S−1 = R ◦ S

thus S, R permute. The converse is trivial. �
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By a relational system is meant a pair A = (A, R), where A �= ∅ is a set and
R is a binary relation on A. If R is an equivalence relation, A = (A, R) will be
called an equivalence system.
We are going to introduce a quotient relational system as follows.

Definition 1 Let A = (A, R) be a relational system and Φ be an equivalence
on A. Define a binary relation R/Φ on the factor set (i.e. a partition) A/Φ as
follows: 〈[a]Φ, [b]Φ〉 ∈ R/Φ iff there exist x ∈ [a]Φ, y ∈ [b]Φ with 〈x, y〉 ∈ R.
Then A/Φ = (A/Φ, R/Φ) will be called a quotient relational system of A by Φ.

Remark 1 It is evident that if R is reflexive or symmetric then R/Φ has the
corresponding property.

Lemma 2 Let A = (A, R) be a relational system and R be transitive. Let Φ be
an equivalence on A and Φ ◦R ⊆ R ◦ Φ. Then R/Φ is transitive, too.

Proof Suppose 〈[a]Φ, [b]Φ〉 ∈ R/Φ and 〈[b]Φ, [c]Φ〉 ∈ R/Φ. Then there exist
x, y, y′, z ∈ A such that x ∈ [a]Φ, y, y′ ∈ [b]Φ, z ∈ [c]Φ and 〈x, y〉 ∈ R, 〈y′, z〉 ∈ R.
Hence 〈x, z〉 ∈ R◦Φ◦R ⊆ R◦R◦Φ ⊆ R◦Φ. Thus there is w ∈ A with 〈x, w〉 ∈ R
and 〈w, z〉 ∈ Φ, i.e. w ∈ [z]Φ = [c]Φ. By the Definition, 〈[a]Φ, [c]Φ〉 ∈ R/Φ
proving transitivity of R/Φ. �

Let A = (A, R),B = (B, S) be relational systems. A mapping h : A → B is
called a homomorphism of A into B if 〈a, b〉 ∈ R implies 〈h(a), h(b)〉 ∈ S.
A homomorphism h of A into B is called strong if for each 〈x, y〉 ∈ S there

exist a, b ∈ A such that 〈a, b〉 ∈ R and h(a) = x, h(b) = y. Let A = (A, θ),B =
(B, θ′) be equivalence systems. A mapping h : A → B is called class preserving
if h([a]θ) = [h(a)]θ′ for each a ∈ A.

Lemma 3 Let A = (A, θ), B = (B, θ′) be equivalence systems and h : A → B
a surjective class preserving mapping. Then h is a strong homomorphism of A
onto B.

Proof It is evident that 〈a, b〉 ∈ θ implies 〈h(a), h(b)〉 ∈ θ′, i.e. it is a surjective
homomorphism of A onto B. Suppose 〈c, d〉 ∈ θ′. Then there is a ∈ A with
h(a) = c and d ∈ [c]θ′ = [h(a)]θ′ . Hence, there exists x ∈ [a]θ such that h(x) = d.
Since 〈a, x〉 ∈ θ, h is a strong homomorphism. �

Example 1 The converse of Lemma 3 does not hold in general. Consider
e.g. A = (A, θ), B = (B, θ′) where A = {x1, x2, y1, y2, z1, z2}, B = {a, b, c},
θ′ = B × B and θ is determined by the partition {x1, x2}, {y1, y2}, {z1, z2}.
Let h : A → B is defined as follows: h(x1) = h(y1) = a, h(x2) = h(z1) = b,
h(y2) = h(z2) = c. Then h is a surjective strong homomorphism of A onto B
but it is not a class preserving mapping; e.g. for x1 we have

h([x1]θ) = h({x1, x2}) = {a, b} �= {a, b, c} = [a]θ′ = [h(x1)]θ′ .
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Theorem 1 Let A = (A, θ), B = (B, θ′) be equivalence systems and h : A → B
a surjective mapping. The following are equivalent:

(a) h is a class preserving mapping;

(b) h is a homomorphism of A onto B and for each x, y ∈ A with 〈h(x), h(y)〉 ∈ θ′

there exists z ∈ A such that 〈x, z〉 ∈ θ and h(y) = h(z).

Proof (a) ⇒ (b) by Lemma 3 and its proof. Prove (b) ⇒ (a). Since h is a
homomorphism, we easily get h([a]θ) ⊆ [h(a)]θ′ . Suppose c ∈ [h(a)]θ′ . Then
c = h(w) for some w ∈ A. By (b) there exists z ∈ A such that 〈a, z〉 ∈ θ and
h(z) = h(w) = c. Since z ∈ [a]θ, we conclude h([a]θ) = [h(a)]θ′ . �

Let h : A → B be a mapping. Denote by Φh the so-called h-induced equiva-
lence on A, i.e.

〈x, y〉 ∈ Φh if and only if h(x) = h(y).

Let Φ be an equivalence on A. Denote by hΦ the so-called natural mapping
hΦ : A → A/Φ defined by hΦ(a) = [a]Φ.

Theorem 2 Let A = (A, θ) be an equivalence system and Φ be an equivalence
on A. Suppose that θ, Φ permute. Then the natural mapping hΦ is a class pre-
serving mapping of A onto the quotient equivalence system A/Φ = (A/Φ, θ/Φ).

Proof By Lemma 2 and the previous Remark, A/Φ is clearly a quotient equiv-
alence system. Of course, hΦ is a surjective mapping. Suppose 〈a, b〉 ∈ θ.
Then 〈[a]Φ, [b]Φ〉 ∈ θ/Φ thus hΦ is a homomorphism of A onto A/Φ. Let
〈[x]Φ, [y]Φ〉 ∈ θ/Φ. Then there exist a ∈ [x]Φ, b ∈ [y]Φ such that 〈a, b〉 ∈ θ.
Hence 〈x, b〉 ∈ Φ ◦ θ = θ ◦ Φ, i.e. there exists z ∈ A such that 〈x, z〉 ∈ θ and
〈z, b〉 ∈ Φ, i.e. hΦ(z) = hΦ(b). By (b) of Theorem 1, hΦ is a class preserving
mapping. �

Theorem 3 Let A = (A, θ),B = (B, θ′) be equivalence systems and h : A → B
a surjective strong homomorphism of A onto B. Then h is a class preserving
mapping if and only if θ and the h-induced equivalence Φh permute.

Proof Let h be a class preserving mapping and suppose 〈x, z〉 ∈ Φh ◦ θ. Then
there exists y ∈ A with 〈x, y〉 ∈ Φh and 〈y, z〉 ∈ θ. Thus h(x) = h(y) and, as h
is a homomorphism, 〈h(x), h(z)〉 ∈ θ′. By (b) of Theorem 1, there exists u ∈ A
with 〈x, u〉 ∈ θ and h(u) = h(z), i.e. 〈u, z〉 ∈ Φh. Hence 〈x, z〉 ∈ θ ◦Φh showing
Φh ◦ θ ⊆ θ ◦ Φh. By Lemma 1, θ and Φh permute.
Conversely, let h be a surjective strong homomorphism and suppose θ◦Φh =

Φh ◦ θ. Since h is a homomorphism we have h([a]θ) ⊆ [h(a)]θ′ . Let x ∈ [h(a)]θ′ .
Then 〈x, h(a)〉 ∈ θ′. Since h is a strong homomorphism, there exist b, c ∈ A
such that 〈b, c〉 ∈ θ and h(b) = x, h(c) = h(a). Thus 〈c, a〉 ∈ Φh and we have
〈b, a〉 ∈ θ ◦ Φh = Φh ◦ θ. Hence, there exists z ∈ A with 〈b, z〉 ∈ Φh, 〈z, a〉 ∈ θ.
Thus z ∈ [a]θ and h(z) = h(b) = x, i.e. h is a class preserving mapping. �
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