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Abstract
Dispersion of measurement results is an important parameter that en-

ables us not only to characterize not only accuracy of measurement but
enables us also to construct confidence regions and to test statistical hy-
potheses. In nonlinear regression model the estimator of dispersion is
influenced by a curvature of the manifold of the mean value of the obser-
vation vector. The aim of the paper is to find the way how to determine
a tolerable level of this curvature.
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1 Introduction

The frequently used model in regression analysis is Y ∼ Nn(f(β), σ2V), β ∈ Rk

(k-dimesional Euclidean space), where Y is an n-dimensional normally dis-
tributed observation vector, f(β) is its mean value, β is an unknown k-dimen-
sional parameter, σ2 is an unknown scalar parameter, σ2 ∈ (0,∞), and V is a
known n× n positive semidefinite matrix.

*Supported by the Council of Czech Government J14/98: 153 100011.
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Sometimes the parameter β must satisfy a constraint g(β) = 0.
The following text is devoted to the problem of determining of a tolerable

level of a model curvature

Y ∼ Nn(f(β), σ2V), g(β) = 0, (1)

how this curvature can be defined and how to use this measure of nonlinearity
to a determination of a linearization region. This region will be defined as a set
of such shifts of the parameter β arround the chosen value β0 which does not
cause any essential deterioration of a quality of the estimator of σ2 in the case
that the actual value β∗ of the parameter β is equal to β0.

2 Notation and auxiliary statement

Let in the model (1) the function f(·) and g(·) can be approximed as

f(β) = f0 + Fδβ +
1
2
κ(δβ) and g(β) = Gδβ +

1
2
γ(δβ),

where

f0 = f(β0), F = ∂f(u)/∂u′|u=β0 , δβ = β − β0,

κ(δβ) =
(
κ1(δβ), . . . , κn(δβ)

)′
,

κi(δβ) = δβ′Fiδβ, i = 1, . . . , n,

Fi = ∂2fi(u)/∂u∂u′|u=β0 , i = 1, . . . , n,

G = ∂g(u)/∂u′|u=β0 ,

γ(δβ) =
(
γ1(δβ), . . . , γq(δβ)

)′
,

γi(δβ) = δβ′Giδβ, i = 1, . . . , q,

Gi = ∂2gi(u)/∂u∂u′|u=β0 , i = 1, . . . , q.

The model
Y − f0 ∼ Nn(Fδβ, σ2V), Gδβ = 0 (2)

is a linearized version of the model (1) and

Y − f0 ∼ Nn

(
Fδβ +

1
2
κ(δβ), σ2V

)
, Gδβ +

1
2
γ(δβ) = 0 (3)

is a quadratic version of the model (1).

Assumption In the following text it is assumed that it is valid

r(Fn,k) = k < n and r(Gq,k) = q < k,

respectively, for the ranks of the matrices F and G, respectively, and that the
matrix V is positive definite.



Estimation of dispersion in nonlinear regression models with constraints 77

Lemma 2.1 The best quadratic estimator σ̂2 of the parameter σ2 in the model
(2) is

σ̂2 = (Y − f0)′
(
MFMG′VMFMG′

)+

(Y − f0)/(n + q − k) (4)

and σ̂2 ∼ σ2χ2
n+q−k(0)/(n + q − k).

Here MG′ = I−G′(GG′)−G, (G′G)− is any g-inverse of the matrix GG′,
the symbol (

MFMG′VMFMG′

)+

means the Moore–Penrose g-inverse of the matrix MFMG′VMFMG′ (cf. [5])
and χ2

n+q−k(0) is the random variable with the central chi-square distribution
with n + q − k degrees of freedom.

Proof Cf. e.g. in [3].

3 Measure of nonlinearity

Lemma 3.1 The estimator (4) in the model (3) is of the property

(Y − f0)′
(
MFMG′VMFMG′

)+

(Y − f0)/(n + q − k) ∼ σ2
χ2

n+q−k(δ)
n + q − k

,

where δ = 1
4σ2 1

′(
MFMG′VMFMG′

)+

1 ,

1 = κ(δβ)− FG′(GG′)−γ(δβ).

Proof It is sufficient to prove the equality

E(Y − f0) = FMG′δβ +
1
2

[
κ(δβ)− FG′(GG′)−γ(δβ)

]
.

Since

E(Y − f0) = Fδβ +
1
2
κ(δβ) = FMG′δβ − FG′(GG′)−Gδβ +

1
2
κ(δβ) =

= FMG′δβ +
1
2

[
κ(δβ)− FG′(GG′)−γ(δβ)

]
,

the statement is proved. �

Corollary 3.2 Since E[χ2
f (δ)] = f + δ, the estimator (4) is biased and

E(σ̂2)− σ2 =
1

4(n + q − k)
1

′(
MFMG′VMFMG′

)+

1 .

Now an analogy of the intrinsic curvature of the Bates and Watts [1] can be
defined.
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Definition 3.3 The quantity

Kint
0,I (β0) = sup

⎧
⎪⎪⎨
⎪⎪⎩

√
1
′(

MFMG′VMFMG′

)+

1

δs′K′
GC0KGδs

: δs ∈ Rk−q

⎫
⎪⎪⎬
⎪⎪⎭

,

where

1 = κ(KGδs)− FG−γ(KGδs),
M(KG) = M(MG′), KG is k × (k − q) matrix,

C0 = F′V−1F,

is intrinsic curvature at the point β0 for the model with constraints g(β) = 0.

Remark 3.4 The Bates and Watts [1] intrinsic curvature for a regular model
without constraints Y ∼ Nn(f(β),Σ), β ∈ Rk, is defined as

Kint(β0) = sup

⎧
⎪⎪⎨
⎪⎪⎩

√
κ′(δβ)

(
MΣ−1

F

)′
Σ−1MΣ−1

F κ(δβ)

δβF′Σ−1Fδβ
: δβ ∈ Rk

⎫
⎪⎪⎬
⎪⎪⎭

,

whereMΣ−1

F = I− F(F′Σ−1F)−1F′Σ−1.

The model (3) can be reparametrized in the following way.

β = β0 + KGδs− 1
2
G−γ(KGδs) + terms of the higher order,

Y − f0 ∼ Nn

(
FKGδs− 1

2
FG−γ(KGδs) +

1
2
κ(KGδs), σ2V

)
.

Now, if the scheme

κ(δβ) → κ(KGδs)− FG−γ(KGδs), MF →MFMG′ ,(
MΣ−1

F

)′
Σ−1MΣ−1

F =
(
MF ΣMF

)+

→ (MFMG′VMFG′

)+

and the relationship

δs′K′
GF′V−1FKGδs = δs′K′

GC0KGδs,

is taken into account, the expression forKint
0,I (β0) is obtained and its geometrical

meaning can be seen.

Remark 3.5 If the model is linear, i.e. Y ∼ Nn(Fβ, σ2V), however the con-
straints g(β) = 0 are nonlinear, then Kint

0,I (β0) is equal to

Kint
0,I (β0) = sup

⎧
⎪⎪⎨
⎪⎪⎩

√
γ′(KGδs)

(
MFMG′VMFMG′

)+

γ(KGδs)

δs′K′
GC0KGδs

: δs ∈ Rk−q

⎫
⎪⎪⎬
⎪⎪⎭

.
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The curvature of the manifold {β : g(β) = 0} at the point β0 can be charac-
terized as follows.

The parameter δβ can be expressed as

δβ = KGδs− 1
2
G−γ(KGδs) + . . .

The natural norm in the parametric space Rk can be assumed as

‖δβ‖ =
√

δβF′(σ2V)−1Fδβ,

since it is the Mahalanobis norm introduced by the estimator

β̂ = (F′V−1F)−1F′V−1(Y − f0).

Thus the quantity σCconstr
0 (β0), where

Cconstr
0 (β0) = sup

⎧
⎨
⎩

√
2
′
C0 2

δs′K′
GC0KGδs

: δs ∈ Rk−q

⎫
⎬
⎭ ,

2 = MC0
MG′G

′(GG′)−1γ(KGδs),

can be considered as the intrinsic curvature of the constraints g(β) = 0. However

(GG′)−1G
(
MC0

MG′

)′
C0MC0

MG′G
′(GG′)−1 =

= (GG′)−1G
{
I−

[
C−1

0 −C−1
0 G′(GC−1

0 G′)−1GC−1
0

]
C0

}′

×C0

{
I−

[
C−1

0 −C−1
0 G′(GC−1

0 G′)−1GC−1
0

]
C0

}
G′(GG′)−1 = (GC−1

0 G′)−1

and

(GG′)−1GF′
(
MFMG′VMFMG′

)+

FG′(GG′)−1 =

=(GG′)−1GF′
{
V−1−V−1FMG′

[
MG′F′V−1FMG′

]+

×MG′F′V−1
}
FG′(GG′)−1

= (GG′)−1G
{
C0 −C0

[
C−1

0 −C−1
0 G′(GC−1

0 G′)−1GC−1
0

]
C0

}
G′(GG′)−1

= (GC−1
0 G′)−1.

Thus under the condition κ(·) = 0,

Kint
0,I (β0) = Cconstr

0 (β0).

Remark 3.6 If the model is nonlinear, i.e. Y ∼ Nn(f(β), σ2V), however the
constraints are linear, i.e. Gδβ = 0, then Kint

0,I (β0) is equal to

Kint
0,I (β0) = sup

⎧
⎪⎪⎨
⎪⎪⎩

√
κ′(KGδs)

(
MV −1

FMG′

)′
V−1MV −1

FMG′κ(KGδs)

δs′K′
GC0KGδs

: δs ∈ Rk−q

⎫
⎪⎪⎬
⎪⎪⎭

.
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Since
(
MV −1

FMG′

)′
V−1MV −1

FMG′ =

=
(
MV −1

F

)′
V−1MV −1

F + V−1FC0G′(GC−1
0 G′)−1GC−1

0 F′V−1,

it can be written
Kint

0,I (β0) ≤ Kint
0 (β0),

in the case γ(δβ) = 0, with respect to Remark 3.4. Here Kint
0 (β0) = Kint(β0)

for σ = 1.

4 Linearization region

Definition 4.1 The ε-linearization region (at the point β0) for an estimation
of the parameter σ2 is

Lσ =
{
β0 + δβ : δβ = KGδs, E(σ̂2)− σ2 < ε2σ2

}
.

Theorem 4.2 The ε-linearization region from Definition 4.1 is

Lσ =

{
β0 + δβ : δβ = KGδs, δs′K′

GC0KGδs ≤ 2σε
√

n + q − k

Kint
0,I (β0)

}
.

Proof The relationships

E(σ̂2)− σ2 =
1

4(n + q − k)
1
′(

MFMG′VMFMG′

)+

1 ≤

≤ 1
4(n + q − k)

(
δs′K′

GC0KGδs
)2(

Kint
0,I (β0)

)2

are implied by a comparison of the bias from Corollary 3.2 and Definition 3.3.
Thus

E(σ̂2)− σ2 ≤ 1
4(n + q − k)

(
δs′K′

GC0KGδs
)2(

Kint
0,I (β0)

)2

≤ σ2ε2

⇔ δsK′
GC0KGδs ≤ 2σε

√
n + q − k

Kint
0,I (β0)

. �

Remark 4.3 The actual value β∗ of the parameter β is unknown. However
some information on β∗ is given by the estimator

ˆ̂
β = β0 +

{
I−C−1

0 G′(GC−1G′)−1G
)
β̂,

where β̂ = β0 + (F′V−1F)−1F′V−1(Y − f0) and by the confidence region

Eβ =

{
β0 + KGu : (u− δ

ˆ̂
β)′C0(u− δ

ˆ̂
β) ≤ (k − q)σ̂2Fk−q,n+q−k(1 − α)

}
.
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(The equalities

Var(ˆ̂β) = σ2[C0 −C0G′(GC−1
0 G′)−1GC−1]

and
[C0 −C0G′(GC−1

0 G′)−1GC−1]+ = C0

are utilized.)

Remark 4.4 With respect to Theorem 4.2 and the expression for the (1− α)-
confidence ellispoid, it is clear that the values of the semiaxes of the ellipsoid
depend on σ linearly, however the semiaxes of Lσ depend linearly on

√
σ. Thus

the inclusion Eβ ⊂ Lσ can be attain by a smaller σ. It can be established by a
proper design of experiment.

Remark 4.5 If Eβ is significantly smaller than Lσ and Eβ ⊂ Lσ, we can esti-
mate parameter σ2 by (4) and we can be sure that E(σ̂2)− σ2 < ε2σ2.

Let b(σ̂2) = E(σ̂2)− σ2 and b(σ̂) = E(σ̂)− σ. Then the approximation

b(σ̂) ≈ σ
b(σ̂2)

2
≤ σ

ε2

2

can be used. Thus, from the viewpoint of practice it seems to be important the
validity of the following implication

δs′K′
GC0KGδs ≤ 2σε

√
n + q − k

Kint
0,I (β0)

⇒ b(σ̂) ≤ σ
ε2

2
.

5 Numerical example

In [4] the problem of linearization of the model with constraints with respect
to the estimation of the parameter β was solved. The numerical example given
there was chosen as follows.

{f}i(β) = fi(β) =

{
l1(xi, β1) = xiβ1, xi ≤ 5,

l2(xi, β2, β3) = β1 exp(β3xi), xi ≥ 5

and
g(β1, β2, β3) = 5β1 − β2 exp(5β3).

Measurement regarding this model was calculated at the points x = 1, 2, 3, 6, 7, 8
and Var(Y) = σ2I. In [4] it is shown that for σ = 0.5 the model cannot be
linearized with respect to the estimation of β. The value of the parameter σ
must be smaller than 0.01 in order for the linearization be admissible.
Quite different situation occurs in this example in the case that the estimator

of σ2 is under consideration. With the help of [7] we obtain the following
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results. Analogously as in [4], let the functions f(·) and g(·) be those given at
the beginning of the section, x = 1, 2, 3, 6, 7, 8,Var(Y) = σ2I and

β1 = 1.473, β2 = 33, β3 = −0.29999, α = 0.05, ε = 0.1, σ = 0.5.

Then the figures 1, 2 and 3 show that the (1−α)-confidence ellipsoid is included
into Lσ and the same is valid also for σ = 1; cf. figures 4,5,6.

σ = 0.5

Figure 1 The sections of the confidence ellipsoid and the
linearization region Lσ by the axes β1 and β2.

σ = 0.5

Figure 2 The sections of the confidence ellipsoid and the
linearization region Lσ by the axes β1 and β3.
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σ = 0.5

Figure 3 The sections of the confidence ellipsoid and the
linearization region Lσ by the axes β2 and β3.

σ = 1

Figure 4 The sections of the confidence ellipsoid and the
linearization region Lσ by the axes β1 and β2.
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σ = 1

Figure 5 The sections of the confidence ellipsoid and the
linearization region Lσ by the axes β1 and β3.

σ = 1

Figure 6 The sections of the confidence ellipsoid and the
linearization region Lσ by the axes β2 and β3.
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The empirical probabilty density function is given at figure 7 for σ = 0.5

Figure 7 The empirical density function of the estimator σ̂2

(4) for σ = 0.5

The linearization is possible if the value of Kint
0,I (β) is sufficiently small with

respect to the quantile Fk−q,n+q−k(1 − α) (cf. Remark 4.3). Therefore table 1
gives the different values of the parameter β for our example and table 2 gives
the corresponding values Kint

0,I (β); the values signed by the star are too large
for the linearization of the model with respect to estimation of σ2 if σ = 0.5.

β1 β2(β3 = −1) β2(β3 = −0.5) β2(β3 = 0.5) β2(β3 = 1)
0.5 371.032 898 30.456 235 0.205 212 0.016 845
1.0 742.065 796 60.912 470 0.410 425 0.033 690
1.5 1 113.098 693 91.368 705 0.615 637 0.050 535
2.0 1 484.131 591 121.824 940 0.820 850 0.067 379
2.5 1 855.164 488 152.281 174 1.026 062 0.084 224

Table 1 The values of the parameter β for Table 2

β1 β3 = −1 β3 = −0.5 β3 = 0.5 β3 = 1
0.5 0.172199∗ 0.138345∗ 0.049 621 0.022 430
1.0 0.086 301 0.069 146 0.024 779 0.011 198
1.5 0.056 943 0.045 983 0.016 533 0.007 457
2.0 0.043 192 0.034 565 0.012 372 0.005 568
2.5 0.034 546 0.027 661 0.009 908 0.004 437

Table 2 The values of Kint
0,I (β) for β given in Table 1
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