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Abstract

In this paper, we shall give sufficient conditions for the ultimate bound-
edness of solutions for some system of third order non-linear ordinary
differential equations of the form

...
X +F (Ẍ) + G(Ẋ) + H(X) = P (t, X, Ẋ, Ẍ)

where X, F (Ẍ), G(Ẋ), H(X), P (t, X, Ẋ, Ẍ) are real n-vectors with F, G,
H : Rn → Rn and P : R × Rn × Rn × Rn → Rn continuous in their
respective arguments. We do not necessarily require that F (Ẍ), G(Ẋ) and
H(X) are differentiable. Using the basic tools of a complete Lyapunov
Function, earlier results are generalized.
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1 Introduction

In a sequence of results, Afuwape [1, 2, 3], Ezeilo [5], Ezeilo and Tejumola [8, 9],
Meng [10] and Tiryaki [12] studied particular cases of the third-order nonlinear
system of differential equations of the form

...
X +F (Ẍ) +G(Ẋ) +H(X) = P (t,X, Ẋ, Ẍ) (1.1)

where X,F (Ẍ), G(Ẋ), H(X), P (t,X, Ẋ, Ẍ) are real n-vectors with F,G,H :
Rn → Rn and P : R × Rn × Rn × Rn → Rn continuous in the respective
arguments.
Boundedness and Periodicity results were discussed by imposing differentia-

bility conditions in [5, 8, 9, 12] on the nonlinear functions in the particular cases
of (1.1), while not necessarily differentiable conditions were imposed in [1, 3, 10]
for the study of ultimate boundedness of particular cases of (1.1). Furthermore,
the Lyapunov second method was used with the aid of a suitable differentiable
Lyapunov function.
For n = 1 and f(ẍ) = aẍ, g(ẋ) = bẋ this reduces to

...
x +aẍ+ bẋ+ h(x) = p(t, x, ẋ, ẍ) (1.2)

which was studied by Ezeilo [6,7]. In [7], Ezeilo studied the ultimate bounded-
ness and convergence of solutions of (1.2) by assuming

h(ξ + η)− h(η)
ξ

∈ I0 (1.3)

for some designated ξ, η(�= 0) with I0 ≡ [δ, kab] where δ > 0 is an arbitrary
constant and 0 < k < 1. I0 is a subset of the generalized Routh–Hurwitz
interval (0, ab).
When η = 0, ξ �= 0 in (1.3) we have

H0 = H0(ξ) ≡
{h(ξ)− h(0)}

ξ
(1.4)

and

H0 =
h(ξ)
ξ

if h(0) = 0. (1.5)

On the other hand if F (Ẍ) = AẌ,G(Ẋ) = BẊ in (1.1) we have

...
X +AẌ +BẊ +H(X) = P (t,X, Ẋ, Ẍ) (1.6)

where A,B are real symmetric n× n matrices.
Afuwape [1] and Meng [10] studied (1.6) for the ultimate boundedness and

periodicity of solutions for which H is of class C(Rn) by satisfying

H(X) = H(Y ) +A(X,Y )(X − Y ) (1.7)
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where A(X,Y ) is a real n × n operator for any X,Y in Rn, and having real
eigenvalues λi(A(X,Y )) (i = 1, 2, . . . , n).
It was assumed that these eigeuvalues satisfy

0 < δh ≤ λi(A(X,X)) ≤ Δh (1.8)

with δh,Δh as fixed constants.
Moreover, the matrices A,B have real positive eigenvalues λi(A) and λi(B)

respectively with δa = minλi(A), δb = minλi(B),Δa = maxλi(A),
Δb = maxλi(B), i = 1, 2, . . . , n and that for some constant k(< 1) the “gener-
alized” Routh–Hurwitz condition,

Δh ≤ kδaδg (1.9)

was satisfied. Furthermore, when F (Ẍ) = AẌ in (1.1) we have

...
X +AẌ +G(Ẋ) +H(X) = P (t,X, Ẋ, Ẍ) (1.10)

where A is a real symmetric n× n matrix.
In [3], Afuwape studied (1.10) for the ultimate boundedness of solutions for

which G,H are of class C(Rn) by satisfying

G(Y1) = G(Y2) +Bg(Y1, Y2)(Y1 − Y2) (1.11a)

H(X1) = H(X2) + Ch(X1, X2)(X1 −X2) (1.11b)

where Bg(Y1, Y2), Ch(X1, X2) are n× n real continuous operators, having real
eigenvalues λi(Bg(Y1, Y2)), λi(Ch(X1, X2)), (i = 1, 2, . . . , n) respectively and
which satisfy

0 < δg ≤ λi(Bg(Y1, Y2)) ≤ Δg (1.12a)

0 < δh ≤ λi(Ch(X1, X2)) ≤ Δh (1.12b)

with δg, δh,Δg,Δh as fixed constants.
Also, the matrix A has real positive eigenvalues λi(A) with δa = minλi(A),

Δa = maxλi(A), i = 1, 2, . . . , n and that for some constant k(< 1) the “gener-
alized” Routh Hurwitz condition (1.9) was satisfied.
In this paper, we shall extend earlier results of [1, 3, 5, 8, 9, 10, 12] to systems

of the form (1.1) and for which generalized Routh–Hurwitz condition (1.9) is
satisfied. A new differentiable Lyapunov function which is a modification of the
one used in [10] is used to prove ultimate boundedness of solutions of (1.1). In
addition to (1.11a) and (1.11b) we assume that F is of class C(Rn) and satisfies

F (Z1) = F (Z2) +Af (Z1, Z2)(Z1 − Z2) (1.11c)

where Af (Z1, Z2) is n × n real continuous operator having real eigenvalues
λi(Af (Z1, Z2)) (i = 1, 2, . . . , n). These real eigenvalues satisfy

0 < δf ≤ λi(Af (Z1, Z2)) ≤ Δf (1.12c)

with δf ,Δf as fixed constants.
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Furthermore, these eigenvalues satisfy, for some constant k(k < 1, defined
later) the “generalized” Routh–Hurtwitz condition (1.9).
Finally, we shall assume that P (t,X, Y, Z) satisfies

‖P (t,X, Y, Z)‖ ≤ p1(t) + p2(t)
{
‖X(t)‖2 + ‖Y (t)‖2 + ‖Z(t)‖2

}ρ/2

+ p3(t)
{
‖X(t)‖2 + ‖Y (t)‖2 + ‖Z(t)‖2

}1/2
(1.13)

for any X,Y, Z in Rn, where p1(t), p2(t), p3(t) are continuous functions in t and
0 ≤ ρ ≤ 1.

Remark 1 The estimate (1.13) reduces to [8, 1.3 (3)] if p3(t) = δ0. When
specialized to the case n = 1, the estimate (1.13) reduces to estimate (4.96) of
[11, p. 339] if p3(t) = q.

2 Notations

We shall use the notations as given in [1]. Throughout this paper, δ’s and
Δ’s with or without suffices will denote positive constants whose magnitudes
depend on vector functions F,G,H and P . The δ’s and Δ’s with numerical or
alphabetical suffices shall retain fixed magnitudes, while those without suffices
are not necessarily the same at each occurrences.
Finally, we shall denote the scalar product 〈X,Y 〉 of any vectors X,Y in Rn,

with respective components (x1, x2, . . . , xn) and (y1, y2, . . . , yn) by
∑n

i=1 xiyi.
In particular, 〈X,X〉 = ‖X‖2.

3 Statement of the results

Our first main result in this paper is the following:

Theorem 1 Suppose F (0) = G(0) = H(0) = 0, and that

(i) there exist n× n real continuous operators

Af (Z1, Z2), Bg(Y1, Y2), Ch(X1, X2)

for any vectors X1, X2, Y1, Y2, Z1, Z2 in Rn, such that the functions F,G,H
are of class C(Rn), satisfy (1.11a,b,c), with the eigenvalues, λi(Af (Z1, Z2)),
λi(Bg(Y1, Y2)), λi(Ch(X1, X2)) (i = 1, 2, . . . , n) satisfying (1.12a,b,c);

(ii) the operators Af , Bg and Ch are associative and commute pairwise, and

(iii) the vector function P satisfies inequality (1.13) for all X,Y, Z in Rn,
where p1(t), p2(t) and p3(t) are continuous functions of t, with 0 ≤ ρ < 1.

Then, there exist constants ρ3,Δ1,Δ2,Δ3 such that if |p3(t)| ≤ ρ3, for all t in
R, with ρ3 chosen small enough, then every solution X(t) of (1.1) with X(t0) =
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X0, Ẋ(t0) = Y0, Ẍ(t0) = Z0, and for any constant r, whatever in the range
1
2 ≤ r ≤ 1, satisfies

{‖X(t)‖2 + ‖Ẋ(t)‖2 + ‖Ẍ(t)2‖}r ≤ Δ1 exp{−Δ2(t− t0)}

+ Δ3

∫ t

t0

{
p2r
1 (τ) + p

2r/(1−ρ)
2 (τ)

}
exp{−Δ2(t− τ)} dτ ; (3.1)

for all t ≥ t0 ≥ 0, where Δ1 ≡ Δ1(X0, Y0, Z0).

Remark 2 (1) When specialized to the case n = 1 with P dependent only on
t the above estimate (3.1) reduces to the estimate (4.86) of [11, Theorem (4.24)
p. 335].
(2) In fact this result generalizes Theorem 1 of [3] if ρ3 = δ0 : A number of

quite important results can be deduced from the above. For example, we have

Corollary 1 If P ≡ 0 and all the conditions of Theorem 1 hold, then every
solution X(t) of (1.1) satisfies

{‖X(t)‖2 + ‖Ẋ(t)‖2 + ‖Ẍ(t)2‖} −→ 0 (3.2)

as t→∞, provided that ρ3 is small enough.

Indeed by setting ρ1(t) = 0 = ρ2(t) in (1.13), we have that

{‖X(t)‖2 + ‖Ẋ(t)‖2 + ‖Ẍ(t)2‖}r ≤ Δ1 exp{−Δ2(t− t0)}, t ≥ t0

from which (3.2) follows on letting t→∞.

Remark 3 When specialized to the case n = 1 with p1(t) = p2(t) = 0 i.e.
satisfying condition (C′′) of [11, Theorem 4.25] then the above estimate (3.2)
reduces to the estimate (4.97) of [11, Theorem 4.25].
Further, if P �= 0, but such that

∫ t+μ

t

{
pν
1(τ) + p

ν/(1−ρ)
2 (τ)

}
dτ −→ 0 (3.3)

as t→∞, then we have

Corollary 2 Suppose that there are some fixed constants ν ( 1 ≤ ν ≤ 2), and
μ > 0, such that (3.3) is true, and all the conditions of Theorem 1 hold. Then,
every solution X(t) of (1.1) satisfies (3.2) as t→∞.

Remark 4 This result is a direct generalization of [6, Theorem 2] when spe-
cialized to the case n = 1. Its proof can be obtained from (3.1) by using an
obvious modification of the arguments in [6, §3.2].

The next result is on the ultimate boundedness of solutions of (1.1).
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Theorem 2 Suppose that F (0) = G(0) = H(0) = 0 and that all the conditions
of Theorem 1 hold. Suppose further that |p3(t)| ≤ ρ3 for all t in R with ρ3

sufficiently small and that the functions p1(t), p2(t) satisfy

|p1(t)| ≤ δ0 and |p2(t)| ≤ δ1

for all t in R.
Then, there exists a constant Δ4 such that every solution X(t) of (1.1)

ultimately satisfies.

{‖X(t)‖2 + ‖Ẋ(t)‖2 + ‖Ẍ(t)‖2} ≤ Δ4 (3.4)

Remark 5 (1) If |p1(t)| ≤ δ0, |p2(t)| ≤ δ1 and |p3(t)| ≤ ρ3, with ρ3 sufficiently
small, then Theorem 2 reduces to Corollary 3 of [8] for which equation (1.6) was
considered.
(2) If ρ = 0 in (1.13) we have the estimates (3.6) of [1, Theorem 1] which im-

proves on estimates (3.4) of [1, Theorem 1] and (1.8) of [10, Theorem 1]. Thus,
Theorem 2 reduces to Theorem 1 of [1,10] for which (1.6) was considered. More-
over, the estimate (1.13) is a generalization of all the bounds on P (t,X, Y, Z)
mentioned earlier.

4 Some preliminary results

We shall state, for completeness, some standard results needed in the proofs of
our results.

Lemma 1 (1,§4) Let Q,D be real symmetric commuting n×n matrices. Then,
(i) for any X in Rn,

δd‖X‖2 ≤ 〈DX,X〉 ≤ Δd‖X‖2 (4.1)

where δd,Δd are respectively, the least and greatest eigenvalues, of ma-
trix D;

(ii) the eigenvalues λi(QD), (i = 1, 2, . . . , n) of the product matrix QD are all
real and satisfy

min
1≤j,k≤n

λj(Q)λk(D) ≤ λi(QD) ≤ max
1≤j,k≤n

λj(Q)λk(D) (4.2)

(iii) the eigenvalues λi(Q+D), (i = 1, 2, . . . , n) of the sum of Q and D are all
real and satisfy

{
min

1≤j≤n
λj(Q) + min

1≤k≤n
λk(D)

}
≤ λi(Q+D)

≤
{

max
1≤k≤n

λj(Q) + max
1≤k≤n

λk(D)
}

(4.3)

where λj(Q) and λk(D) are respectively the eigenvalues of Q and D.
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5 The function V

Our main tool in the proof of the results is the continuous function V =
V (X,Y, Z) defined for any X,Y, Z in Rn by

2V = β(1 − β)δ2g‖X‖2 + βδg‖Y ‖2 + αδgδ
−1
f ‖Y ‖2 + αδ−1

f ‖Z‖2

+ ‖Z + δfY + (1− β)δgX‖2. (5.1)

where 0 < β < 1 and α > 0
The following result is immediate from (5.1):

Lemma 2 Assume that all the hypothesis on vectors F (Z), G(Y ) and H(X) in
Theorem 1 are satisfied. Then, there exist positive constants δ2 and δ3 such that

δ2(‖X‖2 + ‖Y ‖2 + ‖Z‖2) ≤ 2V ≤ δ3(‖X‖2 + ‖Y ‖2 + ‖Z‖2) (5.2)

Proof The proof follows if we use Lemma 1 repeatedly and then choose

δ2 = min
{
β(1− β)δ2g ; δg(β + αδ−1

f );αδ−1
f

}

and

δ3 = max
{
δg(1 − β)(1 + δg + δf ); δg(β + αδ−1

f ) + δf [1 + δg(1− β) + δf ];

1 + αδ−1
f + δf + δg(1− β)

}
�

6 Proof of Theorem 1

Let us replace system of differential equations of form (1.1) in the equivalent
system form

Ẋ = Y, Ẏ = Z, Ż = −F (Z)−G(Y )−H(X) + P (t,X, Y, Z) (6.1)

for which a typical solution will be (X(t), Y (t), Z(t)).
To prove Theorem 1, it suffices to show that the function V (defined in (5.1))

satisfies for any solution (X(t), Y (t), Z(t)) of (6.1) and for any r in the range
1
2 ≤ r ≤ 1.

V̇ ≤ −δ4ψ2 + δ5

{
p2r
1 (t) + p

2r
(1−ρ)
2 (t)

}
ψ2(1−r) (6.2)

for some constants δ4, δ5 where ψ2 = {‖X(t)‖2 + ‖Y (t)‖2 + ‖Z(t)‖2}. We note
that from Lemma 2, (6.2) becomes

V̇ ≤ −δ6V + δ7

{
p2r
1 (t) + p

2r
(1−ρ)
2 (t)

}
V (1−r) (6.3)

with δ6 = δ2δ4 and δ7 = δ3δ5. If we choose U = V r, this reduces to

U̇ ≤ −rδ6U + rδ7

{
p2r
1 (t) + p

2r
(1−ρ)
2 (t)

}
. (6.3)
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which can be solved for U to obtain

U(t) ≤ U(t0) exp {−rδ6(t− t0)}

+ Δ5

∫ t

t0

{
p2r
1 (τ) + p

2r
(1−ρ) (τ)

}
exp {−rδ6(t− τ)} dτ (6.4)

for all t ≥ t0.
Rewriting this with V r = U and applying Lemma 2, we shall obtain (3.1)

with

Δ1 = δ{‖X(t0)‖2 + ‖Y (t0)‖2 + ‖Z(t0)‖2}r;
Δ2 = rδ6 and Δ3 = δΔ5

Thus the proof of Theorem 1 is complete as soon as inequality (6.2) is proved.

7 The derivative of V and the proof of (6.2)

Let (X(t), Y (t), Z(t)) be any solution of (6.1). The total derivative of V , with
respect to t along the solution path after simplification is

V̇ = −W1 −W2 −W3 −W4 −W5 −W6 −W7 +W8 (7.1)

where

W1 = {γ1δg(1− β)〈X,H(X)〉+ η1δf 〈Y,G(Y )− δg(1− β)Y 〉
+ ξ1αδ

−1
f 〈Z,F (Z)〉+ 〈Z,F (Z)− δfZ〉

}

W2 =
{
γ2δg(1 − β)〈X,H(X)〉+ ξ2αδ

−1
f 〈Z,F (Z)〉+ (1 + αδ−1

f )〈Z,H(X)〉
}

W3 = {γ3δg(1− β)〈X,H(X)〉+ η2δf 〈Y,G(Y )− δg(1− β)Y 〉+ δf 〈Y,H(X)〉}
W4 =

{
γ4δg(1 − β)〈X,H(X)〉+ ξ3αδ

−1
f 〈Z,F (Z)〉

+ δg(1− β)〈X,F (Z) − δfZ〉}
W5 = {γ5δg(1− β)〈X,H(X)〉+ η3δf 〈Y,G(Y )− δg(1− β)Y 〉

+ δg(1− β)〈X,G(Y )− δgY 〉}
W6 =

{
ξ4αδ

−1
f 〈Z,F (Z)〉+ η4δf 〈Y,G(Y )− δg(1− β)Y 〉

+ (1 + αδ−1
f )〈Z,G(Y )− δgY 〉

}

W7 =
{
ξ5αδ

−1
f 〈Z,F (Z)〉+ η5δf 〈Y,G(Y )− δg(1− β)Y 〉 + δf 〈Y, F (Z)− δfZ〉}

W8 =
{
〈(1− β)δgX + δfY + (1 + αδ−1

f )Z, P (t,X, Y, Z)〉
}

with ξi, ηi, γi; (i = 1, 2, 3, 4, 5) are strictly positive constants such that
5∑

i=1

ξi = 1;
5∑

i=1

ηi = 1 and
5∑

i=1

γi = 1.

To arrive at (6.2), we first prove the following:
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Lemma 3 Subject to a conveniently chosen value of k in (1.9), we have for all
X,Y, Z in Rn

Wj ≥ 0, (j = 2, 3, 4, 5, 6, 7).

Proof For strictly positive constants k1, k2, conveniently chosen later, we have

〈(1 + αδ−1
f )Z,H(X)〉 =

= ‖k1(1 + αδ−1
f )1/2Z + 2−1k−1

1 (1 + αδ−1
f )1/2H(X)‖2

− 〈k2
1(1 + αδ−1

f )Z,Z〉 − 〈4−1k−2
1 (1 + αδ−1

f )H(X), H(X)〉 (7.2a)

and

〈δfY,H(X)〉 = ‖k2δ
1/2
f Y + 2−1k−1

2 δ1/2H(X)‖2

− 〈k2
2δfY, Y 〉 − 〈4−1k−2

2 δfH(X), H(X)〉. (7.2b)

Now, using (1.11) and the assumptions that F (0) = G(0) = H(0) = 0, we have

W2 = ‖k1(1 + αδ−1
f )1/2Z + 2−1k−1

1 (1 + αδ−1
f )1/2H(X)‖2

+ 〈Z, ξ2αδ−1
f F (Z)− k2

1(1 + αδ−1
f )Z〉

+ 〈H(X), γ2δg(1− β)X − 4−1k−2
1 (1 + αδ−1

f )H(X)〉 (7.3a)

and

W3 = ‖k2δ
1/2
f Y + 2−1k−1

2 δ1/2H(X)‖2

+ 〈Y, η2δf [G(Y )− δg(1− β)Y ]− k2
2δfY 〉

+ 〈H(X), γ3δg(1− β)X − 4−1k−2
2 δfH(X)〉. (7.3b)

Furthermore, by using Lemma 1 repeatedly, we obtain for all X,Z in Rn,

W2 ≥ 0 (7.4a)

if k2
1 ≤ ξ2αδf

α+δf
with

Δh ≤
4γ2ξ2α(1 − β)δ2fδg

(α+ δf )2
(7.5a)

and for all X,Y in Rn,
W3 ≥ 0. (7.4b)

If k2
2 ≤ η2βδg with

Δh ≤ 4γ3η2β(1 − β)δ2g/δf . (7.5b)

Combining all the inequalities in (7.3) and (7.4), we have for all X,Y, Z in Rn,
W2 ≥ 0 and W3 ≥ 0, if Δh ≤ kδfδg with

k = min

{
4γ2ξ2α(1− β)δf

(α+ δf )2
;
4η2γ3β(1− β)δg

δ2f

}
< 1. (7.6)
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To complete the proof of Lemma 3, we need to show that for all X,Y, Z in Rn

Wi ≥ 0 (i = 4, 5, 6, 7).

By hypothesis (1.11) the assumptions that F (0) = G(0) = H(0) = 0, and for
strictly positive constants k3, k4, k5, k6 conveniently chosen later, we have

〈δg(1− β)X,F (Z)− δfZ〉 = 〈δg(1− β)X, [Af (Z,O) − δfI]Z〉
= ‖2−1k−1

3 δ1/2
g (1− β)1/2[Af (Z,O)− δfI]1/2X

+ k3δ
1/2
g (1− β)1/2[Af (Z,O)− δfI]1/2Z‖2

− 〈4−1k−2
3 δg(1− β)[Af (Z,O) − δfI]X,X〉

− 〈k2
3δg(1− β)[Af (Z,O) − δfI]Z,Z〉 (7.7a)

δg(1− β)〈X,G(Y )− δgY 〉 = 〈δg(1− β)X, [Bg(Y,O)− δgI]Y 〉
= ‖2−1k−1

4 δ1/2
g (1− β)1/2[Bg(Y,O) − δgI]1/2X

+ k4δ
1/2
g (1− β)1/2[Bg(Y,O)− δgI]1/2Y ‖2

− 〈4−1k−2
4 δg(1 − β)[Bg(Y,O)− δgI]X,X〉

− 〈k2
4δg(1− β)[Bg(Y,O)− δgI]Y, Y 〉 (7.7b)

(1 + αδ−1
f )〈Z,G(Y )− δgY 〉 = 〈(1 + αδ−1

f )Z, [Bg(Y,O)− δgI]Y 〉
= ‖2−1k−1

5 (1 + αδ−1
f )1/2[Bg(Y,O) − δgI]1/2Z

+ k5(1 + αδ−1
f )1/2[Bg(Y,O)− δgI]1/2Y ‖2

− 〈4−1k−2
5 (1 + αδ−1

f )[Bg(Y,O) − δgI]Z,Z〉
− 〈k2

5(1 + αδ−1
f )[Bg(Y,O)− δgI]Y, Y 〉 (7.7c)

δf 〈Y, F (Z)− δfZ〉 = 〈δfY, [Af (Z,O)− δfI]Z〉
= ‖2−1k−1

6 δ
1/2
f [Af (Z,O)− δfI]1/2Y + k6δ

1/2
f [Af (Z,O) − δfI]1/2Z‖2

− 〈4−1k−2
6 δf [Af (Z,O) − δfI]Y, Y 〉

− 〈k2
6δf [Af (Z,O) − δfI]Z,Z〉. (7.7d)

Thus,

W4 = ‖2−1k−1
3 δ1/2

g (1− β)1/2[Af (Z,O) − δfI]1/2X

+ k3δ
1/2
g (1− β)1/2[Af (Z,O)− δfI]1/2Z‖2

+ 〈X, {γ4δg(1− β)Ch(X,O)− 4−1k−2
3 δg(1 − β)[Af (Z,O)− δfI]}X〉

+ 〈Z, {ξ3αδ−1
g Af (Z,O)− k2

3δg(1− β)[Af (Z,O) − δfI]}Z〉 (7.8a)



Further ultimate boundedness of solutions . . . 17

W5 = ‖2−1k−1
4 δ1/2

g (1 − β)1/2[Bg(Y,O) − δgI]1/2X

+ k4δ
1/2
g (1− β)1/2[Bg(Y,O)− δgI]1/2Y ‖2

+ 〈X, {γ5δg(1 − β)Ch(X, 0)− 4−1k−2
4 δg(1− β)[Bg(Y,O)− δgI]}X〉

+ 〈Y, {η3δf [Bg(Y,O)− δg(1− β)I]− k2
4δg(1− β)[Bg(Y,O)− δgI]}Y 〉 (7.8b)

W6 = ‖2−1k−1
5 (1 + αδ−1

f )1/2[Bg(Y,O)− δgI]1/2Z

+ k5(1 + αδ−1
f )1/2[Bg(Y,O)− δgI]1/2Y ‖2

+ 〈Z, {ξ4αδ−1
g Af (Z,O) − 4−1k−2

5 (1 + αδ−1
f )[Bg(Y,O) − δgI]}Z〉

+ 〈Y, {η4δf [Bg(Y,O)− δg(1− β)I]
− k2

5(1 + αδ−1
f )[Bg(Y,O)− δgI]}Y 〉 (7.8c)

and

W7 = ‖2−1k−1
6 δ

1/2
f [Af (Z,O)− δfI]1/2Y + k6δ

1/2
f [Af (Z, 0)− δfI]1/2Z‖2

+ 〈Y, {η5δf [Bg(Y,O)− δg(1− β)I]− 4−1k−2
6 δf [Af (Z,O)− δfI]}Y 〉

+ 〈Z, {ξ5αδ−1
f Af (Z,O) − k2

6δf [Af (Z,O)− δfI]}Z〉. (7.8d)

Thus, for all X,Z in Rn

W4 ≥ 0 (7.9a)

if
Δf − δf
4γ4δh

≤ k2
3 ≤

ξ3α

(1− β)(δg − δf )
. (7.10a)

For all X,Y in Rn

W5 ≥ 0 (7.9b)

if
Δg − δg
4γ5δh

≤ k2
4 ≤

η3βδf
(1− β)(Δg − δg)

. (7.10b)

For all Y, Z in Rn

W6 ≥ 0 (7.9c)

if
δg(α+ δf )(Δg − δg)

4ξ4αδ2f
≤ k2

5 ≤
βη4δgδ

2
f

(α+ δf )(Δg − δg)
. (7.10c)

Also, for all Y, Z in Rn

W7 ≥ 0 (7.9d)

if
Δf − δf
4η5βδg

≤ k2
6 ≤

αξ5
δf (Δf − δf )

. (7.10d)

This completes the proof of Lemma 3. �
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We are now left with the estimates for W1 and W8.
From (7.1), we clearly have

W1 ≥ γ1δgδh(1− β)‖X‖2 + η1δfδgβ‖Y ‖2 + ξ1α‖Z‖2

≥ δ8(‖X‖2 + ‖Y ‖2 + ‖Z‖2) (7.11)

where δ8 = min {γ1δgδh; η1δfδgβ; ξ1α}. For the remaining part of the proof of
(6.2); let us for convenience denote (‖X‖2 + ‖Y ‖2 + ‖Z‖2) by ψ2.
Since P (t,X, Y, Z) satisfies (1.5), Schwarz’s inequality gives for W8.

|W8| ≤
{
(1− β)δg‖X‖+ δf‖Y ‖+ (1 + αδ−1

1 )‖Z‖
}
‖P (t,X, Y, Z)‖

≤ 31/2δ9

{
p3(t)ψ2 + p2(t)ψ(1+ρ) + p1(t)ψ

}
; (7.12)

where δ9 = max
{
(1− β)δg ; δf ; (1 + αδ−1

f )
}
.

Combining inequalities (7.3), (7.11) and (7.13) with the assumption that
|p3(t)| ≤ ρ3 for all t in R, we obtain from (7.1) that

V̇ ≤ −(δ8 − 31/2δ9ρ3)ψ2 + 31/2δ9

{
p2(t)ψ(1+ρ) + p1(t)ψ

}
. (7.14)

This we can rewrite as
V̇ ≤ −δ10ψ2 + ψ1 + ψ2 (7.15)

where
3δ10 = δ8 − 31/2δ9ρ3, ψ1 = {δ11p1(t)− δ10ψ}ψ;

and
ψ2 =

{
δ11p2(t)ψ(1+ρ) − δ10ψ

2
}
.

If we choose ρ3 small enough such that δ10 > 0 (following [6, p. 306]), with the
necessary modification we obtain

ψ1 ≤ δ12ψ
2(1−r)p2r

1 (t) (7.16a)

and
ψ2 ≤ δ13ψ

2(1−r)p
2r/(1−ρ)
2 (t) (7.16b)

for any constant r in the range 1
2 ≤ r ≤ 1.

Thus, (7.15) reduces to

V̇ ≤ −δ10ψ2 + δ14

{
p2r
1 (t) + p

2r/(1−ρ)
2 (t)

}
ψ2(1−r) (7.17)

with
δ14 = max {δ12; δ13}

This is (6.2) with δ4 = δ10 and δ5 = δ14.
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8 Proof of Theorem 2

As pointed out in [1], to prove Theorem 2, if suffices to prove that the function
V satisfies

(i) V (X,Y, Z) →∞ as (‖X‖2 + ‖Y ‖2 + ‖Z‖2) →∞; and

(ii) V̇ ≤ −1

along paths of any solution (X(t), Y (t), Z(t)) of (6.1) for which (‖X(t)‖2 +
‖Y (t)‖2 + ‖Z(t)‖2) is large enough. We only need to concern ourselves with
property (ii), since by Lemma 2, inequality (5.3), property (i) has been taken
care of.
If all the conditions of Theorem 1 are satisfied, then, for any solution (X(t),

Y (t), Z(t)) of (6.1), V̇ satisfies inequality (7.17). That is

V̇ ≤ −δ10ψ2 + δ14

{
p2r
1 (t) + p

2r/(1−ρ)
2 (t)

}
ψ2(1−r)

for any r in the range 1
2 ≤ r ≤ 1.

Now, if p1(t) and p2(t) are bounded for all t in R, then there exists some
constant δ15 > 0 such that

V̇ ≤ −δ10ψ2 + δ15ψ
2(1−r) ≤ −1

if
ψ ≥ δ16 > (δ−1

10 δ15)
1/2r.

Thus property (ii) is proved for V , and this completes the proof of Theorem 2.
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