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Abstract

Recently, we have shown that a semiring S is completely regular if and
only if S is a union of skew-rings. In this paper we show that a semiring
S satisfying a2 = na can be embedded in a completely regular semiring if
and only if S is additive separative.
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1 Introduction

Recall that a semiring (S, +, ·) is a type (2,2) algebra whose semigroup reducts
(S, +) and (S, ·) are connected by ring like distributivity, that is,

a(b + c) = ab + ac and (b + c)a = ba + ca

for all a, b, c ∈ S. A semiring (S, +, ·) is called a Boolean semiring if a2 = a
for all a ∈ S. A semiring S is called additive cancellative if the additive reduct
(S, +) is a cancellative semigroup, i.e., for a, b, c ∈ S, a+b = a+c implies b = c.

1The research is supported by CSIR, India.
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In this paper, we call an element a of a semiring (S, +, ·) completely regular
if there exists an element x ∈ S satisfying the following conditions:

(i) a = a + x + a

(ii) a + x = x + a

(iii) a(a + x) = a + x

Naturally, a semiring (S, +, ·) is a completely regular semiring if every ele-
ment a of S is completely regular. There are plenty of examples of completely
regular semirings, for example, every ring is a completely regular semiring and
every distributive lattice is also a completely regular semiring. By definition,
if (S, +, ·) is a completely regular semiring then its additive reduct (S, +) is a
completely regular semigroup but the converse may not be true. For example,
if we let (S, +, ·) be a semiring whose additive reduct (S, +) is an idempotent
semigroup and the multiplicative reduct (S, ·) is not a band, then we can imme-
diately see that (S, +) is completely regular but the semiring (S, +, ·) itself is
not completely regular. Throughout this paper, we denote the set of all inverse
elements of a in the regular semigroup (S, +) by V +(a). As usual, we denote
the Green’s H-relations on (S, +) by H+

The following useful concept is due to M. P. Grillet [2].

Definition 1.1 A semiring (S, +, ·) is called a skew-ring if its additive reduct
(S, +) is a group, not necessarily an abelian group.

We have obtained the following result in [4].

Theorem 1.2 The following statements on a semiring S are equivalent.
(I) S is completely regular.
(II) Every H+-class is a skew-ring.
(II) S is union (disjoint) of skew-rings.

Corollary 1.3 An additive commutative semiring S is completely regular if
and only if S is union of rings.

2 b-lattice decomposition

We consider the additive commutative semiring (S, +, ·) such that for each a ∈ S
there exists a positive integer n such that

a2 = na. (A)

Clearly, every Boolean semiring is a semiring which satisfies condition (A). Also
the semiring of all natural numbers is a semiring of this kind which is not
Boolean.
We now consider the following examples:
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Example 2.1 Let S = N×{1, 2, 3}. On S we define addition and multiplication
by

(a, i) + (b, j) = (a + b, max{i, j})
and

(a, i) · (b, j) = (ab, min{i, j}).
Then (S, +, ·) is a semiring satisfying condition (A).

Example 2.2 Let S = {0, a, b} be a semiring with the following Cayley tables:

+ 0 a b
0 0 a b
a a 0 b
b b b b

· 0 a b
0 0 0 0
a 0 0 0
b 0 0 b

Then (S, +, ·) is a semiring which satisfies condition (A) but not Boolean.

Definition 2.3 A semiring (S, +, ·) is called a b-lattice if (S, +) is a semilattice
and (S, ·) is a band. Moreover, a congruence ρ on a semiring S is called a
b-lattice congruence if S/ρ is a b-lattice. A semiring S is called a b-lattice Y
of semirings Sα (α ∈ Y ) if S admits a b-lattice congruence ρ on S such that
Y = S/ρ and each Sα is a ρ-class.

Definition 2.4 Let (S, +, ·) be a semiring. We define a relation η on S by a η b
if and only if there exist x, y ∈ S0 and positive integersm, n such that a+x = mb
and b + y = na. Also, we define a relation σ on S by a σ b if and only if there
exists a positive integer n such that a + nb = (n + 1)b and b + na = (n + 1)a.
It should be noted that if there exist positive integersm, n such that a+mb =

(m + 1)b and b + na = (n + 1)a then a σ b. For if, say m < n, then we can add
a + mb = (m + 1)b by (n−m)b and obtain a + nb = (n + 1)b.

Definition 2.5 A semiring S is called archimedean if (S, +) is an archimedean
semigroup i.e., for any a, b ∈ S there exist x, y ∈ S and positive integers m, n
such that a + x = mb and b + y = na.

Lemma 2.6 Let S be a semiring satisfying (A). Then
(i) η is a congruence on S and S/η is the maximal b-lattice homomorphic

image of S.
(ii) S is uniquely expressible as a b-lattice T of archimedean semirings

S
α
(α ∈ T ). The b-lattice T is isomorphic with the maximal b-lattice homo-

morphic image S/η of S and S
α
(α ∈ T ) are equivalent classes of η in S.

Proof (i) From Theorem 4.12 in [1], it follows that η is a semilattice congruence
on (S, +). Let a η b and c ∈ S. Then there exist x, y ∈ S0 and positive integers
m, n such that a + x = mb and b + y = na. This leads to ac + xc = m(bc) and
bc + yc = n(ac). Thus ac η bc. Similarly, we can show that ca η cb. Hence η is a
congruence on the semiring S.
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Since S satisfies a2 = na so a2 η na. Again since η is a semilattice congru-
ence on (S, +), it follows that na η a. Thus, a2 η a and hence η is a b-lattice
congruence on the semiring S.

S/η is the maximal homomorphic image of S follows from Theorem 4.12 in
[1].
(ii) By (i) of this Lemma, η is a b-lattice congruence on S. By Theorem

4.13 in [1], each η-class S
α
(α ∈ S/η) is archimedean semigroup under addition.

We show that each S
α
is a semiring. For this let b, c ∈ η(a), where η(a) is the

η-class of a ∈ S. Then b η a and c η a. This leads to bc η a2 η a. So bc ∈ η(a)
and hence (Sα , +, ·) is an archimedean semiring. Thus, S is a b-lattice T of
archimedean semirings. Unique expression of S as a b-lattice of archimedean
semirings follows from Theorem 4.13 in [1].
The last part of the theorem follows from the Theorem 4.13 in [1].

Definition 2.7 A congruence ρ on a semiring S is said to be additive separative
(AS-congruence) if S/ρ is an additive separative semiring (AS-semiring) i.e.,
(a + b) ρ (a + a) ρ (b + b) implies a ρ b.

Lemma 2.8 The relation σ defined in Definition 2.4 is a congruence on a
semiring S and S/σ is the maximal additive separative homomorphic image of
S.

Proof By Theorem 4.14 in [1], σ is a congruence on (S, +). Let a σ b and
c ∈ S. Then there exist positive integers m, n such that a + nb = (n + 1)b and
b+ma = (m+1)a. This leads to ac+n(bc) = (n+1)bc and bc+m(ac) = (m+1)ac.
Hence ac σ bc. Similarly, one can show that ca σ cb. Thus, σ is a congruence on
S.
Last part follows from Theorem 4.14 in [1].

Corollary 2.9 Let S be an additive separative semiring. If a, b are elements of
S such that a + mb = (m + 1)b and b +na = (n + 1)a for some positive integers
m and n, then a = b.

Theorem 2.10 A semiring S satisfying the condition (A) can be embedded in
a completely regular semiring if and only if S is additive separative.

Proof First suppose that S can be embedded in a completely regular semiring.
Then the additive reduct (S, +) of the semiring S can be embedded in a com-
pletely regular semigroup. Then by Theorem 4.19 in [1], we have the semigroup
reduct (S, +) is separative, i.e., S is additive separative semiring.
Conversely, assume that S is additive separative. Since the semiring S sat-

isfies the condition a2 = na so S can be expressed as a b-lattice of archimedean
semirings. Let S =

⋃
α∈T Sα be the expression of S as a b-lattice T of its

archimedean components S
α
(α ∈ T ). Since S is additive separative, by Theo-

rem 4.16 in [1] we have S
α
is additive cancellative. So by Theorem 5.11 in [3] S

α

can be embedded in a ring Rα . Since Sα are mutually disjoint, we can assume
that R

α
are mutually disjoint. Now every element of R

α
can be expressed in
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the form a1 − a2 with a1 , a2 ∈ S
α
and that a1 − a2 = c1 − c2 if and only if

a1 + c2 = a2 + c1 .
Let S′ =

⋃
α∈T Rα. On S′ we define ⊕ and � as follows:

a⊕ b = (a1 + b1)− (a2 + b2)

and
a� b = (a1b1 + a2b2)− (a1b2 + b2a1),

where a = a1 − a2 and b = b1 − b2 .
We first show that the operations are well defined. For this let a = a1−a2 =

c1 − c2 and b = b1 − b2 = d1 − d2 . So a1 + c2 = a2 + c1 and b1 + d2 = b2 + d1 .
Now,

(a1+b1)+(c2+d2) = (a1+c2)+(b1+d2) = (a2+c1)+(b2+d1) = (a2+b2)+(c1+d1)

This leads to,

(a1 + b1)− (a2 + b2) = (c1 + d1)− (c2 + d2),
(a1 − a2)⊕ (b1 − b2) = (c1 − c2)⊕ (d1 − d2).

So ⊕ is well defined.
Again,

a1b1 + c2b1 + a2b2 + c1b2 = a2b1 + c1b1 + a1b2 + c2b2 ,

(a1b1 + a2b2) + (c2b1 + c1b2) = (c1b1 + c2b2) + (a2b1 + a1b2),
(a1b1 + a2b2)− (a2b1 + a1b2) = (c1b1 + c2b2)− (c2b1 + c1b2),

(a1 − a2)� (b1 − b2) = (c1 − c2)� (b1 − b2).

Similarly, we can show that

(c1 − c2)
⊙

(b1 − b2) = (c1 − c2)
⊙

(d1 − d2).

Thus,
(a1 − a2)

⊙
(b1 − b2) = (c1 − c2)

⊙
(d1 − d2).

Hence
⊙
is well defined.

Clearly, if a ∈ Rα and b ∈ R
β
(α, β ∈ T ) then a⊕b ∈ R

α+β
and a

⊙
b ∈ R

αβ
.

The associativity under ⊕ and ⊙
is easily verified. Also, we can show the

distributivity. Hence S′ is indeed a semiring which contains S. Since S′ is union
of rings so by Corollary 1.3, S′ is a completely regular semiring.
We now show that if a and b are elements of S then a ⊕ b and a

⊙
b are

respectively the same as the original operation a + b and a.b respectively in S.
Let a ∈ R

α
and b ∈ R

β
(α, β ∈ T ). Then a = 2a − a and b = 2b − b so that

a⊕ b = (2a− a)⊕ (2b− b) = (2a + 2b)− (a + b) = 2(a + b)− (a + b) = a + b and
a

⊙
b = (2a− a)

⊙
(2b− b) =

(
(2a)(2b) + ab

)
− (2ab + 2ab) = 5ab− 4ab = a · b,

as desired.
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