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Abstract

Lattice-ordered groups, as well as GMV -algebras (pseudo MV -algeb-
ras), are both particular cases of dually residuated lattice-ordered monoids
(DR�-monoids for short). In the paper we study ideals of lower-bounded
DR�-monoids including GMV -algebras. Especially, we deal with the con-
nections between ideals of a DR�-monoid A and ideals of the lattice reduct
of A.
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In 1965, K. L. N. Swamy [11] introduced the notion of a (commutative) dually
residuated lattice-ordered semigroup in order to capture the common features
of Abelian lattice-ordered groups and Brouwerian algebras. It turns out that
well-known MV -algebras [1], an algebraic version of the �Lukasiewicz infinite
valued propositional logic, can be considered as certain bounded commutative
DR�-monoids [7, 8]. The present concept of a (non-commutative) DR�-monoid
is due to T. Kovář [3]:

Definition 1 An algebra (A; +, 0,∨,∧, ⇀, ↽) of type 〈2, 0, 2, 2, 2, 2〉 is said to
be a dually residuated lattice-ordered monoid (simply, a DR�-monoid) if
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106 Jan KÜHR

(i) (A; +, 0,∨,∧) is an �-monoid, i.e., (A; +, 0) is a monoid, (A;∨,∧) is a
lattice and the monoid operation distributes over the lattice operations;

(ii) for any a, b ∈ A, a ⇀ b is the least x ∈ A such that x + b � a, and a ↽ b
is the least y ∈ A such that b + y � a;

(iii) A fulfils the identities

((x ⇀ y) ∨ 0) + y � x ∨ y, y + ((x ↽ y) ∨ 0) � x ∨ y,

x ⇀ x � 0, x ↽ x � 0.

Recently, J. Rachůnek [10] established the notion of a GMV -algebra as a
non-commutative generalization of MV -algebras. Non-commutative structures
named pseudo MV -algebras extending MV -algebras were independently intro-
duced also by G. Georgescu and A. Iorgulescu [2]. The relationship between
GMV -algebras and DR�-monoids is similar to the commutative case [10, 6]:
every GMV -algebra can be regarded as a bounded DR�-monoid satisfying cer-
tain additional conditions, and conversely, any bounded DR�-monoid that fulfils
those conditions is in fact a GMV -algebra. Other examples come from lattice-
ordered groups: every �-group, as well as the positive cone of any �-group, is a
DR�-monoid. Therefore, dually residuated lattice-ordered monoids constitute
a wide generalization of �-groups and GMV -algebras. We should remark that
there exist also other algebraic structures related to logic (for instance, pseudo
BL-algebras) that are equivalent to particular DR�-monoids.

In this paper we deal with ideals of lower-bounded DR�-monoids (by [3],
a DR�-monoid A is lower-bounded iff 0 � x for all x ∈ A). We will focus
especially the connections between ideals in A and those in �(A), the lattice
reduct of A. The motivation is the following:

(1) When regarded to be a DR�-monoid, every GMV -algebra is a lower-
bounded DR�-monoid;

(2) T. Kovář [3] proved that every DR�-monoid is isomorphic to the direct
product of an �-group and a DR�-monoid with 0 at the bottom.

Let us recall basic properties of dually residuated �-monoids [3] and necessary
facts about ideals [4].

Lemma 2 [3] In any DR�-monoid we have:

(i) x ⇀ x = 0 = x ↽ x;

(ii) ((x ⇀ y) ∨ 0) + y = x ∨ y = y + ((x ↽ y) ∨ 0);

(iii) x ⇀ (y + z) = (x ⇀ z) ⇀ y, x ↽ (y + z) = (x ↽ y) ↽ z;

(iv) if x � y then x ⇀ z � y ⇀ z and x ↽ z � y ↽ z;

(v) if x � y then z ⇀ x � z ⇀ y and z ↽ x � z ↽ y;

(vi) x � y iff x ⇀ y � 0 iff x ↽ y � 0;

(vii) x ⇀ (y ∧ z) = (x ⇀ y) ∨ (x ⇀ z), x ↽ (y ∧ z) = (x ↽ y) ∨ (x ↽ z);

(viii) (x ∨ y) ⇀ z = (x ⇀ z) ∨ (y ⇀ z), (x ∨ y) ↽ z = (x ↽ z) ∨ (y ↽ z).
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Remark 3 In Definition 1, the condition (ii) can be equivalently replaced by
the following identities [3, 10]:

(x ⇀ y) + y � x, y + (x ↽ y) � x,

x ⇀ y � (x ∨ z) ⇀ y, x ↽ y � (x ∨ z) ↽ y,

(x + y) ⇀ y � x, (y + x) ↽ y � x.

Letting |x| = x ∨ (0 ⇀ x) we define the absolute value of x ∈ A. It is easily
seen that 0 � x iff x = |x|, and hence in the special case that we are dealing
with lower-bounded DR�-monoids, this concept is redundant.

Let I ⊆ A. Then I is said to be an ideal in A if (i) 0 ∈ I, (ii) x + y ∈ I for
all x, y ∈ I, and (iii) |y| � |x| implies y ∈ I for all x ∈ I and y ∈ A.

We use Id(A) to denote the set of all ideals in A; it is partially ordered by
set-inclusion. Obviously, Id(A) is a complete lattice and for any X ⊆ A there
exists the smallest ideal, I(X), including X . It can be easily shown that

I(X) = {a ∈ A : |a| � |x1|+ · · ·+ |xn| for some x1, . . . , xn ∈ X, n ∈ N}.
In addition, the ideal lattice Id(A) is algebraic and distributive.

We define an ideal I to be prime if for all J, K ∈ Id(A), if J ∩ K ⊆ I then
J ⊆ I or K ⊆ I. Every ideal equals the intersection of all primes exceeding it,
and I ∈ Id(A) is prime if and only if |x| ∧ |y| ∈ I entails x ∈ I or y ∈ I, for all
x, y ∈ A.

An ideal I in A is called normal if (x ⇀ y) ∨ 0 ∈ I iff (x ↽ y) ∨ 0 ∈ I for
all x, y ∈ A. Equivalently, an ideal I is normal if and only if x + I+ = I+ + x
for every x ∈ A, where I+ = {a ∈ I : 0 � a}. The normal ideals of any
DR�-monoid correspond one-to-one to its congruence relations.

We shall write �(A) for (A;∨,∧), the lattice reduct of A. As usual, for any
X ⊆ A, (X ] denotes the lattice ideal generated by X . It is worth adding that
by [3, Theorem 1.1.23], �(A) is a distributive lattice.

From this moment on, A stands for a lower-bounded DR�-monoid!

Theorem 4 For any I ⊆ A such that 0 ∈ I, the following conditions are
equivalent:

(i) I is an ideal in A;

(ii) if x ∈ I and y ⇀ x ∈ I then y ∈ I;

(iii) if x ∈ I and y ↽ x ∈ I then y ∈ I.

Proof We are going to show (i) ⇔ (ii); the proof of (i) ⇔ (iii) is parallel.
(i) ⇒ (ii): If x ∈ I and y ⇀ x ∈ I then y � x∨ y = (y ⇀ x)+x ∈ I, whence

y ∈ I.
(ii) ⇒ (i): For x, y ∈ I we have

((x + y) ⇀ y) ⇀ x = (x + y) ⇀ (x + y) = 0 ∈ I

which yields (x + y) ⇀ y ∈ I and therefore x + y ∈ I. If y � x ∈ I then
y ⇀ x = 0 ∈ I, and so y ∈ I. �
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Theorem 5 Every ideal in A is an ideal in �(A). Moreover, if I is a prime
ideal in A then I is a prime ideal in �(A).

Proof Let I ∈ Id(A). Then clearly I is non-empty, y � x entails y ∈ I
whenever x ∈ I, and we have also x ∨ y ∈ I for all x, y ∈ I since x ∨ y � x + y.
The latter claim is evident. �

The converse statement fails to be true in general. However, we shall prove
that if I is a lattice ideal generated by a set of additively idempotent elements
or I is a minimal prime ideal in �(A), then it is an ideal in A.

Let Idem(A) = {a ∈ A : a = a + a}.

Lemma 6 For all a ∈ Idem(A) and x ∈ A we have:

(i) a + x = a ∨ x = x + a,

(ii) x ⇀ a = x ↽ a.

Proof (i) To see that a + x = a ∨ x, compute

a + x = a ∨ (a + x) = (a + a) ∨ (a + x)
= a + (a ∨ x) = a + a + (x ↽ a)
= a + (x ↽ a) = a ∨ x.

(ii) For every y ∈ A, y � x ⇀ a iff a + y = y + a � x iff y � x ↽ a, so
x ⇀ a = x ↽ a. �

Theorem 7 Let X ⊆ Idem(A). Then (X ] is a normal ideal in A.

Proof We have a ∈ (X ] iff a � x1 ∨ ... ∨ xn for some x1, ..., xn ∈ X and
a ∈ I(X) iff a � x1 + · · · + xm = x1 ∨ . . . ∨ xm for some x1, . . . , xm ∈ X , and
therefore I(X) = (X ].

If a ⇀ b ∈ I(X) then a ⇀ b � x1 + · · · + xn, where x1, . . . , xn ∈ X , which
implies a � x1 + · · ·+ xn + b = b + x1 + · · ·+ xn, and so a ↽ b � x1 + · · ·+ xn

proving a ↽ b ∈ I(X). Similarly a ↽ b ∈ I(X) entails a ⇀ b ∈ I(X), and
consequently, (X ] is a normal ideal in A. �

We turn now to minimal prime ideals.

Theorem 8 (i) Let I be a proper ideal in �(A). For x ∈ A \ I, let us put

Φ(I, x) = {a ∈ A : x ⇀ a /∈ I}

and
Φ(I) =

⋂
{Φ(I, x) : x ∈ A \ I}.

Then Φ(I) is an ideal in A such that Φ(I) ⊆ I. In addition, if I is prime then
so is Φ(I).
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(ii) Let I be a proper ideal in �(A). For x ∈ A \ I, let us put

Ψ(I, x) = {a ∈ A : x ↽ a /∈ I}

and
Ψ(I) =

⋂
{Ψ(I, x) : x ∈ A \ I}.

Then Ψ(I) is an ideal in A such that Ψ(I) ⊆ I. In addition, if I is prime then
so is Ψ(I).

Proof (i) Let a ∈ Φ(I). If a /∈ I then a ∈ Φ(I, a), so 0 = a ⇀ a /∈ I, a
contradiction. Thus a ∈ I and we have Φ(I) ⊆ I.

We shall now prove that Φ(I) ∈ Id(A). It is obvious that 0 ∈ Φ(I) as
x ⇀ 0 = x /∈ I for all x ∈ A \ I. Further, let a, b ∈ Φ(I) and take any x ∈ A \ I.
Then x ⇀ b /∈ I and hence x ⇀ (a+b) = (x ⇀ b) ⇀ a /∈ I since a ∈ Φ(I, x ⇀ b);
thus a + b ∈ Φ(I, x) for all x ∈ A \ I and consequently, a + b ∈ Φ(I). If now
a ∈ Φ(I) and b � a then x ⇀ a � x ⇀ b for every x ∈ A \ I, and therefore
x ⇀ b /∈ I since x ⇀ b ∈ I would imply x ⇀ a ∈ I. Thus b ∈ Φ(I, x) for any
x ∈ A \ I, i.e. b ∈ Φ(I).

For the latter statement we shall need two claims.

Claim A: If x � y then Φ(I, x) ⊆ Φ(I, y).

For every a ∈ Φ(I, x), x ⇀ a � y ⇀ a entails y ⇀ a /∈ I, so a ∈ Φ(I, y).

Claim B: If a ∧ b ∈ Φ(I, x) then a ∈ Φ(I, x) or b ∈ Φ(I, x).

We have a∧ b ∈ Φ(I, x) iff (x ⇀ a)∨ (x ⇀ b) = x ⇀ (a∧ b) /∈ I which yields
x ⇀ a /∈ I or x ⇀ b /∈ I.

Let now I be a prime ideal in �(A) and assume that a∧b ∈ Φ(I) for a, b ∈ A.
If neither a nor b belongs to Φ(I) then certainly a /∈ Φ(I, x) and b /∈ Φ(I, y) for
some x, y ∈ A \ I. Since I a prime ideal in �(A), it is obvious that x ∧ y /∈ I.
By Claim A we have Φ(I, x ∧ y) ⊆ Φ(I, x) ∩ Φ(I, y), and so a ∧ b ∈ Φ(I) yields
a ∧ b ∈ Φ(I, x ∧ y) ⊆ Φ(I, x) ∩ Φ(I, y). Hence by Claim B, a ∈ Φ(I, x ∧ y) ⊆
Φ(I, x) ∩ Φ(I, y) or b ∈ Φ(I, x ∧ y) ⊆ Φ(I, x) ∩ Φ(I, y), a contradiction with
a /∈ Φ(I, x) and b /∈ Φ(I, y). Thus a ∧ b ∈ Φ(I) implies a ∈ Φ(I) or b ∈ Φ(I).

By replacing “⇀” by “↽” we obtain (ii). �

Remark 9 If I ∈ Id(A) then I = Φ(I) = Ψ(I). Indeed, by Theorem 4 (ii),
a ∈ I and x /∈ I yield x ⇀ a /∈ I. Thus I ⊆ Φ(I).

Corollary 10 For every I ⊆ A, I is a minimal prime ideal in A if and only if
it is a minimal prime ideal in �(A).

Proof If I is a minimal prime ideal in A, then it is a prime ideal in �(A) by
Theorem 5, and by Theorem 8, I is minimal prime.

Conversely, if I is a minimal prime ideal in �(A) then, again by Theorem 8,
Φ(I) is a minimal prime ideal in A and obviously I = Φ(I). �
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Remark 11 Let I be an ideal in �(A). If I is a normal subset of A, that is,
x ⇀ y ∈ I iff x ↽ y ∈ I for all x, y ∈ A, then one can easily show that
Φ(I) = Ψ(I). Conversely, an ideal I in �(A) satisfying Φ(I) = Ψ(I) need not be
normal.

Lemma 12 If z � x + y then z = x1 + y1 for some x1 � x and y1 � y.

Proof Let x1 = x ∧ z � x and y1 = z ↽ x1. Then

x1 + y1 = x1 + (z ↽ x1) = z ∨ x1 = z,

where y1 = z ↽ (x ∧ z) = (z ↽ x) ∨ (z ↽ z) = z ↽ x � y as desired. �

Corollary 13 If I, J are normal ideals in A then

I ∨ J = {a ∈ A : a = x + y for some x ∈ I, y ∈ J}.

Proof Since I, J are normal ideals, a ∈ I ∨J iff a � x+ y for x ∈ I and y ∈ J ,
and so by Lemma 12, a = x1 + y1 for some x1 � x, y1 � y, i.e. x1 ∈ I and
y1 ∈ J . �

Let A be a bounded DR�-monoid with the greatest element 1. Let us denote
by B(A) the set of all a ∈ A having the complement a′ in �(A).

Lemma 14 If x ∧ y = 0 then x + y = x ∨ y.

Proof Let x ∧ y = 0. Then

x = x ⇀ (x ∧ y) = (x ⇀ x) ∨ (x ⇀ y) = x ⇀ y

which yields x + y = (x ⇀ y) + y = x ∨ y. �

Lemma 15 B(A) ⊆ Idem(A).

Proof Let a ∈ B(A), i.e. a ∧ a′ = 0 and a∨ a′ = 1 for some a′ ∈ A. Note that
a + a′ = 1 since a ∨ a′ � a + a′. Then

a = a + (a ∧ a′) = (a + a) ∧ (a + a′) = (a + a) ∧ 1 = a + a,

so a ∈ Idem(A). �

Remark 16 Observe that if a ∈ B(A) then (a] and (a′] are normal ideals in A
such that (a] ∩ (a′] = {0} and (a] ∨ (a′] = A, and therefore we can easily see
that A is isomorphic with the direct product of (a] and (a′].

Theorem 17 B(A) is a DR�-submonoid of A in which a + b = a ∨ b and
a ⇀ b = a ↽ b = a ∧ b′.
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Proof One readily sees that B(A) is a sublattice of �(A) since �(A) is a dis-
tributive lattice.

By Lemma 6, a ⇀ b = a ↽ b and x � a ⇀ b iff x ∨ b = x + b � a,
whence a ∧ b′ � (x ∨ b) ∧ b′ = x ∧ b′ � x. Conversely, if x � a ∧ b′ then
x + b = x ∨ b � (a ∧ b′) ∨ b = a ∨ b � a, thus x � a ⇀ b. Altogether, x � a ⇀ b
iff x � a ∧ b′ for any x ∈ A. Therefore (a ⇀ b)′ = a′ ∨ b and so a ⇀ b ∈ B(A).

�

Corollary 18 (B(A);∨,∧, ′, 0, 1) is a Boolean algebra, where a′ = 1 ⇀ a.

By [6, Theorem 2.3], A is a GMV -algebra if and only if the identities

x ∧ y = x ⇀ (x ↽ y) = x ↽ (x ⇀ y)

hold in A. Therefore, let

GMV (A) = {a ∈ A : a ∧ x = x ⇀ (x ↽ a) = x ↽ (x ⇀ a) for all x ∈ A}.
Lemma 19 The following identities hold in any DR�-monoid:

(i) y � x ⇀ (x ↽ y), y � x ↽ (x ⇀ y),

(ii) x ↽ (x ⇀ (x ↽ y)) = x ↽ y, x ⇀ (x ↽ (x ⇀ y)) = x ⇀ y.

Proof (i) Obviously, y � x ⇀ (x ↽ y) iff x ∨ y = y + (x ↽ y) � x.
(ii) From y � x ⇀ (x ↽ y) we obtain

x ↽ y � x ↽ (x ⇀ (x ↽ y))

and by replacing y by x ↽ y in (i) we immediately have

x ↽ y � x ↽ (x ⇀ (x ↽ y)). �

Theorem 20 B(A) = Idem(A) ∩GMV (A).

Proof If a ∈ Idem(A) ∩GMV (A) then

(1 ⇀ a) ∨ a = (1 ⇀ a) + a = 1 ∨ a = 1

and

(1 ⇀ a) ∧ a = (1 ⇀ a) ↽ ((1 ⇀ a) ⇀ a) = (1 ⇀ a) ↽ (1 ⇀ (a + a))
= (1 ⇀ a) ↽ (1 ⇀ a) = 0,

so a ∈ B(A).
Conversely, let a ∈ B(A) ⊆ Idem(A), that is, a ∧ a′ = 0. In view of Lemma

19 (i) we have x ⇀ (x ↽ a) � x ∧ a. However,

x ⇀ (x ↽ a) = (x ⇀ (x ↽ a)) + (a ∧ a′)
= ((x ⇀ (x ↽ a)) + a) ∧ ((x ⇀ (x ↽ a)) + a′) � a ∧ x

since (x ⇀ (x ↽ a)) + a � a and a′ = 1 ↽ a � x ↽ a = x ↽ (x ⇀ (x ↽ a))
by Lemma 2 (iv) and Lemma 19 (ii), which implies (x ⇀ (x ↽ a)) + a′ � x.
Therefore, a ∈ Idem(A) ∩GMV (A). �
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Lemma 21 B(A) = {a ∈ A : a ∧ (1 ⇀ a) = 0} = {a ∈ A : a ∧ (1 ↽ a) = 0}.

Proof If a ∧ (1 ⇀ a) = 0 then

(1 ⇀ a) ∨ a = (1 ⇀ a) + a = 1 ∨ a = 1

by Lemma 14. Thus a′ = 1 ⇀ a is the complement of a in �(A). �

Corollary 22 Let I be a normal ideal in A. Then A/I is a Boolean algebra if
and only if a ∧ (1 ⇀ a) ∈ I for all a ∈ A.
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