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ON MAGIC GRAPHS

JIRI SEDLACEK

In this paper we consider finite undirected graphs without loops and multiple
edges only. We write G =[V, E] if the graph G has the vertex set V and the edge
set E. In [9] we were inspired by the well-known concept of a magic square to
introduce the so called magic graphs. Detailed description of these graphs was
given by B. M. Stewart ([13] and [15]) and there also exist further papers dealing
with magic graphs — see e.g. [2, 3, 7, 12, 16]. ,

We describe a connected graph G (with |E|=2) as being pseudo-magic if and
only if there exists a real-valued function a on the edges of G with the property
that (i) distinct edges have distinct values assigned, and (ii) the sum of values
assigned to all edges incident to a given vertex x is the same for all vertices of G.
Let us denote the constant vertex sum by o(a), or shortly by 0. From Appendix
1 in [6] we can conclude that there is no pseudo-magic graph G=[V, E] with
|E|=4 and there exist 11 pseudo-magic graphs on five vertices.

We describe a pseudo-magic graph G as being magic if and only if there exists an
a with a(e)>0 for every edge e in G. If a satisfies the property of “positiveness”
is also called magic. We say that G is super-magic if and only if there exists a magic
a so that the set {a(e)|e e E} consists of consecutive integers ; we agree that a is
also called super-magic. It is easy to see that the classic concept of a magic square of
n? boxes corresponds to the fact that the complete bipartite graph (n, n) is
super-magic for n =3 (see also [13]).

In the theory of numbers (cf. [11], p. 433—438) magic squares in a more general
sense consisting of primes are known. This gave us in [9] an impulse to investigate
magic graphs in which each a(e) is a prime number. In Stewart’s terminology these
graphs are called prime-magic. Let us mention that there also exist papers dealing
with magic graphs in a slightly different sense. As shown in [8], p. 156—157, the
idea of geometric structures with a ‘““magic’ valuation have already been studied
independently on the graph theory and comprehensive references can be found in
[1]. :

" R.L.Guy and F. Harary in [4] and [5] consider the graph M, (also called the
Mobius ladder) and define it as follows: If # =2m =6 then M, consists of a circuit
C, of length n and the 4n chords joining opposite pairs of vertices of C, (see also
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[17], p. 165). It can be shown that M,,, can be obtained by completing the graph in
Fig. 1 by edges u,v,,, u,v,. If n=2m+1=5 then M, is defined as the graph
consisting of an n-gon C, together with two chords at each vertex joining it to the
two most opposite vertices of C,. It is easy to see that M,,,., is obtainable from the
graph in Fig. 2 by adding the edges «,v,.,,, U.v1, V,V,..,. R. K. Guy and F. Harary
point out that M, and M, are the two Kuratowski graphs (5) and (3,3) (i.e. the
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complete graph with five vertices and the complete bipartite graph on two sets of
three vertices each). They also show that every Mobius ladder is minimally
nonplanar (i.e. its crossing number is one). In [10] we found that the number of
trees spanning the graph M,,, can be expressed by a relatively simple formula. In
this paper we approach Mobius ladders in a different way.

u, u, u Upm

2 v, v v Vm Vmet
Fig. 2

Theorem 1. M., ., is magic.
Proof. To construct a magic a we discuss two cases.
a) If m is even (m=2r) then for i=1, 2, ..., 2r we put

a(uv)=1, a(uv,.,)=2r+i+1,

fori=1,2, .., 2r—1
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a(uu.,)=8r+2—1i,
for even i=2r we have
a(vv,,)=6r+2—1i,
for odd i=2r—1
a(vv,,)=10r+3—1i,
and finally _
a(v,vy,)=2r+1, a(vu,)=6r+2, a(u,v,,,)=8r+2.

It is easy to see that a is magic with g =187 +6.

b) If m is odd (m =2r + 1) then a can be constructed as follows: Fori=1,2, ...,
2r+1 put

a(uv)=i, a(uv.,,)=2r+i+2,
a(vvi,)=8r+6—1i,
for even i=2r put
a(uu,,)=6r+4—i,
for odd i=2r—1
a(uu,)=10r+7—1i,
and finally

a(v|v2,+2)=2r+2 ’ (Z(U,uz,+1)=8r+6 ’
a(uvy,,,)=6r+4.

We can see again that a is magic with 0=18r+ 14. Hence the proof.
It is an open problem to decide whether M., ., is super-magic for some m. The

graph M, (the complete graph on five vertices) is not super-magic — see [13], p.
1054 and [15], p. 427.

Theorem 2. If m is odd, m = 3, then M,,, is super-magic. If m is even, m Z4, then
M,,, is not pseudo-magic.

Proof. a) Suppose that m is odd, m =2r + 1=3. We construct a Super-magic a
as follows: For £=1, 2, ..., r we put

a(Uzp-U )=k , a(Uslhznir)=3r+ k+2,
a(v2k_|v2k)=2r+k+1 , a(vZkU2k4,1)=r+k+1 N

fori=1,2,.. 2r+1

a(uv)=6r+4—i
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and finally

a(uv,.,)=3r+2, a(uy . v)=r+1.

It is not difficult to check that the values of a are 1, 2, ..., 6r + 3 and further that
o=9r+6.

b) Suppose that m is'even and M,,, is pseudo-magic under the function a. If we
put £=a(v,v,) — a(u,u,) then e#0. We obtain
a(v,..)=a(uu..,)—(—1)e

for i=1, 2, ..., m—1 and further

a(v,.u,)=a(u,v,)—¢€.

From the relation

a(v,u,)+ a(uuw,)=a(u,v,)+ a(v,v,)

it follows that £ = 0, giving the required contradiction. This completes the proof.
The next theorem gives a supplementary result to Theorem 2. Before uttering it

we define P,,, (for m=3) by adding the edges «,u,,, v,v,, to the graph in Fig. 1.

The graph P,,, may be called the prism (or the untwisted ladder) and was already

studied by several authors. For instance N. Biggs in his letter to the present author
(April 1971) points out that

m
5 (2+V3)"+(2-V3)"-2)
is the number of trees spanning the graph P,,,,.

Theorem 3. If m is even, m =4, then P,,, is magic, but not super-magic. If m is
odd, m=3, then P,,, is not pseudo-magic.
Proof. a) If m is even (m =2r) then we define a as follows: For k=1, 2, ...,
r we put
a(Up_uy)=k, (V- V)=r+k+1,
for k=1,2, ..., r—1

a(Upltho)=3r+k+3, A(VopVais)=2r+k+2,
for i=2,3, .., 2r—1
a(uv,)=6,—i+2,

and finally

a(uuy,)=2r+2, a(viv,)=r+1,
a(uv)=Tr+2, a(u,v,,)=6r+3.
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Itis easy to see that a is magic with 0 =97 + 5. It remains to show that there is no
super-magic a. If @ were super-magic the values of @ wouldbe a,a+1,a+2, ...,
a+3m—1. We would have

3m—1

2mo(a)=2 Z (a+i)

or
o(a)=32a+3m—-1).

This contradicts the fact that o(a) is an integer.

b) If m is odd we can, using similar considerations as in Theorem 2 — case b),
also get a contradiction. This completes the proof.

Concluding this paper, let us investigate prime-magic graphs. B.M. Stewart [13]
shows that the graph M, (i.e. the complete bipartite graph of type (3, 3)) is
prime-magic with o0 =139. W. Sierpinski[11] gives an example of a magic square
with three rows formed only from prime numbers and satisfying o =1077. What
minimal value of o can be assigned to the graph (3,3)?

Theorem 4a. The smallest natural number o divisible by three which can be
assigned to the prime-magic graph (3,3) is 0=99.

Proof. Let us express a in terms of matrices, A =(a;). If o(a) is odd and
divisible by three then either all the nine prime numbers a; are =1 or all the nine
of them are= —1 (mod 3). Thus either

30=7+13+19+31+37+43+61+67+73
or
30=5+11+23+29+41+47+53+59;

this results in 0=99. The matrix
71, 5, 23
[1 1, 41, 47 ]
17, 53, 29
shows that 0 =99 is the minimum value, indeed.

Theorem 4b. The smallest natural number o not divisible by three which can be
assigned to the prime-magic graph (3,3) is 0=53.

Proof. If 0=1 (mod 3) then either six elements of A are=1 and the other
are= —1 (mod 3) or we have a, =3 for some £, j. In the first case we get

30Z(T+13+19+431+37+43)+(5+11+17)

or 0=61. In the second case there are, besides a; =3, four other elements of A
being=1 and four of them being= —1 (mod 3). Thus
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30Z3+(7T+13+19+31)+(5+11+17+23)

or 0 =43. Let us discuss the cases 0 =43 and 0 =49. For 0 =43 only primes 5, 11,
17 and 23 are available to decompose the number 43 — g, =40 into a sum in two
different ways. However, this is impossible and we have a contradiction. For o =49
the primes 5, 11, 17, 23, 29 and 41 are available, but the number 49 —a, =46
cannot be decomposed in two different ways.

If 0= —1 (mod 3) then the consideration is similar as before : we can show that
there is no o satisfying 0<53. For 0 =53 we have
3, 13, 37
19, 23, 11
31, 17, 5

and the proof is thus completed.

Added in proof. Meanwhile M. Doob has shown that both M,,,, m even, and
P,.., m odd, are magic (Proc. 5th S-E Conf. Combinatorics, Graph Theory, and
Computing, pp. 361—374).
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O MATUYECKHX TPAPAX
Upxn Cennavex
Pe3ome

Ha xougepenuun B CMoneHuue B 1963 r. aBTOp BBEN IOHATHE Maruyeckoro rpacga, KOTOpbIi TECHO
CBSI3aH C XOpOLIO M3BECTHBIMH MarMyecKMMH KBafpaTtamu. B pa6otax [13, 15] npeanoxena knaccudu-
Kalust 3THX rpacoB B Pa3IMYHbIE TUIbI (ICEBIOMAarMyecKue, MarniyecKue, CBepXMarnieckme, Marmyec-
KHeE 10 OTHOLIEHHIO K IIPOCTBIM YHCJIaM M T.I1.). B mocnenyromeM aTuMu rpacdaMi 3aHMMAJIUCh U APYTHe
aBTOpbl — cM. Hampumep [2, 7, 12]. B HacTosiiei CTaTbe Mbl ONUCHIBAEM AATbHEHIIHE KIIACChl
MarM4ecKux ¥ CBEpXMarudeckux rpacgos.

335



		webmaster@dml.cz
	2012-07-31T20:54:50+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




