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ON MAGIC GRAPHS 

JIRI SEDLACEK 

In this paper we consider finite undirected graphs without loops and multiple 
edges only. We write G = [ V, E] if the graph G has the vertex set V and the edge 
set E. In [9] we were inspired by the well-known concept of a magic square to 
introduce the so called magic graphs. Detailed description of these graphs was 
given by B. M. Stewart ([13] and [15]) and there also exist further papers dealing 
with magic graphs — see e.g. [2, 3, 7, 12, 16]. 

We describe a connected graph G (with \E\ 1=2) as being pseudo-magic if and 
only if there exists a real-valued function a on the edges of G with the property 
that (i) distinct edges have distinct values assigned, and (ii) the sum of values 
assigned to all edges incident to a given vertex x is the same for all vertices of G. 
Let us denote the constant vertex sum by o(a), or shortly by o. From Appendix 
1 in [6] we can conclude that there is no pseudo-magic graph G = [ V, E] with 
|£|=i4 and there exist 11 pseudo-magic graphs on five vertices. 

We describe a pseudo-magic graph G as being magic if and only if there exists an 
a with a(e)>0 for every edge e in G. If a satisfies the property of "positiveness" 
is also called magic. We say that G is super-magic if and only if there exists a magic 
a so that the set {a(e)\e e E} consists of consecutive integers; we agree that a is 
also called super-magic. It is easy to see that the classic concept of a magic square of 
n2 boxes corresponds to the fact that the complete bipartite graph (n,n) is 
super-magic for /z=.3 (see also [13]). 

In the theory of numbers (cf. [11], p. 433—438) magic squares in a more general 
sense consisting of primes are known. This gave us in [9] an impulse to investigate 
magic graphs in which each a(e) is a prime number. In Stewart's terminology these 
graphs are called prime-magic. Let us mention that there also exist papers dealing 
with magic graphs in a slightly different sense. As shown in [8], p. 156—157, the 
idea of geometric structures with a "magic" valuation have already been studied 
independently on the graph theory and comprehensive references can be found in 

R. L.Guy and F. Harary in [4] and [5] consider the graph Mn (also called the 
Mobius ladder) and define it as follows: If n — 2m =. 6 then Mn consists of a circuit 
Cn of length n and the \n chords joining opposite pairs of vertices of Cn (see also 
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[17], p. 165). It can be shown that M2m can be obtained by completing the graph in 
Fig. 1 by edges uxvm, umvx. If n=2m + l=\5 then Mn is defined as the graph 
consisting of an n-gon Cn together with two chords at each vertex joining it to the 
two most opposite vertices of Cn. It is easy to see that M2m+l is obtainable from the 
graph in Fig. 2 by adding the edges ulvm+u umvu vxvm+l. R. K. Guy and F. Harary 
point out that M5 and M6 are the two Kuratowski graphs (5) and (3,3) (i.e. the 

Um-1 

•fc-f 

Fig.l 

complete graph with five vertices and the complete bipartite graph on two sets of 
three vertices each). They also show that every Mobius ladder is minimally 
nonplanar (i.e. its crossing number is one). In [10] we found that the number of 
trees spanning the graph M2m can be expressed by a relatively simple formula. In 
this paper we approach Mobius ladders in a different way. 

rm+1 

Fig. 2 

Theorem 1. M2m+l is magic. 
Proof. To construct a magic a we discuss two cases. 
a) If m is even (m = 2r) then for /= 1, 2, ..., 2r we put 

a(ulvi) = i, a(utvi+l) = 2r+ i+ 1 , 

for i=\, 2, ..., 2 r - l 
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a(UiUi+l) = 8r + 2 — / , 

for even /=i2r we have 

a(vivl+x) = 6r + 2 - i , 

for odd / = 2 r - l 

a(v(vi+l) = 10r + 3 —/ , 

and finally 

a(vlv2r+l) = 2r+l , a(vxu2r) = 6r + 2 , a(ulv2r+l) = 8r + 2 . 

It is easy to see that a is magic with o= 18r + 6. 

b) If m is odd (m = 2r+ 1) then a can be constructed as follows: For / = 1 , 2,..., 
2 r + l put 

for even /=i2r put 

for odd / = 2 r - l 

and finally 

a(UiVi) = i , a(UiVi+l) = 2r + / + 2 , 
a(ViVi+l) = 8r + 6 — / , 

a(wIwí+i) = 6r + 4 - / , 

a(UiUi+l) = 10r + 7 —/ , 

a(г;iг;2r+2) = 2г + 2 , a(vxu2r+x) = 8r + 6 , 
a(uxv2r+2) = 6r + 4 . 

We can see again that a is magic with o= 18r+ 14. Hence the proof. 
It is an open problem to decide whether M2m+1 is super-magic for some m. The 

graph M5 (the complete graph on five vertices) is not super-magic — see [13], p. 
1054 and [15], p. 427. 

Theorem 2. If m is odd, m =" 3, then M2m is super-magic. Ifm is even, m^4, then 
M2m is not pseudo-magic. 

Proof, a) Suppose that m is odd, m = 2r+1^3. We construct a super-magic a 
as follows: For k= 1, 2, ..., r we put 

a(u2k.xu2k) = k , a(«2fc«2*+1) = 3 r + k + 2 , 
a(v2k.xv2k) = 2r + k + 1 , a(v2kv2k+x) = r + k + 1 , 

for / = 1 , 2, ..., 2 r + l 

a(UiVi) = 6r + 4 — i 
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and finally 

a(uxv2r+x) = 3r + 2 , a(u2r+xvx) = r + 1 . 

It is not difficult to check that the values of a are 1, 2 , . . . , 6r + 3 and further that 
a = 9r + 6. 

b) Suppose that m is even and M2m is pseudo-magic under the function a. If we 
put e = a(vxv2) — a(uxu2) then f^O. We obtain 

a(vtvi+x) = a(w,ul+1) - ( - \)1E 

for / = 1 , 2, ..., m — 1 and further 

a(vmux) = a(umvx)-e . 

From the relation 

a(vmux) + a(uxu2) = a(umvx) + a(v1f 2) 

it follows that e = 0, giving the required contradiction. This completes the proof. 
The next theorem gives a supplementary result to Theorem 2. Before uttering it 

we define P2m (for m S 3 ) by adding the edges uxum, vxvm to the graph in Fig. 1. 
The graph P2m may be called the prism (or the untwisted ladder) and was already 
studied by several authors. For instance N. Biggs in his letter to the present author 
(April 1971) points out that 

y((2 + V3r + (2-V3)^-2) 

is the number of trees spanning the graph P2m. 

Theorem 3. Um is even, m^A, then P2m is magic, but not super-magic. If m is 
odd, ra^3, then P2m is not pseudo-magic. 

Proof, a) If m is even (m = 2r) then we define a as follows: For k = 1, 2, ..., 
r we put 

a(u2k.xu2k) = k , a(v2k-xv2k) = r + k + 1 , 

for k = l , 2, ..., r-1 

a(u2ku2k+x) = 3r + k + 3 , a(v2kv2k+x) = 2r + k + 2 , 

for i = 2, 3, ..., 2 r - l 

a(uivi) = 6r-i + 2 , 

and finally 

a(uxu2r) = 2r-\-2 , a(vxv2r) = r+ 1 , 
a(uxvx) = 7r + 2 , a(u2rv2r) = 6r + 3 . 
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It is easy to see that a is magic with o = 9r + 5. It remains to show that there is no 
super-magic a. If a were super-magic the values of a would be a, a + 1, a + 2,. . . , 
a + 3 m - 1. We would have 

3 m - l 

2mo(a) = 2 ^(a + i) 
1 = 0 

or 

o(a) = l(2a + 3m-l) . 

This contradicts the fact that o(a) is an integer. 
b) If m is odd we can, using similar considerations as in Theorem 2 — case b), 

also get a contradiction. This completes the proof. 
Concluding this paper, let us investigate prime-magic graphs. B.M. Stewart [13] 

shows that the graph M6 (i.e. the complete bipartite graph of type (3,3)) is 
prime-magic with o = 139. W. Sierpiiiski[ll] gives an example of a magic square 
with three rows formed only from prime numbers and satisfying o= 1077. What 
minimal value of o can be assigned to the graph (3,3) ? 

Theorem 4a. The smallest natural number o divisible by three which can be 
assigned to the prime-magic graph (3,3) is o = 99. 

Proof. Let us express a in terms of matrices, A = (aiJ). If o(a) is odd and 
divisible by three then either all the nine prime numbers aif are = 1 or all the nine 
of them are= — 1 (mod 3). Thus either 

3a = 7 + 13 + 19 + 31 + 37 + 43 + 61 + 67 + 73 
or 

3a = 5 + l l + 23 + 29 + 41+47 + 53 + 59; 

this results in o = 99. The matrix 

["71, 5, 23 
11, 41, 47 
17, 53, 29J 

shows that o = 99 is the minimum value, indeed. 

Theorem 4b. The smallest natural number o not divisible by three which can be 
assigned to the prime-magic graph (3,3) is a = 53. 

Proof. If o=\ (mod 3) then either six elements of A are = l and the other 
are= - 1 (mod 3) or we have atj = 3 for some /, /. In the first case we get 

3a = (7+13 + 19 + 31 + 37 + 43) + (5 + l l + 17) 

or o 1=61. In the second case there are, besides au = 3, four other elements of A 
being=l and four of them being= — 1 (mod 3). Thus 
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3<7^3 + (7 + 13 + 19 + 31) + (5 + l l + 17 + 23) 

or a 1^43. Let us discuss the cases a = 43 and a = 49. For cr = 43 only primes 5, 11, 
17 and 23 are available to decompose the number 43 - atJ = 40 into a sum in two 
different ways. However, this is impossible and we have a contradiction. For a = 49 
the primes 5, 11, 17, 23, 29 and 41 are available, but the number 49-a , y =46 
cannot be decomposed in two different ways. 

If a= — 1 (mod 3) then the consideration is similar as before: we can show that 
there is no a satisfying cr<53. For cr = 53 we have 

3, 13, 37 
19, 23, 11 

L31, 17, 5J 

and the proof is thus completed. 
Added in proof. Meanwhile M. Doob has shown that both M2 m, m even, and 

P2m, m odd, are magic (Proc. 5th S-E Conf. Combinatorics, Graph Theory, and 
Computing, pp. 361—374). 
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О МАГИЧЕСКИХ ГРАФАХ 

Иржи Седлачек 

Резюме 

На конференции в Смоленице в 1963 г. автор ввел понятие магического графа, который тесно 
связан с хорошо известными магическими квадратами. В работах [13, 15] предложена классифи­
кация этих графов в различные типы (псевдомагические, магические, сверхмагические, магичес­
кие по отношению к простым числам и т.п.). В последующем этими графами занимались и другие 
авторы — см. например [2, 7, 12]. В настоящей статье мы описываем дальнейшие классы 
магических и сверхмагических графов. 
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