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Math. Slovaca 32,1982, No 1,3—22 

POPRODUCT OF LATTICES 

ZUZANA LADZIANSKA 

The poproduct was introduced for the class of distributive lattices by R. Balbes 
and A. Horn [2] under the name order sum. The notion of the .^-poproduct for an 
arbitrary equational class % of lattices was defined in [11]. The .vlf-poproduct is 
a generalization of the ̂ T-free product and the ordinal sum of lattices. M. Hof t [8] 
defined the order sum for the class of partially ordered algebras and showed that 
the order sum exists in each quasi-equational class. If 3if is an equational class of 
lattices, then the ^f-poproduct always exists and coincides with the order sum. The 
3if-poproduct was considered by T. G. Kucera and B. Sands [10] under the name 

Ф,.,4 
The present paper consists of five parts, in which various problems concerning 

a poproduct are considered. 

1. The word problem for the if-poproduct of lattices 
2. Minimal representation of the elements of poproduct 
3. Free-lattice-like sublattices of the poproduct of lattices 
4. The poproduct decomposition of a lattice 
5. Poproduct and direct (inverse) limits of lattices 

1* The word problem for the -Sf-poproduct of lattices 

In [11] we have investigated the word problem for the if-poproduct. But the 
solution stated there is not correct, as we worked with an inadequate definitior of 
the cover of an element. In the present paper we shall improve this result. 

Let R be a poset and let Lr, reR be pairwise disjoint lattices. The lattice 
operations in each Lr will be denoted by v, A. Let Q = u(L r ; r eR) be partially 
ordered in the following way: for a, b e Q we put a ^ b if and only if one of the 
conditions (1) and (2) holds: 

(1) there is an r e R such that a,beLr and the relation a ^ b holds in L r; 
(2) there are p,reR such that aeLp, b eLr and the relation p<r holds in the 

poset R. 

If / is a mapping from Q into a lattice M, then fr denotes its restriction on Lr. 



Definition 1.1. Let 3if be an equational class of lattices. Let L, Lr edf for reR 
and let R be a poset. The lattice L is said to be the JC-poproduct of the lattices Lr if: 

(1) there is an isotone injection i:Q->L such that for each reR, ir is a lattice 
homomorphism; 

(2) if M e jf{, then for every isotone mapping f:Q-*M such that for each reR, 
fr is a lattice homomorphism, there exists uniquely a lattice homomorphism 
g:L->M such that g0i=f. 

From the definition it follows that L is generated by the set i(Q). If it does not 
cause ambiguity we say simply that i:Q-*L is a canonical embedding. We shall 
mostly identify the sets Q and i(Q). We also say that Q is a skeleton of L . 

The X-poproduct of the lattices Lr, reR will be denoted by Px(Lr; re R). It is 
easy to see that a poproduct exists in each equational class of lattices. From the 
definition it follows that the Jf-poproduct form the Jif-free product if and only if R 
is an antichain and that the jfi -poproduct forms the ordinal sum if and only if R is 
a chain. 

We shall consider the word problem for an ^-poproduct of lattices, where X is 
the class of all lattices, ^-poproduct of the lattices Lr, reR will be briefly called 
poproduct and denoted by P(Lr; reR). The poproduct is a special case of the 
FL(Q, A, B), the free lattice generated by the partially ordered set Q and 
preserving finite joins and meets of elements of Q, defined by R. A. D e a n in [3] 
In our case, the set A =B consists of all comparable pairs of the set Q and of all 
finite subsets of every lattice Lr, reR. 

Throughout the paper, Q will denote a skeleton of a poproduct Let us denote by 
W(Q) the set of lattice polynomials (words, terms) over Q. These polynomials are 
formed from symbols denoting elements of Q and from the symbols v , A . For 
a, be W(Q) the symbol a = b means that a equals b as the elements of the 
absolutely free algebra. In [3], the relation ^ between the elements of W(Q) was 
defined, from that relation we get the equivalence = and FL(Q, A, B) 
= W(0)/ = . For simplicity, we shall identify classes [a] in the equivalence — with 
their representatives a, thus the lattices Lr will be considered as sublattices of the 
poproduct. Instead of a ~ b we shall usually write only a = b. Similarly as in [3], let 
us denote J(a) = {p: peQ, p~a}, M(a) = {p:p e Q, p^a}. For each a e W(Q) 
define a natural number 1(a) — the length of a — as follows: if aeQ, then 
l(a) = l,ii a, beW(Q), then l(avb) = l(aAb) = 1(a) + 1(b). For re R, denote 
by I(Lr) the lattice of all nonempty ideals of Lr and by D(Lr) the lattice of all 
nonempty dual ideals (filters) of L r. Denote I0(Lr) = I(L r)u{0} and D0(Lr) 
= D(Lr)\^'{0}. The operations in lattices I0(Lr) and D0(Lr) will be denoted by V 
(join) and A (meet). Similarly as in [9], for each reR we shall define 
a homomorphism T r:W(Q)-*I0(Lr) and a dual homomorphism T:W(Q)-> 
D0(Lr) as follows: 



Tr(a) = {xeLr:x^a} = (a], T(a) = {x e Lr: x^a} = [a) if aeLr, 
Tr(a) = Lr, T(a) = 0 if aeLp, p>r, 
Tr(a) = 0, T(a) = Lr if aeLp, p<r, 
Tr(a) = 0, T(a) = 0 if aeLp, p\\r (p, r incomparable). 

Since W(Q) is an absolutely free algebra, there exist uniquely the extensions of 
the given mappings onto homomorphism and dual homomorphisriv respectively, 
hence the following holds: 

Tr(avb) = Tr(a)VTr(b), 
T(awb) = T(a)AT(b)=T(a)nT(b), 
T(a/\b) = T(a)VT(b), 
Tr(a/\b) = Tr(a)ATr(b) = Tr(a)nTr(b). 

Lemma 1.1. For a e W(Q) both Tr(a) = J(a)nLr, and T(a) = M(a)nLr hold. 
Proof. By induction with respect to the length of a. 
Denote by 0,1 two new elements, which do not belong to the skeleton 0 and 

extend the partial ordering from the set Q to the set Ou{0 , 1} (u denotes the 
disjuint union of sets) in the following way: for each q e Q the relation 0<q < 1 
holds. 

Similarly as in [6], for each aeW(Q) and each reR the upper r-cover a(r) and 
the lower r-cover a(r) are defined as follows: 

Definition 1.2. 

1. LetaeLp. 
If p = r, then a(r) = a(r) = a. 
If p || r, i.e. p and r and incomparable, then a(r) = 0, a(r) = 1. • 
If p<r, then a(r) = 0, a(r) = 0. 
If p>r, then a(r)=l, a(r) = l. 

2. Let a =p(au ..., an). 
Then a(r) = p((ax)(r), ..., (an)(r)) and 
a(r) = p((al)

(r),...,(an)
(r)). 

If a(r) or a(r)eLr, it is called a proper cover. 

Proceeding by induction on the length of a =p(au ..., an) one can easily prove 
the following six propositions. 

Proposition 1.1. Let a = p(au ..., an). If a(r) or a(r) is proper, then there is at 
least one i,l^i^n such that a, e Lr. Hence, for a given a e W(Q) there exists only 
a finite number of proper covers. 

Proposition 1.2. If a=p(au ..., an) and a(r) is proper, then there exists 
a polynomial p'(bu ...,bm) such that {bu...,bm} g {fli, ...,«„} n Lr and 
0(r) = P'(pu .., bm). And dually for a(r). 



Proposition 1.3. If a(r) is proper, then a{r)^a. Dually, if a(r) is proper, then 
a(r)^a 

If Tr(a) is a principal ideal, denote its generator by ar, i.e. T r(a) =-= (a r]. If T r(a) is 
a principal filter, denote its generator by ar, i.e. T(a) = [ar). If Lr has the smallest 
element, denote such an element by or. If Lr has the greatest element, denote such 
an element by ir. 

Proposition 1.4. Ifa{r) is proper, then ar exists and a(r) = ar. If a(r) is proper, then 
ar exists and alr)~ar. 

Conxeisely, if ar exists, it need not imply that a(r) is proper and a(r) - ar, for it can 
happen that ar •= ir and a(r) is not proper. 

Proposition 1.5. If ar exists and ar+ ir, then a(r) is proper and ar = a(r). Ifa
r exists 

ind ar4ot, then a(r) is proper and ar = a(r). 

Proposition 1.6. If ir does not exist, then a{r) is proper if and only if ar exists. In 
such a case a(r) - ar. If or does not exist, then a(r) is proper if and only if ar exists. In 
sich a case, a(r)-ar. 

The following theorem gives a solution of the word problem for the poproduct 

Theorem 1.1. Let L = P(Lr ,reR), let Q be a skeleton of L, let a, be \V(Q). 
Then a^b if and only if one of the following holds: 

(1) a^a{va2, where a{^b and a2^b, 
(2) a ^ « , A l j , , where axtkb or a2 = b, 
(3) b^zb]A.b2, where a^bx and a^=kb2, 
(4) b^bxvb2, where a ^ b i or a^b2, 
(5) there arep,reR(p^ r) such that a(p\ b ( r ) are proper and a(p) .§ b{r) holds. 

Proof. Thioughout the proof, the following two lemmas will be used, which 
easily follow from the definition of an r-covei. 

Lemma 1.2. Let a^ayva2, T(a)±0, a(r) be not proper. Then T(ax)-Lr, 
Ir(a2)=~Lr. Dually, leta^a{/\a2, Tr(a)=£0, a(r) be not proper. Then T r(a t) = Lr, 
Tr(a?)= Lr. 

Lemma 1.3. Let fl = a,Aa2, Tr(a)=£0, a(r) be not proper. Then either T(ax)=~-
U or T(a2)^Lr. Dually, leta = a,va2, T r(a)^-0, a(r) be not proper. Then either 
Ir(ax)^Lr or Tr(a2) = Lr. 

Now we shall prove Theorem 1.1. Theorem 7 of [31 characterizes a ^b in the 
free lattice FL(Q,A,B), using conditions (1)—(4) of Theorem 1.1 and the 
condition 
(5') M ( a ) n J ( b ) ^ 0 . 

Since F(Lr; r c R) = FL(Q, A, B) for suitable A and B, the conditions (1)—(5) 
are sufficient for a^b. Conversely, let a,be\V(Q) and let a^b. Then by 



Theorem 7 of [3], either one of (1)—(4) holds or (5') is true, i.e. there is an x e Q 
such that a=x = b. Suppose that there exists an x e Q such that a = x = b and let 
jceLr, reR. Therefore xeM(a)nLr = T(a), x e J(b)nLr = Tr(b). If both a(r\ 
b{r) are proper, then a(r) = x = b{r) and (5) holds. Let at least one of a(r), b{r) not be 
proper. If /(a) = l, 1(b) = 1, then aeLp, beLq and a = a(p)'=x = b{q) = b and (5) 
holds. Let at least one of 1(a), 1(b) greater than 1. 

If a(r) is not proper and 1(a) > 1, then \ia = axva2, using Lemma 1.2 we get (1), and 
if a = ax/\a2, using Lemma 1.3, we get (2). 
If b{r) is not proper and 1(b) > 1, then if b = bx/\b2, using Lemma 1.2 we get (3) and 
if 6 = b.vb2, using Lemma 1.3, we get (4). 
If a(r) is proper and / ( a )> l , 1(b) = 1, we get (5). 
If b{r) is proper and 1(b) > 1 , 1(a) = 1, we get (5). 

It is now easy to see that every case leads to one of the above mentioned 
possibilities and the theorem is proved. 

Since for a given a e W(Q) there exists only a finite number of proper covers a(r), 
a{r), reR, the word problem is recursively solvable. 

The word problem for a free product of lattices [6] is a corollary of Theorem 1.1. 
The following result is a generalization of Theorem 4 A from [9]. 
Let Lr, reR be pairwise disjoint sublattices of the lattice L such that Q = 

u(Lr; reR) (with the usual ordering) generates L, [Q] = L. Denote by 
T: W(Q)-+L the function assigning to every word its value in L. Then T is an 
epimorphism and T(x) = x for x e Q. Homomorphisms Tr, T are defined similarly 
as for the poproduct. 

Theorem 1.2. L is isomorphic to P(Lr; reR) if and only if for every p, qeR, 
xeLp, ye Lq, a, b, c, de W(Q) the following conditions hold: 

(1) x = y implies p = q, 
(2) x = T(a) if and only if x e Tp(a), 
(3) x = T(a) if and only if x e Tp(a), 
(4) T(a A b) ;= T(c vd) if and only if at least one of the following five conditions 

holds: T(aAb) =T(c), T(aAb) = T(d), T(a) = T(cvd), T(b) = T(cvd), 
T(aAb) n T r (cvd)^0 for some reR. 

Proof. The proof is similar to that of the corresponding theorem from [9]. 
A poset satisfies the m — chain condition if it contains no chain of cardinality m 

(where m denotes an infinite cardinal). In [1] it was shown that the V-free product 
(where V = 58 or 3)) preserves the m-chain condition for uncountable regular m. 

First it was shown that the completely free lattice CFL(P) preserves the m-chain 
condition for uncountable regular m. Then it was proved that for V = 58 or 2), the 
V-free product of a family (L,; i e I) of lattices can be embedded into the 



completely free lattice generated by u (L , ; iel). Especially S or kin's theorem for 
the free product is an immediate consequence of this embedding. 

Analogically, it can be shown that for Y = !£ or 2) the V-poproduct 
Pv(Lr; reR) can be embedded into the completely free lattice generated by Q, 
where C? is the skeleton of the poproduct. 

Hence PT(Lr; r e R), where Y = X or 3) preserves the m-chain condition for an 
uncountable regular m. 

As an immediate consequence of this embedding we have the following 

Theoiem 1.3 (the generalised Sorkin's theorem). Let L = P(Lr; r e R), let M be 
a lattice, let Q be a skeleton of Land leti: Q-+L be the canonical embedding. Let 
f: Q-^Mbe an isotone mapping. Then there exists (not necessarily uniquely) an 
isotone mapping g: L-^M such that gQi=f. 

2. Minimal representation of the elements of poproduct 

In this paragraph generalizations of the results of [13] are given. 
Each element aeW(Q) represents an element [ a ] e L = P(Lr; reR) 

= W(Q)/ = . A polynomial aeW(Q) is said to be minimal if no shorter 
polynomial in W(Q) represents [a], we also say that a is a minimal representation 
of [a] ([13]). A polynomial aeW(Q) is said to be a v-polynomial if a = bvc 
where a+b, a + c. The dual concept is a A -polynomial. Thus each a e W(Q) is 
either a v-polynomial or a A-polynomial ([13]). 

Theorem 2.1. Let Q be a skeleton of an L-poproduct P(Lr; reR). Let 
a e W(Q). 

(a) If l(a) = 1, then a is minimal. 
(b) If a is a v-polynomial and if a = a0v...vak-u fc>l, with no a, a 

v-polynomial, then a is minimal if and only if the following five conditions 
hold: 

(1) eacii a,-, i<k is minimal, 
(2) for each i<k a i ^ a 0 v . . . v a i - i v a i + l v . . . v a k - 1 , 
(3) ifi<k, / (a , )> , then M(a , )nJ(a) = 0, 
(4) if /(«,-)> 1, a{ = c/\d, then c3ka and d^a, 
(5) if i, j<k, p , qeR, p = q, a{ eLp, a^eL^ then p = q and i=j. 

Proof. The proof is similar to the proof of the corresponding theorem of [13]. 
Part (a) is clear. The necessity of the five conditions in part (b) can be established in 
a similar way to that [13]. We now establish their sufficiency. Let a satisfy these 
conditions and let b e W(Q) be a minimal polynomial such that a = b. We shall 
show that 1(a) = 1(b). 

We first show that l(b)> 1. If 1(b) = 1, then there is a q e R such that beLq. 
From a^b it follows that b eM(a). In the same way a,=ia infers M(a )gM(a , ) 
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and consequently beM(ai). From b = a it follows that beJ(a). Therefore 
beM(a()nJ(a) and M(at)nJ(a)±0 for each i<k. By condition (3) Z(a,) = l 
holds for each i < k. Then by condition (5) the set S = {p: p e R and there is an i, 
i < k, such that a, eLp} is an antichain. For each i < fc there holds at = a = b, hence 
for p e S there is p = q. Since b _ia, by the definition of = there exists i < k such 
that a, eLp,p eS,p = q, b = at in Q. Therefore p = q and b _ia, in L. Since S is an 
antichain and for each peS p = q, the cardinality of S is 1, therefore 1(a) = 1, a 
contradiction. Hence Z(b)>l. 

We show next that b cannot be a A-polynomial. If b = b 0 Ab u then, since a _i b, 
for each i < fc there holds a( = b. We have also b _ia. If b _ia arises by condition 
(5) of theorem 1.1, then M(b)nJ(a)£0, hence there exists a n u e O such that 
b = u = a = b, therefore b = u, which contradicts the minimality of b. Thus b = a 
arises either by (2) or by (4) of theorem 1.1, that means that either b, _i a for some 
/ < 2 , or b=ak-u or b _a0v...vak_2 . The inequality b_ia0v... vak_2 cannot be 
derived by condition (5) of theorem 1.1, because M(b) n J(a0v...vak-2)± 0 and 
J(a)^J(a0v...vak-2) imply M(b)nJ(a)£0, therefore the existence of a ueQ 
such that b = u = a = b, hence b = u, which contradicts the minimality ofb. 
Continuing in this vein we find that either b, = a for some j < 2 or b = a, for some 
i <fc. If b, _ia, then b _i b; _ia _i b, hence b = bh which contradicts the minimality 
of b. If b_ia,, then a ^ a - i b - i a * for i=£/, which contradicts condition (2) of the 
present theorem. 

Consequently, b is a v-polynomial, b = b0v...vbn-1 , n i_ l , where no b, is 
a v-polynomial. We observe that conditions (1)—(5) of the present theorem hold 
for b, because it is a minimal polynomial. Suppose i < k and /(a,)> 1. There holds 
a,_ib. Since a, is a A-polynomial and b is a v-polynomial, a^b cannot hold. If 
a, _ib arises by condition (5) of theorem 1.1, then M(at)nJ(b) =£0 and from b=a 
it follows that J(b)^J(a), therefore M(ai)nJ(a) + 0, which is a contradiction with 
(3). If a,_ib arises by condition (2) of theorem 1.1, it contradicts condition (4). 
Therefore a{ = b is derived by condition (4) of theorem 1.1. Continuing the 
argument in this way we conclude that there is an f(i)<n such that af_ibf(0. If 
b / ( 0eLp , peR, then from a{ _i bm it follows that M(ai)nJ(bm) ± 0. Now J(bm) 
g J(b) and from b = a it follows that J(b) g J(a), hence J(bm) g J(a) and M(flj) 
nJ(a) + 0, contradicting condition (3). Hence Z(bf(I))>l. Since b also satisfies 
conditions (1)—(5), we get that for each j<n such that /(b ;)> 1 there is a g(j)<k 
such that by-iago), hence g(f(i)) exists and a,_ib/(l) _i ag(/(0). By condition (2) 
g(f(i)) = i holds, and thus a, = bm, by condition (1) l(at) = /(bf(0). Thus we have 
established the following statement: 

(*) For each i<k such that /(a,)> 1 there is an f(i)<n such that bm = a{ and 
l(bm) = l(a{), and, similarly, for each j<nsuch that / (b i)>l there is ag(j)<k 
such that agU) = bj and l(agij)) = /(&,); furthermore, g(f(i)) = i and /(fifO')) = /-

Now suppose i < k and /(a,) = 1, hence a, e Lp for some peR. Since a. = b, there 



holds Tp(b)J=0 and T p(a ,)gT p(b) . By the definition of Tp we can suppose that 
0 < r = n and Tp(b ;)^-0 if and only if j<t. Hence Tp(b) = Tp(b0)V...VTp(bt ,), 
where V denotes the lattice join in the lattice of all ideals of the lattice Lp. If 
/ ( b , ) > l f o r a l l j <f , thenby(*) there is / (a s ( J ) )> l and Tp(agii)) = Tp(b,) holds for 
all j<t. Hence g(j) = i for all j<t. Now we have Tp(b0)V ... VTp(b/_1) 
= Tp(ag(0))V ... VTp(aflll_i)) g Tp(a0v ... v a ^ v a . + i V ... vak_i). Thus a, € 
Tp(ai) i iT p (b) <= Tp(a0v ... va , , va I + 1 v ... vak-x), hence a._ia,v ... 
v a i - ^a i+ iV ... vak_i), contradicting condition (2). Consequently, there is an 
f(i)<n such that T p (b f ( o )^0 and /(bf(l)) = l , that is, b f ( 0 e LF(P), F(p)^p. 
Similarly, if j <n and b, 6 Lq for some q e R, then there exists g(j)<k such that 
ag{i) e LGiq), G(q)^q. By condition (5), G(F(p)) = p , hence F(p) = p , G(q) = q 
and f(g(j)) = j for each / < n such that /(b,) = l . Thus we have established the 
following statement: 
(**) There are mappings 

/ :{0, . . . ,fc-l}->{0, . . . , n - l } , g:{0, ..., n -1}->{0, . . . , fc- l} 

satisfying the conditions 

(i) if /<fc, then g(f(i)) = i and if j<n, then f(g(j)) = j , 
(ii) if i<fc and / ( a . ) > l , then bHi) = a{ and l(bm) = /(a,) and simiiariy for any 

j<n such that l(bi)>l, 
(iii) if i<k and a, e Lp, p eR, then bf(t)e Lp, and similarly for any j<n such that 

bjeLq, qeR. 

Consequently, k = n and / , g are permutations of the set {0, ..., fc - 1}. Since 
l(at) = l(bf(l)) for all i < fc, it follows that 1(a) = 1(b). Since b is minimal, a is also 
minimal. Theorem 2.1 is proved. 

If the set {u: ueQ, a i_iu_ia} is finite for each i<fc, then the proof of the 
necessity in theorem 2.1 provides an algorithm for reducing any polynomial to an 
equivalent minimal polynomial. 

We now present an algorithm determining the case of the two minimal 
polynomials representing the same element of L. 

Theorem 2.2. Let Q be a skeleton of an L-poproduct L = P(Lr\ reR). Let 
a, be W(Q) be minimal polynomials. If 1(a) = 1, then a = b if and only if a = b. If 
a = a0v... vafc_!, fc > 1, where no a{ is a v -polynomial, then a = b if and only if b 
can be written in the form b =- b 0v. . . v bfc_, such that the following conditions hold: 

(1) no hi is a v-polynomial, 
(2) for each i<k and p eR, af cLp if and only if b, eLp, 
(3) for each i < fc, / (a ,)> 1 if and only if l(bt)> 1 and in this event at = b,, 
(4) for each i < fc and p eR from a, e Lp it follows that a, eTp(b) and from b, e Lp it 

follows that b, e Tp(a). 

10 



The proof is similar to the one of the corresponding theorem of [13]. 
In general, an element of L has several different minimal representations ([13]). 

In a special case we can choose one, well-defined up to commutativity and 
associativity, which we call the normal representation. 

Suppose that for each aeL, the ideal Tp(a) and the dual ideal Tp(a), if 
non-empty, are principal. 

Definition 2.1. If aeW(Q) and l(a) = \, then a is a normal polynomial. If 
l(a)>\, then a is normal if and only if the following two conditions hold: 

(1) a is a minimal polynomial, 
(2) if a is a v -polynomial, i.e. a = a0v ...vak-u k>l and no a, is a v -polynomial, 

then each a, is normal and if for some i < k there is a, 6 Lr, then Tr(ai) = Tr(a). 
Dually for a A-polynomial a. 

Theorem 2.3. Let for each aeL be Tr(a) and Tr(a), if non-empty, principal for 
every reR. Then there holds: 

(1) Each xeL has a normal representation, 
(2) for each xeL, its normal representation is unique up to commutativity and 

associativity. 

The proof is similar to the one of the corresponding theorem of [13]. 
The poproduct is said to admit canonical representations if a minimal represen

tation of every element is unique up to commutativity and associativity ([13]). 
Under the assumptions of theorem 2.3, the poproduct admits canonical representa
tions if and only if every minimal polynomial is normal. 

3. Free-latfice-like sublattices of the poproduct of lattices 

In this paragraph we generalize the results of [5]. We shall show that certain 
sublattices of the poproduct of lattices satisfy the same conditions as the sublattices 
of a free lattice. 

A free lattice is known to satisfy the following conditions ([5]): 

(F) if x A y _i u v v, then one of the following four possibilities occurs: x = u v v, 
y__uvu,JCAy_iu, JC Ay __u ; 

(F2) if u = xvy=xvz, then u=xv(y/\z)\ 
(F3) ifu = jcAy = XAZ, then u = x/\(yvz). 

Suppose that for every reR the lattice Lr contains the greatest element ir and 
the smallest element or. Hence for every nonempty ideal Tr(a) there exists its 
generator ar and for every nonempty filter Tr(a) there exists its generator ar. 

Lemma 3.1. Let Q be a skeleton of a poproduct P(Lr; reR) of the bounded 

11 



latticesLr, reR. Leta, b, c, deW(Q). Then a Ab^cvd if and only if one of the 
following conditions holds: 

(1) there are p, qeR such that there exist ap, bp eLp, cq, dqe Lq and ap Abp ^ 
cq v dq; 

(2) a/\b=\c or a/\b1^d; 
(3) atkcvd or b^cvd. 

Proof. The necessity of the conditions. By the solution of the word problem we 
can restrict ourselves to the case that neither (2) nor (3) holds and there are p, 
qeR (p^q) such that (aAb)(p), (cvd)(q) exist and (aAb)(p) g (cvd)(q). By the 
definition of covers there are the following possibilities for the covers (a A b)(p) and 
(cvd)(q), respectively: The (aAb)(p) equals one of the following: a(p)Ab(p\ a(p\ 
b(p). The (cvd)(q) equals one of the following: c(q)vd(q), c(q), d(q). Now if 
(aAb)(p) = a(p) (oxb(p)), then a=\a(p) = (aAb)(p) ^ (cvd)(q) = cvd (or 
btkcvd), hence (3) holds, which contradicts the assumption. If (c vd)(q) = c(q) (or 
d(q)), then crSc (q) = (cvd)(q) ^ (aAb)(p) SaAfc (or d=^aAb), hence (2) holds, 
a contradiction. Therefore, (aAb)(p) = a(p)Ab(p) and (cvd)(q) = c(q)vd(q). 
Consequently apAbp = a(p)Ab(p) <c(q)vd(q) = cqvdq. 

The sufficiency of the conditions: If ap A bp ^ cqvdq, then from afkap, b=\bp, 
cq=\c, dq=\d there follows aAb ^ apAbp S cqvdq =^ cvd. The lemma is 
proved. 

Lemma 3.2. Let Q be a skeleton of a poproduct P(Lr; reR). Let u e W(Q). 
Then u can be written as u = u0v...vun-h n § l , where uh j<n satisfy the 
following conditions: 

(1) ifUj£v(Lr; reR), then u}= «, A b]for some a,, b ; e W(Q) withUj<a,, M,<b,; 
(2) for each j<n, n>l there holds uf± u0v...vu}-iVUj+iV...vun-i; 
(3) if j < n and u, £ u ( L r ; r e R), then M(u})nJ(u) = 0; 
(4) if for j<n we have Uj = aAb, where a,b>uh then a^u, b£u; 
(5) if j , k<n, p, qeR, p = q, UjeLp, uk eLq, then p = q and j = k. 

Proof. Let u e W(Q). If u e Q or u is a A-polynomial, we put n = 1 and u0=u. 
If u is a v-polynomial, we take its minimal representation u = w 0v. . .vu n - i , n>\ 
(theorem 2.1). 

Theorem 3.1. Let L be a poproduct of the bounded lattices Lr; reR. For each 
reR let Kr be a sublattice of Lr and let K be a sublattice of L such that for each 
aeK, reR if ar exists, then areKrand if ar exists, then ar eKr. Let ne {1, 2, 3). 
If, for all reR, the sublattice Kr satisfies (Fn), then the sublattice K satisfies (Fn). 

Proof. 

1. n = 1. Let all Kr satisfy (F l ) . We shall show that K also satisfies (F l ) . Let a, b, 
c, deK, aAb-^cvd .By lemma 3.1 one of the Qonditions (1), (2), (3) holds. If (2) 
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or (3) holds, the proof is accomplished. If (1) holds, then ap A bp = cq v dq for some 
p, qeR, p = q. There are two cases: 

First, if p < q, then a = ap <cq=c,a = ap <dq=d,b = bp <cq = c,b = bp <dq = d, 
this implies that a/\b = c, a/\b = d, a = cvd, b = cvd. 
Second by, if p = q, then ap Abp = cp vdp in Kpg=Lp and because Kp satisfies (Fl), 
at least one of the following holds: 

a=ap = cpvdp = cvd, b = bp = cpvdp = cvd, aAb = apAbp = cp = c, aAb = 
apAbp = dp = d. 

2. n = 2. Let all Kr satisfy (F2). We shall show that K also satisfies (F2). Let JC, y, 
z, ueK, let jcvy = JCVZ = u. It is enough to prove that u = Jcv(yAz). By 
lemma 3.2 the element u can be written in the form u = u0v...vun_i, n = 1, where 
u., j<n satisfy the conditions (1)—(5) of lemma 3.2. We shall show that for each 
j<n there holds uj = xv(yAZ). There are two possibilities: u,<£ Q or u} eLp for 
some p eR. 

Let j<n, UjeLp, peR. Then uieTp(u) = (up\, ui = up. 
For u = jcvy there are three possibilities: 

/JCP if TP(JC)^=0, Tp(y) = 0', 

up = (-yp if TP(JC) = 0, Tp(y)=£0; 
\jcpvyp if TP(JC)=£0, Tp(y)^0. 

For u = xvz there are three possibilities: 

ljcp if Tp(x)*0, Tp(z) = 0\ 
up = UP if TP(JC) = 0, Tp(z)±0\ 

\xpvzP if TP(JC)^=0, Tp(z)±0. 

If up =JCP, then ui = up = xp=x=^xv(yAZ). 

If up = yp, then TP(JC) = 0, therefore Tp(z)£0 and up = zP. It implies u; =^up = yp = 
y, u} = up = Zp = z, hence ui = yAz=xv(yAZ). 

If up = zP, then, similarly to the preceding case, we get ui = xv(yAZ). 

If up=jcpvyp, then TP(JC)^=0 and there holds either UP=JCP, which implies 
u,=x v(yAz), or up =JCPVZP, which implies up =xpvyp = xpvzP in Kp and by the 
assumption concerning Kp we have now u} = up = xp v(yp AZP) = x v(y Az). 

If UP=JCPVZP, then, similarly to the preceding case, we get ut = x(y AZ). 

Let j<n, Uj£Q. Applying lemma 3.2 we conclude that there exist a,beL such 
that a>uh b>Uj and aAb = uh Now aAb = u, = jcvy, hence aAb = xvy and 
by lemma 3.1 there are three possibilities: 

13 



If a^x vy or b=x vy, we get a contradiction to (4) of lemma 3.2 

If apAbp^xqvyq, then M(u,) 3 Tp(u,) = [ f l p A b P U W i Tq(u) = U , v y , ] , 
p = q, hence Tp(iOnTq(u)-£0, therefore M ( t y ) n J ( u ) ^ 0 , a contradiction to (3) 
of lemma 3.2. 

Therefore the third case must hold, that is, either aAb^y or aAb^x. Then either 
Ujtkx or w, = y and, similarly, either u^x or u, = z Hence w , § i v ( y A : ) 

We have shown that for each y<M there holds u,^x\(y AZ) and therefo e 
w^xv(yAz). 

3. n --=3. The case of (F3) is dual to the case of (F2). The theorem is proved. 

Corollary 1. The poproduct of bounded distributive lattices satisfies (F2) a d 
(F3). 

Proof. Any distributive lattice satisfies (F2) and (F3). 

Corollary 2. Let L be a poproduct P(Lr; reR). If K is a sublattice of the 
poproduU L such that foi each a eK and each reR,ifar exists, then a -or and if 
ar exists, then ar ~ir, then K satisfies all (Fn). 

Proof. For each reR there is Kr<^{or, ir\ and therefore satisfies all (Fn) 

4. Poproduct decomposition of a lattice 

In this section we generalise for the case of poproduct the results of [7] about 
a common refinement of any two representations of a lattice as a free Jjf-product. 

Susspose that the equational class J{ of lattices satisfies the following property: 

(J) If L is a K-poproduct of the lattices (Lr, r e R), Ar is a sublattice of the lattice 
Lr for each reR and A is the sublattice of L generated by u ( A r ; reR), then 
A is the ^{-poproduct of lattices (A r, reR) 

Let R, S be partially ordered sets. Let (A r, r e R), (JBS, 5 e S) bt two systems of 
pairwise disjoint lattices. Let L = Px(Ar; reR) = Px(Bs; s e S). We shall show 
that in such a case L = P^(A rnJ8S; (r , s) e R x S), where the set R x S is partially 
ordered in the following way: (ru sx) ~ (r2, s2) is and only if rx~=kr2 and sx = s2. 
Since (Ar, reR), (Bs,seS) can be considered as a family of pairwise disjoint 
sublattices of the lattice L respectively, this ordering is well defined. 

We introduce some notations. If p is a lattice polynomial symbol, then denote by 
p the polynomial symbol arising from p in the way that the symbols v , A will be 
replaced by V, A, respectively (V, A denote the lattice operations in the lattice of 
ideals and dual ideals, respectively). If Lu L2 are two subsets of the Jf-poproduct, 
then LX<L2 will denote that for the ideals (Li],(L2],(Li]g(L2] holds. Especially, 
LitkL, denotes that U~l2 for each pair lxe Lx, l2eL2. 
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Theorem 4.1. Let L = P%(Ar; r eR) = P^(Bs;seS) and let % satisfy the 
condition (J). Then L = Px(Arr\Bs; (r,s) e RxS). Moreover, for reR, Ar = 
Px(Arr\Bs ;seS) and for seS, there is Bs = P^(ArnBs ;reR). 

To prove the theorem, two lemmas will be needed. 

Lemma 1. IfaeAr and the lower cover as of a in Bs is proper, then aseArnBs. 
Proof. Let ae Ar, let as be proper. As L is generated by the set u(Bs ;seS), 

the element a can be written in the form 
(1) a=p(bsuU ..., 6Si,B1, ..., bSk,h ..., bSk,nk), where p is an (nx + ... + nfe)-ary 
polynomial, su ..., skeS and bSh,meBSh for h = \, ..., k, l^m^nh. Therefore 
(2) Tr(a)~p(Tr(bs^), ..., Tr(bSk,nJ),where Tr(a) = J(a)nAr. 

Without loss of generality we can suppose that s = su then from (1) we get 
(3) Ts(a(s)) = Ts(a) = p(Ts(bs^), ..., Ts(bs„ni), Ts(&J2,,)f ..., Ts(bSk,nk)), where 
b-.,i, ..., bSi,nx e Bs. Let us consider now the expressions Ts(bSi,m) for s,^s( = Si). 
The following holds: 
(i) If s^s, in S, hence if Bs£BSi, then Ts(5S(,m) = 0, 

(ii) If s^kst in S, hence if Bs^BSt, then Ts(bSi,m)-Bs. 
(Note that in both cases bSi,m&Bs.) 
If LT^L, denote TS(U) = u(Ts(u); u e U). 

As Ts(b) is an isotone function of its argument b, there holds that Ts(a) 
= Ts(Tr(a)) and from (2) we get 
(4) Ts(ais)) = Ts(Tr(a)) = p(Ts(Tr(bSx,l)), ..., Ts(Tr(bSk,nk))). 
Moreover, the following holds: 
(iii) If s^Si in S, hence if Bs£BSi, then Bs<Tr(bSi,m). 
Since if there were Bs<Tr(bSi,m), it would imply Tr(bSi, m) < BSi and hence by 
transitivity Bs<BSi, a contradiction.) 
Now from Bs*Tr(bSi,m) it follows that Ts(Tr(bs,,m)) = 0 (because b e Ts(Tr(BSi,m)) 
would imply b^bSi,m, beBs, contradicting Bs£BSi). 
(iv) Tr(bSi,m)<TSi(bSi,m) and s^St in S yield 

Ts(Tr(bSi,m))<Ts(TSi(bSi,m)) = Ts(bSi,m)). 
Now the following inequalities hold: 

TSi(bSi,m)>Tr(bSi,m)>Ts(Tr(bSl,m)) 

Ts(bSf,m)>XSi,m>Ts(Tr(bSi,m)) for Si±sl9 

where XS(, m will be suitable defined as follows: 

(v) Xs„m = 0 if Ts(bSi,m)) = 0. 
See (i). Evidently Tr(bSi,m)<TSi(b5i,m) infers Ts(Tr(bSi,m))) < Ts(bSi,m)) and PJ 
is correct. 

(vi) XSi,m = Bs for Ts(foS(>m) = Bs. 
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Now from (3) and (4), using (5), we get 

(6) Ts(a(s)) = p(Ts(bs^), ..., Ts(bsi,ni), Ts(bS2 >), ..., Ts(bSk,nk))> 
>p(Tr(bSltl)9 ..., Tr(bsi „,), X,2,„ ..., XSk J> 
>p(Ts(Tr(bSl,{), ..., Ts(Tr(bSk nk)))=Ts(a(s)). 

From (6) we obtain 

(7) Ts(a(s)) = p(Tt(bSul), ..., T r(b s / , n /) ,XS 2 , 1 , . . . ,X, k ,0 , 

where Xs., m is either 0 or Bs. 
By proposition 1.2 there follows the existence of the polynomial symbol q such that 

(8) a(s) = q((b%)(r)> -•, (K)<>))-

where ft*,., ..., fr/v, / . ,§ /! / are such from among the bSl,u ..., &,,,„, for which there 
exist their lower covers in the lattice A r . Since b<lt e Ar for t = 1, ..., v by (8) there is 
also « w e A r and because by definition of a(s), a(s)eBs, we now have a(s)e ArnBs. 
Lemma 1 is proved. 

Lemma 2 (the ^associativity" of the poproduct). Let Sbea partially ordered set. 
Let there be Rs a partially ordered set for each s eS. Assume the sets Rs to be 
pairwise disjoint. Denote by R = u(Rs; s eS) a partially ordered set with the 
following ordering: rxt=kr2 holds for ru r2eR if at least one of the following 
conditions hold: 
1. there is an seS such that ru r2eRs and rx^r2 in Rs; 
2. there are su s2eS such that rx e RSi, r2 e RS2 and sr <s2. 
Let for each reRbeLreJ{ and let Lr, reR be pairwise disjoint lattices. Then the 
poproducts P%(Lr; reR) and P^(P^(Lr ;r eRs); seS) are isomorphic. 

Proof. The idea how to prove the lemma is as follows: 
Let Q denote the skeleton of Px(Lr; reR). We show first that Q can be 
embedded into PJ{(Pm(Lr; r e Rs); seS). Then, in the second step, let MeJ{ and 
let / : Q-+M be an isotone mapping. We prove that there exists a unique 
homomorphism h: P%(P^(Lr; reRs); seS)->M such that f = hlQ. Therefore, 
Px(Lr;reR) = Pjf(Px(Lr; r e Rs); seS), because the poproduct is defined 
uniquely (up to isomorphism). 

Let Qs = u ( L r ; reRs) be a skeleton of P^(Lr: reRs), seS. Clearly, Q = 
u ( Q s ; s e S) is a skeleton of Px(Lr; r e R). Suppose Q' = u(P*f(Lr; reRs);se S) 
to be a skeleton of Px(Px(Lr; reRs); seS). Since Qs can be embedded into 
Px(Lr; r e Rr), we see that Q can be embedded into F*r(P^(Lr; r e Rs); s eS). 
Now let / : Q —> M be an isotone mapping such that fr: Lr —> M is a homomorphism. 
It is easy to see that there exists a unique homomorphism gs: PK(Lr; r eRs)->M 
such that gs/Qs=f/Qs for every seS. Evidently, sY<s2 in 5 implies U=\t2 for 
Uef(QSi), i = l , 2 by definition of the mapping / . Therefore, tx -§ t2 for tt e [ / (QS I)]M, 
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i = l ,2 , where [A]M means the sublattice of M generated by A^M. Hence, 
g: Q'—>M is an isotone mapping such that g/PK(Lr; r e Rs) = gs. Thus there exists 
a unique homomorphism h: PK(PK(Lr; r e Rs) ;se S)-»M such that h/Q' = g and 
consequently h/Q=f and the proof of lemma is complete. 

Proof of theorem 4.1. Let L = Px(Ar;reR) = Px(Bs;seS). Using the 
definition of lower covers and the fact that a e Ar, i.e. a = a(r) we get from (2) the 
existence of the polynomial symbol o such that 

(9) a = o((bfl)(r),...,bfm)(r)), 

where bfi eBfi for i = 1, ..., m; m tknx + ... + nk and bfi are such from among the 
bsuU •••, bSk,nk, for which there exist (bfi)(r). By lemma 1 (bfi)(r) e BftnAr holds for 
i = 1,..., m. From (9) it follows now that a belongs to the sublattice of L generated 
by the set u(A rnB s ; s e S) for each a e Ar. Therefore Ar is generated by the set 
u(A r nB s ; s e S). Since (A rnBs, seS) are sublattices of Ar, using the property (J) 
we get that Ar = Pd{(ArnBs\ seS). Then by lemma 2 it follows that L 
= Px(ArnBs; (r, s) e R x'S) and theorem 1 is proved. 

5. Poproduct and direct (inverse) limits of lattices 

The aim of the present section is to investigate the interchangeability of the 
operators of poproduct and of the limit of lattices. In the case of the direct limit 
these operators are interchangeable, in the case of the inverse limit a weaker result 
is obtained. 
(For the definition of direct and inverse limit see [4]). 

Poproduct and direct limit 

Let R be a partially ordered set, J a directed partially ordered set and let for each 
pair r e .R,; e J Ar/ be a lattice. Let the lattices Arj be pairwise disjoint. Denote by 
Qj the poset u(A r j; reR), v/here a ^ b in Q, iff a ^ b in some Arj or a e Arh b e Asi 

and r<s in R. The system {Qj,jeJ} becomes directed if there are isotone 
mappings q>u: Qi-*Qj for any i^j such that q)ij/Ari are homomorphisms, q)iko(pij = 
q)ik and (p„ = id for every i e J. Now we can define P(Ari; r e R) for every j eJ and * 
this system becomes directed because any <p0-: Qt —> Q, can be uniquely prolonged 
into a homomorphism cp0: P(A„ ; r e R) —> P(Ari; reR) (see definition 1.1). It is 
not difficult to verify that (pjko(pij = (pik it i^j^k and (p„ = id for every ieJ. This 
leads to a direct limit L^P = L^(P(Arj; reR);jeJ). 

By [4] there exists for each reR the direct limit Ar = L^(Arj; j eJ). Since the 
lattices Ar are pairwise disjoint, wo can define a poset Q = u(A r ; reR) such that 
a^b in Q iff a^fe in some Ar or aeAr and beAs for some r < s in R. This 
enables us to define L^ = PCL^A-,; / e J): r e R). 
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Before studying the connections between the lattices PL_ and L^P we need the 
following observation (using the notation from [4]). 

Lemma 5.1. Let (A,; cpin ieJ) and ( B , ; ^ , ieJ) be directed families of 
algebras of the same type. Let for every i e J, ft,-: Ai-*Bt be a homomorphism such 
that any diagram 

ft, 
A, ># 

<P.Ï % 
Ar >B, 

hi 

commutes for i^j. Then there exists a homomorphism ft: L_A,—>L_J3. defined 
by the rule h(d) = (ft,(a)), where aed and a e At. Moreover, the diagram 

ы 
A, 

Џ>r 

L^AІ 
h 

-> B/ 

-* L_ß, 

commutes for every i e J. 
The proof is straightforward (see [4]). 

Theorem 5.1. Let %be an arbitrary equational class of lattices. Then the lattices 
PK(L^(Ari; 7 e J ) ; r e R) and L^(Pk(Arj; reR);jeJ) are isomorphic. 

Proof. Suppose i,-: Qj-*P(Arj; r e R) to be a canonical embedding for 7 e J. By 
lemma 5.1 there exists an isotone mapping ft: Q-+L-.P such that ft/Ar is 
a homomorphism. The diagram 

Qi >P(Ari;reR) 

Фi; 

Qr 

4>а 

-*P(Ari;reR) 

commutes for i_g/, hence we can apply lemma 5.1. 
Now the upper part of the diagram 1 

? 
0 

-*P(Ari;,rєR) 

ф,_ 

->L_P — 

QІ -» PL_ 

id 

PL_-
id 

-+L_P 

id 

PL_ 

PL_ 

diagram 1 
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commutes. This fact and the definition 1.1 imply the existence of a homomorphism 
h: PL_^-»L_jP such that the lower part of the diagram 1 commutes. Conversely, 
starting with 

cpio, i 
Qj >Q >[Q] = PL^, 

we obtain by definition 1.1 and lemma 3.1 a commuting diagram 

ioCfroo 

Q, >PL^ 

P(Ari\reR) >PL^ 
ft" J 0 I id 

L^P > PL^ 

diagram 2 

which says that there exists a homomorphism g: L_>P—>PL_+. It remains to be 
proved that hog =id and goh = id. In order to show that cjoh = id is enough to 
establish goh(i(Q)) = id. It is known that for every a e Q there exists aeQ, for 
some jeJ such that <piao(a) = d. Now, g oh oio (pioo(a) = 0ioi/(a) (see diagram 1). 
Since io(pioo = gioii (see diagram 2), we get goh(i(Q)) = id and whence g oh = id. 

Take aeL^P. There exists a e Q for some jeJ such that /ioioqp/0c(a) = 
hoq)joo(a) = a. However (froooi; = hoio(pi0o. Since ioCfroo = 0,0^, we have /ioio(jp/oo = 
hogjoij = (froooi,. Therefore, q)io0 = hogi by definition 1.1. On the other hand 
hogjoij = tiogocpjoooij. Hence /io0((p/oo(i/(a))) = ((fraooi^a)) = a. Thus 
(ho^) (a) = d and hog =id. The proof is complete. 

Corollary. The operators of the free product of lattices and of the direct limit are 
interchangeable (in the sense of theorem 3.1). 

Poproduct and inverse limit 

Suppose as above (J, r§) to be a directed poset, (R, S ) a poset and 
{Ar/; reR,jeJ} a family of pairwise disjoint lattices. We can form the poset 
Q, = u(A r /; reR) for every jeJ. The family {Qj,jeJ} will become inverse if 
there exist isotone mappings qpj: Qj—>Q, for any i^j such that q>\/An are 
homomorphisms, q>u = id for every i e J and <pj o(p£ = qp£ if i ^j^k. We can define 
Ar = L^(Ari\jeJ) for every reR. Since Ar may be empty, we adapt slightly the 
definition 1.1. Forming the poproduct P(Ar; reR) we permit also the void lattices 
Ar. If Ar = 0 for all r e R , then we put P(Ar\ reR) = 0. Otherwise, the Ar are 
pairwise disjoint lattices and the set Q = u(A r ; reR) can be ordered in the 

19 



standard way. Now we define PL_ = P(Ar 9reR) = P(L^(Arj; je J); r e R) as 
well as in definition 1.1 admitting that fr is a void homomorphism iff Ar = 0. 

Having an inverse family (Ar|; cpi9 j eJ) we can prolong uniquely the mappings 
(fi

i:Ql-*Qi to q))\P(Ari9reR) -* P(Arj;reK) such that (P(Arj; r e R); <p,, 
i e J) becomes an inverse family. Hence we can form L<_P = L^(P(An ; r e R); 
j e J ) . 

Theorem 5.2- There exists a monomorphism h:P(L^(Ari\ jeJ)9 reR) —> 
L_(P(Ar;; r _R) ; 1eJ), which need not be an epimorphism. 

Proof. We have the canonical embedding i}: Q, —> P(Arj ;reR) for every j e J. 
Let xeQ. Clearly, x = (x(i))iej9 x(i)eQt. Put g(x) = (il(*(j)))i€j e 
n(P(Ar,; r e R);; e J). Since the diagram 

Q, >P (A r i ; reR) 

<Pfc ; <Pfc 
Q f c >P(Ark9reR) 

commutes, there is g(x)eLJP. By easy computation we see that g\ Q-+LU? is an 
injective mapping such that glAr is a homomorphism. Therefore, by definition 1.1, 
there exists a unique homomorphism h: PL^_—>L^P such that hlQ = g. 

Now we prove that h is injective. Let JC, y e PL_. Suppose we have h(x) = h(y), 
i.e. h(x)^h(y) and /i(x)__fi(y). There are au ..., an, b-, ..., bmeQ and lattice 
polynomials p, q e W(Q) such that p(ai, ..., an) = x9 q(bu ..., bm) = y. First con
sider h(x)^h(y). Two cases can arise: 
(i) There exists je J such that (h(x)) (j)^(h(y)) (j) follows from theorem 1.1, 

condition (5). 
(ii) The property (i) is true for no jeJ. 
In the first case there exist r, _ eR with r §5 , polynomials p ' , q' and elements c,, 
..., ck e {ai, ..., an}9 du ..., di e {bl9...9bm} (Proposition 1.2) such that 
((M*)) G))(r) = pdtMJ)), -.., i/(fl-a)))(r) = P'viivdO)), .-, i,(ck(j))) _i 
((h(y)) (/))(.) = <_(i,(&i(/)), •••> i,(M/)))(o = q'(iMj)l ..., i,W0))). It is not 
difficult to check that p(ai, ..., an)

(r) is proper and p(al9 ..., an)
(r) = p'(cl9 ..., ck). 

Analogously, g(bl9 ..., bm)(s) = <_'(di, ..., d,). Since p'(c1? .. , ck)9 

q'(dl9 ..., di)eQ and hlQ = g is injective, we have p'(ci, ..., ck) = q'(di, ..., d,). 
Therefore, by theorem 1.1, x_iy. 
In the second case (h(x)) (j) _i (h(y)) (j) follows from theorem 1.1, conditions 
(1)—(4), for every jeJ. By easy computations we obtain x _i y. In a dual manner 
one can establish Jci_y, and the proof is complete. 

Therefore h is a homomorphism. We shall show that h need not be an 
epimorphism. It will follow from the following example. 
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Example. Let R be a two-element antichain, R= {s, t}, let J = N (the set of all 
natural numbers). Let Asn = {jcf, ...,JC„} be for each rt=.l the n-element chain 
with the following ordering: JCT<jcn<jcn_i<...<jc;. Let Arl = {y!} and let 
Am = {y?, ..., y*,,} be for each n > 1 the (n - l)-element chain with the following 
ordering: y ,<. . .<y n_i . For n = l, 2, ... define the mappings cpi+i,-, cpn+Un as 
follows: 

<Pn+i,n(xrl) = xni for i < n + l, 
(Pn + l,n(XnX\)= X\ , 

<Pn+i,„(y?+1)=y7 for * < n , 
? U u ( y ; + , ) = y;-i . 

Any element x eL^_(Arn \neN) can be written in the form of a sequence, i.e. 
x = (xn). For each neJV, P(Arn; r e R) is the free product of two chains. Let 

wx^x\eP(ArX\reR), 
w2^(xlvy])Ax2

2eP(Ar2;reR), 
w3^(((x]vy3

2)Axl)vy3
1)Ax3

2eP(Ar3;reR), 
w4^(((((x4

lvyi)Axi)vy4
2)Axt)vyt)AX_eP(Ar4;reR\ 

wa^(...(x7vyn_,)Ajcn)vyn_2)Axn_1)v...vy,)Ax5GP(Arn; reR). 

Let k be a function N—>u(P(Arn; r G R ) ; neN) such that for each neN, 
k(n) = wn. (In fact, k is a sequence {wn}neN.) Now (pn+i,n(wn+,)= wn holds. 
Therefore keLJ?. 

We shall show that there is no w e PL+. such that h(w) = fc. To prove this we shall 
show that for each word wn such that wn = wn there is /(wn) i_ 2n-l. We shall 
prove that in each such word wn there must occur all the 2n - 1 elements JC!, ..., xn, 
yj, ..., yj_! of the set AsnuAm. 

Suppose that there exists a word wn such that wn = wn and let z e AsnuAm not 
occur in wn. Let S = {a,t»,c}bea three-element chain, a<b<c. We shall define 
a mapping g: AsnuAm-*S as follows: 
1. g(z) = b, 
2. if JCE Asn, then 

g(x) = a if JC occurs to the left of z in the word wn, 
g(x) = c if JC occurs to the right of z in the word wn; 

3. if y e Am, then 
0(y) = c if y occurs to the left of z in the word wn, 
gf(y) = a if y occurs to the right of z in the word wn. 

From the definition of P(Arn; r e R) it follows that the isotone mapping g can be 
extended to the lattice homomorphism e: P(Am; reR)-*S. Then e(wn) = 
e(wn) = fc» = 0(z), but in the expression of e(wn) g(z) does not occur 
— a contradiction. Therefore for each word wn such that wn = wn there holds 
l(wn)^2n-l. 
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Suppose that there exists w ePL^ such that h(w) = fc, w = w(xr„ ..., xrJ, where 
for l i i S m there holds jcri €L^(AS„ ; n e N ) u L_(Am ;«eN) , /(w) = m; then wn 

= fc(n) = (h(w))(n) = (h(w(xrx9...,xrm)))(n) = w(xr,(n), ..., xrm(n)), but 
/(w(jcrI(n), ..., jcrrn(n))) S m, m>\ and /(w„) ^ 2 n - l . Now if we take 

n = J ^ y - +1, then 2n - 1 >m, a contradiction. 

Therefore keL^P has no preimage in PL.*_. This proves that ft is not an 
epimorphism. 
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В работе изучаются свойства попродукта. Попродукт является обобщением свободного 
произведения и ординальной суммы структур. 
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