Ivica Marinová
Integration with respect to a $oplus$-measure

Mathematica Slovaca, Vol. 36 (1986), No. 1, 15--22

Persistent URL: http://dml.cz/dmlcz/133071

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz
INTEGRATION WITH RESPECT TO A ⊕-MEASURE

IVICA MARINOVÁ

In paper [5] the extension of σ-additive and σ-maxitive measures is performed simultaneously by help of some ⊕-measure. In this paper we show that one can perform simultaneously the integration theory as well as the product of σ-additive and σ-maxitive measures. Both σ-additive and σ-maxitive measures are so-called strong submeasures. For submeasures some more integrals are defined in literature (see [1], [3], [4], [7]). But none of these integrals fulfils the very natural requirement of σ-maxitive measures, that is \(\sup (\int f, \int g) = \int (\sup f, \sup g) \) for all non-negative functions \(f, g \).

Preliminary definitions and results

Let \(\oplus \) be some binary operation on \((0, \infty) \) with the following properties:

1. \(a \oplus b = b \oplus a \) for all \(a, b \in (0, \infty) \)
2. \((a \oplus b) \oplus c = a \oplus (b \oplus c) \) for all \(a, b, c \in (0, \infty) \)
3. \(k(a \oplus b) = ka \oplus kb \) for all \(k > 0, a, b \in (0, \infty) \)
4. \(a \oplus 0 = a, a \oplus \infty = \infty \) for each \(a \in (0, \infty) \)
5. \(a \leq b \Rightarrow a \oplus c \leq b \oplus c \) for all \(a, b, c \in (0, \infty) \)
6. \((a + b) \oplus (c + d) \leq (a \oplus c) + (b \oplus d) \) for all \(a, b, c, d \in (0, \infty) \)
7. \(a_n \to a, b_n \to b \Rightarrow a_n \oplus b_n \to a \oplus b \)

for all \(a, b, a_n, b_n \in (0, \infty) \) \((n = 1, 2, \ldots) \).

We shall write briefly \(\bigoplus_{i=1}^n a_i \) instead of \(a_1 \oplus a_2 \oplus \ldots \oplus a_n \) and \(\bigoplus a_i \) instead of \(\sup_{n} \left(\bigoplus_{i=1}^n a_i \right) \).

Clearly the usual addition as well as the maximum of two real numbers fulfil the properties 1.—7.

Definition 1. Let \((X, \mathcal{F}) \) be a measurable space. A set function \(m: \mathcal{F} \to (0, \infty) \) will be called a ⊕-measure if \(m(\emptyset) = 0 \) and \(m \left(\bigcup_{i=1}^n E_i \right) = \bigoplus m(E_i) \) for each sequence \(\{E_i\}_{i=1}^n \) of mutually disjoint sets from \(\mathcal{F} \).
Clearly if $a \oplus b = a + b$ for all $a, b \in (0, \infty)$, the \oplus-measure becomes a σ-additive measure. If $a \oplus b = \max\{a, b\}$ for all $a, b \in (0, \infty)$, the \oplus-measure becomes a σ-maxitive measure (i.e. such a function $m: \mathcal{F} \to (0, \infty)$ that $m(\emptyset) = 0$ and $m\left(\bigcup_{i=1}^{n} E_i\right) = \sup_{i=1}^{n} m(E_i)$ for each sequence $\{E_i\}_{i=1}^{n}$ of mutually disjoint sets in \mathcal{F}).

It is easy to see that a \oplus-measure is \oplus-additive (i.e. $m(A \cup B) = m(A) \oplus m(B)$ for all $A, B \in \mathcal{F}$, $A \cap B = \emptyset$), monotone, \oplus-subadditive (i.e. $m(A \cup B) \leq m(A) \oplus m(B)$ for all $A, B \in \mathcal{F}$) and continuous from below.

Let m be a fixed \oplus-measure. First we define an integral with respect to m for a non-negative simple function. Briefly for a NSF.

Definition 2. Let (X, \mathcal{F}, m) be a \oplus-measure space and let f be a NSF, $f = \sum_{i=1}^{n} a_i \chi_{E_i}$, where $E_i \cap E_k = \emptyset$ for $i \neq k$, $0 < a_i < \infty$. We define $\int f \, dm = \sum_{i=1}^{n} a_i m(E_i)$ and we say that f is integrable iff $\int f \, dm < \infty$.

Clearly a NSF f is integrable iff $m(N(f)) < \infty$ where $N(f) = \{x, f(x) \neq 0\}$.

We shall write $\int f$ in place of $\int f \, dm$ since m is fixed.

Remark. The definition 2 is correct by the distributivity of \oplus and the \oplus-additivity of m.

Proposition 1. Let f, g be NSF-s on (X, \mathcal{F}, m) such that $f \leq g$. Then $\int f \leq \int g$.

Proof. f, g are NSF-s, thus such mutually disjoint sets $E_i \in \mathcal{F}$ and numbers $0 \leq \gamma_i \leq \delta_i$ ($i = 1, 2, \ldots, k$) exist that

$$f = \sum_{i=1}^{k} \gamma_i \chi_{E_i}, \quad g = \sum_{i=1}^{k} \delta_i \chi_{E_i}.$$

Then $\int f = \sum_{i=1}^{k} \gamma_i m(E_i) \leq \sum_{i=1}^{k} \delta_i m(E_i) = \int g$.

Proposition 2. Let f, g be NSF-s on (X, \mathcal{F}, m). Then $\int f + g \leq \int f + \int g$.

Proof. Take mutually disjoint sets $E_i \in \mathcal{F}$ and numbers $\gamma_i, \delta_i \geq 0$ ($i = 1, 2, \ldots, k$) such that $f = \sum_{i=1}^{k} \gamma_i \chi_{E_i}, \quad g = \sum_{i=1}^{k} \delta_i \chi_{E_i}$. Then $\int f + g = \sum_{i=1}^{k} (\gamma_i + \delta_i) \chi_{E_i}$

$$= \sum_{i=1}^{k} (\gamma_i + \delta_i) m(E_i) \leq \sum_{i=1}^{k} \gamma_i m(E_i) + \sum_{i=1}^{k} \delta_i m(E_i) = \int f + \int g.$$

Corollary. Let f, g be integrable NSF-s on (X, \mathcal{F}, m). Then $|\int f - \int g| \leq \int |f - g|$.

Proposition 3. Let f, g be such NSF-s that $f \cdot g = 0$. Then $\int f + g = \int f \oplus \int g$.

Let f, g be non-negative real functions on X. Let us define a function $f \oplus g$ as follows: $(f \oplus g)(x) = f(x) \oplus g(x)$ for all $x \in X$.

Proposition 4. Let f, g be NSF-s. Then the function $f \oplus g$ is a NSF and $\int f \oplus g = \int f \oplus \int g$.

Proof. We can write $f = \sum_{i=1}^{k} \gamma_i \chi_{E_i}, \quad g = \sum_{i=1}^{k} \delta_i \chi_{E_i}$ for suitable numbers $\gamma_i, \delta_i \geq 0$ and
mutually disjoint sets $E_i \in \mathcal{S}$ ($i = 1, 2, \ldots, k$). Then the function $f \oplus g = \sum_{i=1}^{k} (\gamma_i \oplus \delta_i) \chi_{E_i}$ is a NSF.

$$\int f \oplus g = \sum_{i=1}^{k} (\gamma_i \oplus \delta_i) m(E_i) = \left(\sum_{i=1}^{k} \gamma_i m(E_i) \right) \oplus \left(\sum_{i=1}^{k} \delta_i m(E_i) \right) = \int f \oplus \int g.$$

Definition 3. Let (X, \mathcal{S}, m) be a \oplus-measure space.

A) If $f: X \to (0, \infty)$ is a measurable function, we put $\int f = \sup \{ \int g : g \leq f, g$ is a NSF$\}$ and we say that f is integrable iff $\int f < \infty$.

B) If $f: X \to (-\infty, \infty)$ is measurable and at least one of the functions $f^+ = \max(f, 0), f^- = -\min(f, 0)$ is integrable, we put $\int f = \int f^+ - \int f^-$ and we say that f is integrable iff $-\infty < \int f < \infty$.

Remarks. 1) A measurable function $f: X \to (-\infty, \infty)$ is integrable iff both f^+, f^- are integrable.

2) For a NSF the definitions 2 and 3 do not differ.

3) If m is a σ-additive measure, then integral from the definition 3 does not differ from the classical one (for definition see e.g. [2]).

4) For σ-maxitive measures N. Shiokret in [6] defined the integral of a non-negative measurable function as follows: $\int f \, dm = \sup_{a>0} am \{ x, f(x) \geq a \}$. If a \oplus-measure m is a σ-maxitive measure, we assert that $\int f = \int f \, dm$ for each non-negative measurable function f. Proof: Clearly $\int g = \int f \, dm$ for each NSF g.

Let $f \geq 0$ be measurable and denote $E_a = \{ x, f(x) \geq a \}$. Then $\int f = \sup \{ \int g, g \leq f, g$ is a NSF$\} = \sup_{a>0} (\int a \chi_{E_a}) = \int f$. On the other hand if $g \leq f, g$ is a NSF, then

$$\int g = \int_g \leq \int f, \text{ hence } \int f = \sup \{ \int g, g \leq f, g \text{ is a NSF} \} \leq \int f.$$

We leave the easy proof of the following theorem to the reader.

Theorem 1. Let f, g, h be measurable functions such that $\int f$, $\int g$, $\int h$ have a sense. Then

1. $f \geq 0 \implies \int f \geq 0$
2. $f \leq g \implies \int f \leq \int g$
3. $f \leq h \leq g, f, g$ are integrable $\implies h$ is integrable
4. f is integrable iff $|f|$ is integrable
5. Let $c \in (-\infty, \infty), c \neq 0$. Then f is integrable iff cf is integrable and $\int cf = c \int f$.

Theorem 2. Let f be a non-negative integrable function on (X, \mathcal{S}, m). Let us define a set function $\nu_f: \mathcal{S} \to (0, \infty)$ as follows: $\nu_f(E) = \int f \chi_E$ for each $E \in \mathcal{S}$.

Then ν_f is a \oplus-measure on \mathcal{S}.

Proof. It suffices to show that ν_f is \oplus-additive and continuous from below. First we show the \oplus-additivity. Let $A, B \in \mathcal{S}, A \cap B = \emptyset$ and $\varepsilon > 0$ be arbitrary. Then the
NSF $g \leq f$ exists such that $v_f(A \cup B) - \varepsilon < v_g(A) \oplus v_g(B) \leq v_f(A) \oplus v_f(B)$. Since ε was arbitrary $v_f(A \cup B) \leq v_f(A) \oplus v_f(B)$. On the other hand, for each $\varepsilon > 0$ the NSF $h \leq f$ exists such that $v_f(A) \oplus v_f(B) \leq \left(v_h(A) + \frac{\varepsilon}{2}\right) \oplus \left(v_h(B) + \frac{\varepsilon}{2}\right) \leq \left(v_h(A) \oplus v_h(B)\right) + \left(\frac{\varepsilon}{2} \oplus \frac{\varepsilon}{2}\right) \leq v_f(A \cup B) + \varepsilon \leq v_f(A \cup B) + \varepsilon$. Since ε was arbitrary the inequality $v_f(A) \oplus v_f(B) \leq v_f(A \cup B)$ holds.

The proof of the continuity from below is realized in three steps. Let $E_i \in \mathcal{F}$ ($i = 1, 2, \ldots$) be mutually disjoint.

1. First let $f = \alpha \chi_A$ for some $\alpha > 0$ and $A \in \mathcal{F}$. $v_f\left(\bigcup_{i=1}^{\infty} E_i\right) = \int \alpha \chi_{A \cap E_i} = \alpha m\left(\bigcup_{i=1}^{\infty} (A \cap E_i)\right) = \sup_n \int \alpha \chi_{\bigcup_{i=1}^{n} (A \cap E_i)} = \sup_n v_f\left(\bigcup_{i=1}^{n} E_i\right)$.

2. Let $f = \sum_{i=1}^{k} \alpha_i \chi_{A_i}$, where $\alpha_i > 0$, $A_i \in \mathcal{F}$ are mutually disjoint ($i = 1, 2, \ldots, k$). Let us denote $f_i = \alpha_i \chi_{A_i}$, ($i = 1, 2, \ldots, k$). Then by the proposition 3 $v_f\left(\bigcup_{i=1}^{k} E_i\right) = \bigoplus_{i=1}^{k} v_{f_i}\left(\bigcup_{i=1}^{\infty} E_i\right) = \sup_{n} \left\{ \bigoplus_{i=1}^{k} v_{f_i}\left(\bigcup_{i=1}^{n} E_i\right) \right\} = \sup_{n} \left\{ v_f\left(\bigcup_{i=1}^{n} E_i\right) \right\}$.

3. Let f be a non-negative integrable function and $\varepsilon > 0$ be arbitrary. Then the NSF $g \leq f$ exists such that $v_f\left(\bigcup_{i=1}^{k} E_i\right) - \varepsilon < v_g\left(\bigcup_{i=1}^{\infty} E_i\right) = \sup_{k} v_{f_k}\left(\bigcup_{i=1}^{k} E_i\right) \leq \sup_{k} v_{f_k}\left(\bigcup_{i=1}^{k} E_i\right) \leq v_f\left(\bigcup_{i=1}^{k} E_i\right)$. Since ε was arbitrary one has $v_f\left(\bigcup_{i=1}^{k} E_i\right) = \sup_{k} v_{f_k}\left(\bigcup_{i=1}^{k} E_i\right)$.

Integration with respect to a continuous \oplus-measure

In this section we consider a fixed continuous \oplus-measure m on a σ-ring \mathcal{F} of subsets of $X \neq \emptyset$ (i.e. if E_n is a decreasing sequence of sets in \mathcal{F} with empty intersection and $m(E_k) < \infty$ for some k, then $\lim_{n \to \infty} m(E_n) = 0$).

Theorem 3. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of bounded measurable functions such that $f_n \downarrow 0$. Let such an index k exist that $m(N(f_k)) < \infty$. Then $\lim_{n \to \infty} \int f_n = 0$.

Proof. Let $\varepsilon > 0$ be arbitrary. We put $E = N(f_k)$ and we assume $m(E) > 0$ (for $m(E) = 0$ the theorem is obvious). Let us denote $\varepsilon' = \frac{\varepsilon}{m(E)}$ and $E_n = \{x, f_n(x) \geq \varepsilon'\}$ ($n = 1, 2, \ldots$). $f_n \downarrow 0$ implies $E_n \downarrow \emptyset$ and by continuity of m one has
\[\lim_{n \to \infty} m(E_n) = 0. \] Let us denote \(b = \max_k f_k \). Then for \(n \geq k \), \(0 \leq f_n \leq \int_{E_n} f_n + \int_{E-E_n} f_n \leq bm(E_n) + \varepsilon' m(E-E_n) \leq bm(E_n) + \varepsilon. \) Hence \(0 \leq \lim_{n \to \infty} \int f_n \leq \lim_{n \to \infty} (bm(E_n) + \varepsilon) = \varepsilon. \) \(\varepsilon \) was arbitrary, thus \(\lim_{n \to \infty} \int f_n = 0. \)

Theorem 4. Let \(f_n, f \) \((n = 1, 2, ...) \) be integrable NSF-s such that \(f_n \uparrow f \). Then \(\lim_{n \to \infty} \int f_n = \int f. \)

Proof. The functions \(f - f_n \) \((n = 1, 2, ...) \) are bounded and \(f - f_n \downarrow 0. \) Since \(m(N(f)) < \infty \) one can apply the theorem 3. Hence \(\lim_{n \to \infty} \int (f - f_n) = 0 \) and since \(0 \leq \int f - \int f_n \leq \int (f - f_n) \) for \(n = 1, 2, ... \) one has \(\lim_{n \to \infty} \int f_n = \int f. \)

Theorem 5. Let \(f_n, f \) \((n = 1, 2, ...) \) be NSF-s such that \(f_n \uparrow f \) and \(\lim_{n \to \infty} \int f_n < \infty. \) Then \(f \) is integrable.

Proof. 1) First we assume \(f = \chi_A \) for some \(A \in \mathcal{F}. \) We can suppose \(f \neq 0. \) Let us denote \(\beta_n = \min f_n / N(f_n) \) for \(n = 1, 2, ... \). Then \(\int f_n \geq \beta_n m(N(f_n)) \geq \beta_1 m(N(f_n)) \) and one has \(m(N(f_n)) \leq \frac{1}{\beta_1} \int f_n. \) Hence \(m(A) = \lim_{n \to \infty} m(N(f_n)) \leq \frac{1}{\beta_1} \lim_{n \to \infty} \int f_n < \infty. \)

2) Let \(f = \sum_{i=1}^{k} \alpha_i \chi_{A_i} \) for some \(\alpha_i \in (0, \infty), \) \(A_i \in \mathcal{F} \) \((i = 1, 2, ..., k) \) \(A_i \cap A_j = \emptyset \) for \(i \neq j. \) Then \(f_n \chi_{A_i} \uparrow \alpha_i \chi_{A_i} \) implies \(0 \leq \frac{1}{\alpha_i} f_n \chi_{A_i} \uparrow \chi_{A_i} \) and \(\lim_{n \to \infty} \int \frac{1}{\alpha_i} f_n \chi_{A_i} \leq \lim_{n \to \infty} \frac{1}{\alpha_i} \int f_n < \infty. \) Hence \(m(A_i) < \infty \) for \(i \in \{1, 2, ..., k\} \) and this implies \(m(N(f)) < \infty, \) i.e. \(f \) is an integrable function. Notice that we did not use the continuity of \(m. \)

Theorem 6. Let \(\{f_n\}_{n=1}^{\infty} \) be a sequence of non-negative measurable functions such that \(f_n \uparrow f. \) Then \(\int f = \lim_{n \to \infty} \int f_n. \)

Proof. If the limit \(\lim_{n \to \infty} \int f_n = \infty, \) the assertion is clear. Let the limit \(\lim_{n \to \infty} \int f_n < \infty \) and for \(n = 1, 2, ... \) take a sequence \(\{g^{(n)}\}_{m=1}^{\infty} \) of NSF-s such that \(g^{(n)} \uparrow f_n. \) Denote \(h_n = \max \{g^{(n)}(1), g^{(n)}(2), ..., g^{(n)}(m)\} \) for \(n = 1, 2, ... \). Then \(h_n \) are NSF-s, \(h_n \uparrow f \) and \(\lim_{n \to \infty} \int h_n < \infty. \) Let \(g \) be NSF, \(g \leq f. \) Denote \(r_n = \min (h_n, g) \uparrow \min (f, g) = g. \) Then \(\int r_n \leq \int h_n \) for \(n = 1, 2, ... \) thus \(\lim_{n \to \infty} \int r_n \leq \lim_{n \to \infty} \int h_n < \infty. \) Hence \(g \) is integrable by the theorem 5. Suppose \(\int f = \infty. \) Then NSF-s \(p_m \) \((m = 1, 2, ...) \) exist such that \(p_m \leq f \) and \(\int p_m > m. \) \(p_m \) is integrable for \(m = 1, 2, ... \) and the \(\lim_{m \to \infty} \int p_m = \infty. \) Then
Then also the \(\lim_{n \to \infty} \int p_m \leq \lim_{n \to \infty} \int h_n < \infty \), which is a contradiction. Thus \(\int f < \infty \). Let \(\varepsilon > 0 \) be arbitrary. Then the NSF \(t \leq f \) exists such that \(\int f - \varepsilon < \int t \leq \int f \). Denote \(t_n = \min \left(h_n, t \right) \). Then also the \(\lim_{n \to \infty} t_n = t \) by the theorem 4. Hence \(\int f - \varepsilon < \int t = \lim_{n \to \infty} \int t_n \leq \lim_{n \to \infty} \int h_n \leq \lim_{n \to \infty} \int f_n \leq \int f \). Since \(\varepsilon \) was arbitrary \(\int f = \lim_{n \to \infty} \int f_n \).

Theorem 7. Let \(f, g \) be non-negative measurable functions on \((X, \mathcal{F}, m)\). Then \(\int f \oplus g = \int f \oplus \int g \).

Proof. Take NSF-s \(f_n, g_n \) (\(n = 1, 2, \ldots \)) such that \(f_n \uparrow f, g_n \uparrow g \). Then \(f_n \oplus g_n \uparrow f \oplus g \) and by the theorem 6 and the proposition 4 \(\int f \oplus = \sup_n \int f_n \oplus g_n = \sup_n \int f_n \oplus \sup_n \int g_n = \int f \oplus \int g \).

Product of \(\oplus \)-measures

Let \((X, \mathcal{F}, \mu), (Y, \mathcal{T}, \nu)\) be measurable spaces with finite and continuous \(\oplus \)-measures \(\mu, \nu \). Let \(\mathcal{R} \) be a ring of all finite disjoint unions \(M = \bigcup_{i=1}^{n} (A_i \times B_i) \) where \(A_i \in \mathcal{F}, B_i \in \mathcal{T} \) \(i = 1, 2, \ldots, n \) and denote by \(\mathcal{F} \times \mathcal{T} \) the \(\sigma \)-ring generated by \(\mathcal{R} \). Let \(M \in \mathcal{F} \times \mathcal{T} \). For each \(x \in X, y \in Y \) define sections \(M_x = \{ y \in Y, (x, y) \in M \} \), \(M'_y = \{ x \in X, (x, y) \in M \} \). Then \(M_x, M'_y \in \mathcal{F} \). Further define functions \(f_M : X \to (0, \infty), g_M : Y \to (0, \infty) \) as follows: \(f_M(x) = \nu(M_x), g_M(y) = \mu(M'_y) \).

Lemma. Let \(M \in \mathcal{F} \times \mathcal{T} \). Then the functions \(f_M, g_M \) are non-negative measurable.

Proof. Let \(M \in \mathcal{R}, M = \bigcup_{i=1}^{n} (A_i \times B_i) \) where \(A_i \in \mathcal{F}, B_i \in \mathcal{T} \) and \(A_i \times B_i \) are mutually disjoint \(i = 1, 2, \ldots, n \). For all \(x \in X \) \(f_M(x) = \nu \left(\bigcup_{i=1}^{n} (A_i \times B_i) \right) = \bigoplus_{i=1}^{n} \nu(A_i \times B_i) \). Hence \(f_M = \bigoplus_{i=1}^{n} \nu(B_i) \chi_{A_i} \). By the proposition 4 \(f_M \) is a NSF and hence is measurable. Similar \(g_M \) is a NSF. Let \(\mathcal{M} \) be a class of all \(M \in \mathcal{F} \times \mathcal{T} \) such that both \(f_M, g_M \) are measurable. Then \(\mathcal{R} \subset \mathcal{M} \). By continuity of \(\mu \) and \(\nu \), \(\mathcal{M} \) is a monotone class and hence \(\mathcal{F} \times \mathcal{T} \subset \mathcal{M} \).

Remark. It is not difficult to see that for \(M \in \mathcal{F} \times \mathcal{T} \) the functions \(f_M, g_M \) are integrable.

Let us define real functions \(\varphi, \psi \) on \(\mathcal{F} \times \mathcal{T} \) as follows: \(\varphi(M) = \int f_M d\mu, \psi(M) = \int g_M d\nu \) for all \(M \in \mathcal{F} \times \mathcal{T} \).
Theorem 8. The functions φ, ψ are finite and continuous \odot-measures.

Proof. Clearly φ is finite and $\varphi(\emptyset) = 0$. Let $M, N \in \mathcal{F} \times \mathcal{T}, M \cap N = \emptyset$. Then $\varphi(M \cup N) = \int f_{M\cup N} \, d\mu = \int (f_M \odot f_N) \, d\mu = \int f_M \, d\mu \odot \int f_N \, d\mu = \varphi(M) \odot \varphi(N)$. Let $M_n \downarrow \emptyset, M_n \in \mathcal{F} \times \mathcal{T}$ ($n = 1, 2, \ldots$). For all $x \in X, (M_n)_x \downarrow \emptyset$ and by continuity of ν \[\lim_{n \to \infty} \nu((M_n)_x) = 0. \] Hence $f_{M_n} \downarrow 0$ and by the theorem 3 \[\lim_{n \to \infty} \varphi(M_n) = 0. \] Thus φ is continuous. Let $E_n \in \mathcal{F} \times \mathcal{T}$ ($n = 1, 2, \ldots$) are mutually disjoint. Put $E = \bigcup_{n=1}^{\infty} E_n$ and \[F_n = E - \bigcup_{i=1}^{n} E_i \quad (n = 1, 2, \ldots). \] Then $F_n \downarrow \emptyset$ and hence \[\lim_{n \to \infty} \varphi(F_n) = 0. \] $\varphi(E) = \varphi\left(\bigcup_{i=1}^{\infty} E_i\right) \odot \varphi(F_n)$. Hence $\varphi(E) = \lim_{n \to \infty} \varphi\left(\bigcup_{i=1}^{n} E_i\right) = \sum_{i=1}^{\infty} \varphi(E_n)$. Hence φ is a \odot-measure. For ψ the proof is dual.

Theorem 9. Let $M \in \mathcal{F} \times \mathcal{T}$. Then $\varphi(M) = \psi(M)$.

Proof. Let $M \in \mathcal{R}, M = \bigcup_{i=1}^{n} (A_i \times B_i)$ where $A_i \in \mathcal{F}, B_i \in \mathcal{T}, A_i \times B_i$ are mutually disjoint $(i = 1, 2, \ldots, n)$. Then $\int f_{M} \, d\mu = \int \bigoplus_{i=1}^{n} v(B_i) \chi_{A_i} \, d\mu = \bigoplus_{i=1}^{n} \int v(B_i) \chi_{A_i} \, d\mu = \bigoplus_{i=1}^{n} \mu(A_i) v(B_i) = \int \bigoplus_{i=1}^{n} \mu(A_i) \chi_{B_i} \, dv = \int g^M \, dv.$ Thus $\varphi(M) = \psi(M)$ on \mathcal{R}. Let M be a class of all sets $M \in \mathcal{F} \times \mathcal{T}$ such that $\varphi(M) = \psi(M)$. Then \mathcal{M} is a monotone class by the continuity of φ, ψ, and $\mathcal{R} \subset \mathcal{M}$. Thus $\mathcal{F} \times \mathcal{T} \subset \mathcal{M}$.

We shall write $\mu \times \nu$ for a function φ and we shall call it a product of \odot-measures μ, ν.

Let h be a real function on $X \times Y$. For all $x \in X, y \in Y$ let us define real functions h_x, h^y on Y, resp. X, in the following way: $h_x(y) = h(x, y), h^y(x) = h(x, y)$.

Theorem 10. Let $h: X \times Y \to (0, \infty)$ be an integrable function. Then the functions $f: X \to (0, \infty), g: Y \to (0, \infty)$ defined as follows: $f(x) = \int h_x \, dv, g(y) = \int h^y \, du$ are integrable and moreover $\int h \, d\mu \times \nu = \int f \, d\mu \times g \, dv$. Thus $\int h \, d\mu \times \nu = \mu \times \nu(E) = \int f \, d\mu.$

Proof. 1) First let $h = \chi_E, E \in \mathcal{F} \times \mathcal{T}$. Then $h_x = \chi_{E_x}$ and $f(x) = \int h_x \, dv = \nu(E_x) = f_E(x)$. Thus $\int h \, d\mu \times \nu = \mu \times \nu(E) = \int f \, d\mu.$

2) Let h be a NSF on $X \times Y$. Then $\int h \, d\mu \times \nu = \bigoplus_{i=1}^{n} \alpha_i \mu \times \nu = \bigoplus_{i=1}^{n} \alpha_i \int (\chi_{(E_i)_x} \, dv) \, d\mu = \bigoplus_{i=1}^{n} \alpha_i \int (\chi_{(E_i)_x}) \, d\mu \times \nu = \bigoplus_{i=1}^{n} \alpha_i \int (\chi_{(E_i)_x} \, dv) \, d\mu = \bigoplus_{i=1}^{n} \alpha_i \int (\chi_{(E_i)_x}) \, d\mu \times \nu = \bigoplus_{i=1}^{n} \alpha_i \chi_{(E_i)_x} \, d\mu \times \nu.$

3) Let h be an arbitrary non-negative function on $X \times Y$. Take NSF's h_n ($n = 1, 2, \ldots$) such that $h_n \uparrow h$ and denote $f_n(x) = \int (h_n)_x \, dv$ for all $x \in X$, ($n = 1, 2, \ldots$). The functions f_n ($n = 1, 2, \ldots$) are μ-measurable, thus the lim f_n is μ-measurable. By the theorem 6 $\int h \, d\mu \times v = \lim_{n \to \infty} \int h_n \, d\mu \times v = \lim_{n \to \infty} \int f_n \, d\mu$. 21
\[
\lim_{n \to \infty} \int_{h_n(x)} f_n \, dv = \int \left(\lim_{n \to \infty} \int_{h_n(x)} f_n \, dv \right) \, d\mu = \int \left(\int \lim_{n \to \infty} (h_n(x)) \, dv \right) \, d\mu = \int h(x) \, dv \, d\mu = \int f \, d\mu.
\]

The function \(f \) is integrable since \(h \) is integrable. By the same arguments one can prove that \(g \) is integrable and \(\int g \, dv = \int h \, d\mu \times v. \)

REFERENCES

Received September 2, 1983

Katedra matematiky
Elektrotechnickej fakulty SVŠT
Gottwaldovo nám. 19
812 19 Bratislava

ИНТЕГРИРОВАНИЕ ПО \(\bigoplus \)-МЕРЕ

Ivica Marinová

Резюме

В статье показано, что как интегрирование \(\sigma \)-аддитивных мер и \(\sigma \)-макситивных мер, так и произведение этих мер можно рассматривать одновременно.