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INTEGRATION WITH RESPECT
TO A @-MEASURE

IVICA MARINOVA

In paper [S] the extension of o-additive and o-maxitive measures is performed
simultaneously by help of some -measure. In this paper we show that one can
perform simultaneously the integration theory as well as the product of g-additive
and g-maxitive measures. Both g-additive and o-maxitive measures are so-called
strong submeasures. For submeasures some more integrals are defined in literature
(see [1], [3], [4]), [7]). But none of these integrals fulfils the very natural
requirement of o-maxitive measures, that is [sup (f, g)=sup {[f, [ g} for all
non-negative functions f, g.

Preliminary definitions and results

Let @ be some binary operation on (0, «) with the following properties:
a@®b=b@®a for all a, be(0, )
(a@b)Pc=a@(b@c) for all a, b, ce(0, ©)
k(a@b)=ka@kb for all k>0, a, be (0, ®)
a@0=a, a@» = for each ae (0, »)
a=b>a@c=b@c for all a, b, ce (0, ®)
(@a+b)@P(c+d)=(a@c)+(b@d) for all a, b, ¢, de(0, »)
a,—a, byob>a, @b, —a®b
for all a, b, a,, b,e(0,®) (n=1, 2, ...).
We shall write briefly éa,- instead of a,@a.®P...@Da, and é)ai instead of
i=1 i=1
sup (@a‘).
Clearly the usual addition as well as the maximum of two real numbers fulfil the

properties 1.—7.
Definition 1. Let (X, ¥) be a measurable space. A set function m: ¥— (0, ©)

will be called a @-measure if m(@) =0 and m(ljJ E,-) = ém(E.») for each sequence
i=1 i=1
{E:}i~, of mutually disjoint sets from ¥.

NNk~
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Clearly if a@®b=a+b for all a, be(0,»), the F-measure becomes
a o-additive measure. If a@®b =max {a, b} for all a, b € (0, ©), the (H-measure
becomes a g-maxitive measure (i.e. such a function m: ¥ — (0, ©) that m(3)=0

and m(U E> =sup m(E;) for each sequence {E, } =, of mutually disjoint sets in .f).

It is easy to see that a (D-measure is (P-additive (i.e. m(AuUB)=m(A)@®m(B)
for all A,Be¥, AnB=@), monotone, B-subadditive (i.e. m(AuB)=

m(A)@P m(B) for all A, Be %) and continuous from below.

Let m be a fixed ®-measure. First we define an integral with respect to m for
a non-negative simple function. Briefly for a NSF.

Definition 2. Let (X, ¥, m) be a (B-measure space and let f be a NSF,

f:ia,'XE. where E,nE, =@ for i¥k, 0<a, <. We define ffdmzéa,m(E,)
4 =1

and we say that f is integrable iff [fdm <.
Clearly a NSF f is integrable iff m(N(f)) <> where N(f)={x, f(x)#0}.

We shall write [f in place of [f dm since m is fixed.
Remark. The definition 2 is correct by the distributivity of & and the

(®-additivity of m.
Proposition 1. Let f, g be NSF-son (X, &, m) such thatf<g. Then [f< [g.

Proof. f, g are NSF-s, thus such mutually disjoint sets E, € ¥ and numbers
0=y,=6; (i=1, 2, ..., k) exist that

k k
f=_;%xe., g=_}:‘1 Sxe, -

k k
Then ff=@y,m(E,~)§@6,m(E)=jg.
Proposition 2. Let f, g be NSF-s on (X, ¥, m). Then [f+ q<ff+fq
Proof. Take mutually disjoint sets E € ¥ and numbers v, 6,=0(i =1, 2, .

such  that f= E YiXE.» 2 . Then [f+g= fz(y, +6,)xE

- k)

k k
= @(y,--f—é,-)m(E,») = @y,-m(E,-) + @&'m(Ei) = [f+]g.
Corollary. Let f, g be integrable NSF-s on (X, ¥, m). Then |[f—[g| =

J1f-gl.
Proposition 3. Let f, g be such NSF-s that f- g=0. Then [f+g=[f®]yg.

Let f, g be non-negative real functions on X. Let us define a function f@g as

follows: (f®g)(x)=f(x)PDg(x) for all xe X.
Proposition 4. Let f, g be NSF-s. Then the function f®g¢g is a NSF and

[f®g=]f®fg.
k k
Proof. We can write f=2 yixe, g =, 6xg for suitable numbers v, 6, =0 and
=1 =1
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mutually disjoint sets E;e¥ (i=1, 2, ..., k). Then the function f@g=
k k k
S (1 @)s is a NSF. [f®g = Qr@s)m(E) = (Ovm(E)) @

(@om(E) = [f@®fg.

Definition 3. Let (X, &, m) be a ®-measure space.

A) If f: X— (0, ©) is a measurable function, we put [f=sup {[g: g=f, g is
a NSF} and we say that f is integrable iff [f<oo.

B) If f: X—(— o, ©) is measurable and at least one of the functions f*=
max (f, 0), f~ = —min (f, 0) is integrable, we put [f= [f*— [f~ and we say that f is
integrable iff —oo < [f<oo,

Remarks. 1) A measurable function f: X— (—o, ®) is integrable iff both
f*, f~ are integrable.

2) For a NSF the definitions 2 and 3 do not differ.

3) If m is a o-additive measure, then integral from the definition 3 does not
differ from the classical one (for definition see e.g. [2]).

4) For o-maxitive measures N. Shilkret in [6] defined the integral of

fdm = sup am{x, f(x)Za}.If
h

a>0

a non-negative measurable function as follows: f
S

a @P-measure m is a o-maxitive measure, we assert that [f =j f for each
non-negative measurable function f. Proof: Clearly [g =J g for Sélach NSF g.
Let f=0 be measurable and denote E, = {x, f(x)=a}. Therslh [f=sup {[g, g=f,
gis a NSF} = sup {J'aan}=J;h f. On the other hand if g=f, g is a NSF, then

I8=Lh g = Lh f, hence [f=sup {[g, g=f, g is a NSF} éJ’Sh J:

We leave the easy proof of the following theorem to the reader.

Theorem 1. Let f, g, h be measurable functions such that [f, [g, [h have
a sense. Then

1. fZ0> [f=0

2. f=g=>[f=[g

3. f=Sh=g, f, g are integrable = h is integrable

4. fis integrable iff |f| is integrable

5. Letce(—®, ), c#0. Then f is integrable iff cf is integrable and [cf =c{f.

Theorem 2. Let f be a non-negative integrable function on (X, &, m). Let us

define a set function v;: $— (0, ) as follows : v;(E) =j f = [fxeforeachEe ¥.
E

Then v; is a -measure on ¥.
Proof. Itsuffices to show that v; is @-additive and continuous from below. First
we show the @-additivity. Let A, B€ ¥, AnB =@ and £ >0 be arbitrary. Then the
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NSF g = f exists such that v(AuB) —e<v,(A) ® v,(B) = v,(A) @ v,(B). Since
£ was arbitrary v;(AUB) = v,(A) @ vy(B). On the other hand, for each £ >0 the

NSF h=f exists such that v,(A)®v(B) = (v,,(A)+§> @ (v,,(B)+§> Y

(v,,(A)@v,,(B))+(§@§) = vi(AUB)+¢ = vy(AUB) +¢. Since € was arbitrary

the inequality v,(A)®v;(B) = v;(AuUB) holds.
The proof of the continuity from below is realized in three steps. Let E € ¥
(i=1,2,...) be mutually disjoint.

1. First let f=ay, for some a>0 and Ae¥. v,(OE;) = faxG (AE)
i=1 = '
= am(O(AmE.-)) = asup m(U(AmE,)) = sup [ay =
i=1 n i=1 n .U: (ANE,)
sup v,(L"J E,-).
n i=1
k
2. Let f=> aja, where a;>0, A, € ¥ are mutually disjoint (i =1, 2, ..., k). Let
i=1
us denote fi=axa, (i=1,2,...,k). Then by the proposition 3 v,(o E,)
=1

- Su(0E) = s {Su(UE)] = ww [ 0E))

3. Let f be a non-negative integrable function and £ >0 be arbitrary. Then the
o © k

NSF g=f exists such that v,(U E,-) - £<v,,(U E,») = sup vH(U E,) =
i=1 i=1 k i=1

k o oo
sup v,( U E.-) = v,(U E,-). Since € was arbitrary one has v{ |_J E,-) = sup v,( U E,).
k i=1 i=1 k

1=1 =1

Integration with respect to a continuous ()-measure

In this section we consider a fixed continuous (P-measure m on a o-ring & of
subsets of X+@ (i.e. if E, is a decreasing sequence of sets in & with empty
intersection and m(E,) <~ for some k, then lim m(E,)=0).

Theorem 3. Let {f.}»-, be a sequence of bounded measurable functions such
that f, | 0. Let such an index k exist that m(N(f.)) <. Then lim [f, =0.

Proof. Let >0 be arbitrary. We put E = N(fi) and we assume m(E)>0 (for

E —
W and E,. = {x,
f.(x)Z¢'} (n=1, 2, ...). f. |0 implies E, |# and by continuity of m one has

m(E)=0 the theorem is obvious). Let us denote ¢’ =
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lim m(E,)=0. Let us denote b=maxf,. Then for nZk, 0=[f, = J fa

n—o En

+ J f. = bm(E,) + ¢m(E-E,) = bm(E,)+¢. Hence 0=lim [f, =
E-E, n—soo

'lII_ILIl (bm(E,)+ ¢)=¢. £ was arbitrary, thus lim [f.=0.

Theoremd. Let f,, f (n=1, 2, ...) be in:;grable NSF-s such that f,1f. Then
lim [f,= ff.

Proof. The functions f—f, (n=1, 2, ...) are bounded and f—f, |0. Since
m(N(f))<® one can apply the theorem 3. Hence '1'1_.1'2 f(f—f.)=0 and since

O=[f—[f. = [(f—f.) for n=1,2, ... one has ,lll_‘,{‘, If.=If.

Theorem 5. Let f,, f (n=1, 2, ...) be NSF-s such that f, 1 f and lim [f, <.

Then f is integrable.
Proog. 1) First we assume f = x, for some A € ¥. We can suppose f, #0. Let us
denote B.=min f,/N(f,) for n=1, 2, .... Then [f,=B.m(N(f.))=p.m(N(f.))

and one has m(N(f,.))éBl [f.. Hence m(A) = lim m(N(f,.))§l lim [fa<oo.

1 n

k
2) Let f=> axa, for some a;€(0, ®), Aie¥ (i=1,2, ..., k) AinA;=0 for

i=1
i#j. Then f,xa, T axa, implies Oéif,.x«, 1 Xa; and lim IalffnxA, =lim %ffn<°°.

Hence m(A;)<x for ie{l, 2, ..., k} and this implies m(N(f)) <, i.e. f is an
integrable function. Notice that we did not use the continuity of m.
Theorem 6. Let {f.}r., be a sequence of non-negative measurable functions

such that f,1f. Then .I‘f=’lli_r’£1° [fa.

Proof. If the lirg ff. =00, the assertion is clear. Let the linl ffa<oo and for

n=1,2,... take a sequence {g®}s., of NSF-s such that g% 1f,. Denote
h,=max {g®, g2, ..., g™} for n=1, 2, .... Then h, are NSF-s, h,1f and

lim [h, <. Let g be NSF, g=f. Denote r, =min (h,, g) {min (f, g)=g. Then

fr.=[h, for n=1, 2, ... thus lim [r,=lim [h, <. Hence g is integrable by the
theorem 5. Suppose [f=oo. Then NSF-s p,, (m=1, 2, ...) exist such that p,,<f
and [p.>m. p, is integrable for m=1,2,... and the li“}, Jpm=0. Then
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s, =min (h,, p,,) T min (f, p,.) = p.. and by the theorem 4 [p,, =lim [s,=lim [h,.

Then also the lim [p. = lim [h, <o, which is a contradiction. Thus [f <. Let
£ >0 be arbitrary. Then the NSF t=f exists such that [f—e<[t=[f. Denote
t, =min (h,, 1) T min (f, t) =t. Thus lim [, = [ by the theorem 4. Hence [f—¢<

Jr = lim [t, = lim Jh, = lim [f,=[f. Since & was arbitrary [f=1lim [f,.

n—o

Theorem 7. Let f, g be non-negative measurable functions on (X. ¥, m). Then

Jf®g=[f®]g.
Proof. Take NSF-s f,, g. (n=1,2,...) such that f,1f, g.1g. Then

f.@®9.Tf@g and by the theorem 6 and the proposition4 [f®g = sup [f,Dg.

= sup If.®fg. = sup Ifn@sgp Jg. = [f®fg.

Product of (D-measures

Let (X, %, u), (Y,J,v) be measurable spaces with finite and continuous
(®-measures u, resp. v. Let R be a ring of all finite disjoint unions M = Lj (A, X B,)
i=1

where A;e ¥, Bie J (i=1,2, ..., n) and denote by ¥ X 7 the o-ring generated by
R.Let Me ¥X T . For each x e X, y € Y define sections M, ={ye Y, (x, y)e M},
M’={xeX, (x,y)e M}. Then M, € 7, M* € &. Further define functions fy: X —
(0, ®), gM: Y- (0, =) as follows: fu(x)=v(M,), g™(y)=u(M).

Lemma. Let Me¥XJ. Then the functions fu, g™ are non-negative
measurable.

Proof. Let Me @R, M=L"J(A.-><B.~) where A;e¥, B.eJ and A; X B, are
i=1

mutually disjoint (i=1, 2, ...,n). For all xeX fu(x) = v(U(A,-xB,-),)

= é)v(A,- X B,),. Hence fM=®v(B,)xA,.. By the propositon 4 fy is a NSF and
i=1 i=1

hence is measurable. Similary g™ is a NSF. Let A be a class of all M e ¥ X J such
that both fy, g™ are measurable. Then & = /. By continuity of u and v, M is
a monotone class and hence X J < M.

Remark. It is not difficult to see that for Me ¥ X J the functions fy, g™ are
integrable.

Let us define real functions @, ¥ on ¥xJ as follows: @(M)= [fudu,
Y(M)=[gMdv for all Me ¥xX T. '
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Theorem 8. The functions @, v are finite and continuous ®-measures.
Proof. Clearly ¢ is finite and @(#)=0. Let M, Ne ¥x J, MnN=§. Then

@(MUN) = [fuondp = [(fu@fn) du=[fu du ® [fv du = ¢(M) @ @(N). Let
M, |0, M,e¥xT (n=1,2,..). For all xe X (M,), |0 and by continuity of v

lim v((M,),)=0. Hence fu, |0 and by the theorem 3 lim @(M,)=0. Thus ¢ is

continuous. Let E, e ¥xX J (n=1, 2, ...) are mutually disjoint. Put E = D E, and
n=1
F,=E-— l:JE,- (n=1,2,...). Then F,|@ and hence lim ¢(F,)=0. @(E)=
i=1 n—so

(p<;L:J1Ei) @ o@(F,). Hence ¢(E) =11_rg (P(!;JIE:') = é(p(E,.). Hence ¢ is

n=1
a @-measure. For ¢ the proof is dual.
Theorem 9. Let Me X J. Then p(M)=y(M).

Proof. Let MeR, M= L"J(Ai X B;) where A; € &, B:€ 7, A; X B; are mutually
i=1
disjoint (i=1,2,...,n). Then [fudu = é)v(B,-)xA,. du = (-’}I-)IV(B.-)XA..
i=1 i=1

= @u(Ai)v(Bi) = | @r(A)xs dv = [g™ dv. Thus ¢(M) = (M) on 2. Let M

be a class of all sets M e X J such that (M) =y(M). Then . is a monotone
class by the continuity of ¢, resp. ¥, and Z c M. Thus ¥ X T < M.

We shall write u X v for a function ¢ and we shall call it a product of ()-measures
U, v.

Let h be areal functionon X X Y. For all x € X, y € Y let us define real functions
h., h” on Y, resp. X, in the following way: h.(y)=h(x, y), h*(x)=h(x, y).

Theorem 10. Let h: XX Y— (0, ©) be an integrable function. Then the func-
tions f: X— (0, ©), g: Y— (0, ®) defined as follows: f(x)=[h,dv, g(y)=
[h? du are integrable and moreover [hduxv=[fdu=/[g dv.

Proof. 1) Firstlet h=yxg, E€ ¥X J.Then h, =xg, and f(x)=[h, dv=v(E.) =
fe(x). Thus fhduXv=uXxv(E)=[fe du=[f du.

2) Let hbe a NSFon XX Y. Then [h du X v=@aiu X V(E,»)=(-_b(1,» f xe: du x
v=@®a, f Urendv)dp =  @fav(BE))de = [@av((E).)dp

i=1 i=1 i=1

= I(Ihx dv)du = J-fd“-
3) Let h be an arbitrary non-negative function on X X Y. Take NSF-s h.
(n=1,2,...) such that h,Th and denote f.(x)=f(h.): dv for all xeX, (n=

1,2, ...). The functions f, (n=1, 2,...) are p-measurable, thus the lim f, is

u-measurable. By the theorem6 [hduxv=Ilim [h,duxv = lim [f.dp
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= [tim fudu = [(tim fh)e dv)du = [([tim (). av) du = [(Fh dv) du

= [fdu.
The function f is integrable since h is integrable. By the same arguments one can
prove that g is integrable and [g dv=[h duxv.
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Pesiome

B cratbe MOKa3aHO, YTO KaK HHTErpHpPOBAHHE O-afQMTHBHbLIX MEp H O-MAaKCHTHBHBIX MEp, TakK
H MPOU3BEICHHE ITHX MEP MOXHO pacCMaTpHBaTb OJHOBPEMEHHO.
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