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INTEGRATION WITH RESPECT 
TO A ©-MEASURE 

IVTCA MARINOVA 

In paper [5] the extension of a-additive and a-maxitive measures is performed 
simultaneously by help of some ©-measure. In this paper we show that one can 
perform simultaneously the integration theory as well as the product of a-additive 
and a-maxitive measures. Both a-additive and a-maxitive measures are so-called 
strong submeasures. For submeasures some more integrals are defined in literature 
(see [1], [3], [4], [7]). But none of these integrals fulfils the very natural 
requirement of a-maxitive measures, that is Jsup (/, g) = sup {//, jg} for all 
non-negative functions /, g. 

Preliminary definitions and results 

Let © be some binary operation on (0, oo) with the following properties: 
1. a@b = b®a for all a, be(0, oo) 
2. (a@b)@c = a@(b®c) for all a, b, ce(0, oo) 
3. k(a®b) = ka®kb for all k>0, a, be(0,«>) 
4. a@0 = a, a©oo = oo for each ae(0, oo) 
5. a^b^>a®c^b®c for all a, b, ce(0,oo) 
6. (a + b)®(c + d)^(a@c) + (b@d) tor all a, b, c, de(0,°o) 
7. an-*a, bn^>b^>an®bn->a@b 

for all a, b, an, bn e (0, oo) (n = 1, 2, ...). 

We shall write briefly ©a, instead of ax@a2©...©«« and ©a, instead of 

sup (©*<)• 

Clearly the usual addition as well as the maximum of two real numbers fulfil the 
properties 1.—7. 

Definition 1. Let (X, Sf) be a measurable space. A set function m: tf—> (0, oo) 
/ OO \ 00 

will be called a ®-measure ifm(0) = 0 and ml [J EA =©m(Ei) for each sequence 

{E,}r«i of mutually disjoint sets from if. 
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Clearly if a@b = a + b for all a, be(0, oo), the ©-measure becomes 
a a-additive measure. If a®b =max {a, b} for all a, b e (0, oo)? the ©-measure 
becomes a a-maxitive measure (i.e. such a function ra: Sf^> (0, °°) that ra(0) = O 

and ml[_)Ei) =sup ra(F,) for each sequence {F,}r=i of mutually disjoint sets in . / ) . 

It is easy to see that a ©-measure is ©-additive (i.e. m(AuB) = m(A)@m(B) 
for all A,Beif, AnB=0), monotone, ©-subadditive (i.e. m(AuB)^ 
m(A)®m(B) for all A, Betf) and continuous from below. 

Let ra be a fixed ©-measure. First we define an integral with respect to ra for 
a non-negative simple function. Briefly for a NSF. 

Definition 2. Let (X, 6̂ , ra) be a ®hmeasure space and let f be a NSF, 
n n 

f = ̂ cCiXE, where EtnEk =0 for i£k, 0 < a , <oo. We define jf dm = ®a,m(El) 
i=l i=\ 

and we say that f is integrable iff / / dra < «>. 
Clearly a NSF f is integrable iff m(N(f))<oo where N(f) = {x, f(x) £0}. 
We shall write / / in place of / / dra since ra is fixed. 
R e m a r k . The definition 2 is correct by the distributivity of © and the 

©-additivity of ra. 
Proposition 1. Letf, g beNSF-s on (X, ¥, ra) such thatf^g. Then ff^fg. 
Proof. /, g are NSF-s, thus such mutually disjoint sets E.e^f and numbers 

0 ^ y ^ 6 \ (7 = 1, 2, ..., k) exist that 

k k 

/=2r<te.> g=2^E,. 
/ = i i = i 

Then J/ = ey,m(E,) = ©6,m(E,) = Jfl. 
i = l i = l 

Proposition 2. Let f, g be NSF-s on (X, ¥, ra). Then ff + g^ff + fg. 
Proof. Take mutually disjoint sets Et E ^ a n d numbers y , c \ S 0 (/ = 1, 2, ..., k) 

k k r k 

such that / = 2 M E . > 0 = 2 Ate,. Then / / + # = 2 ( y . + 6.);fe 
r = i i = i J i = i 

= ©(y. + ̂ ME,) ^ ®YME) + ®6ME) = ff + fo-
i = l i = l . = 1 

Corollary. Lef /, g be integrable NSF-s on (X,tf,m). Then | / / - / g | = 

/ I / - * . . 
Proposition 3. Let f, g be such NSF-s that f • g = 0. Then jf + g = / / © / g . 
Let / , g be non-negative real functions on X. Let us define a function f®g as 

follows: (f®g)(x) = f(x)®g(x) for all xeX. 
Proposition 4. Lef /, g be NSF-s. Then the function f@g is a NSF and 

ff@g = ff@fg-
k k 

Proof. We can write / = 2 M E , > 9 = X f e for suitable numbers y , 6\ i^O and 
i = i ' . = i 
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mutually disjoint sets EteSf (i = l, 2, ..., k). Then the function f®g = 

£(Y.©«i)Jta is a NSF. / / © g = ©(y.©6,)m(-2i) = ( © V M S ) ) © 
i=l i=l \ i = l / 

(©6.m(3)) = //©/<*. 

Definition 3. Let (X, Sf, m) be a ©-measure space. 
A) If f: X—>(0, oo) is a measurable function, we put J/ = sup {fg: g=f, g is 

a NSF} and we say that f is integrable iff J /<°° . 
B) If f: X—>(-o°, oo) is measurable and at least one of the functions /+ = 

max (f, 0), f~ = -min (f, 0) is integrable, we put J/ = J/+ - J/" and we say that f is 
integrable iff - oo < J/ < oo. 

Remarks. 1) A measurable function /: X—>(-oo, oo) is integrable iff both 
/"•", /" are integrable. 

2) For a NSF the definitions 2 and 3 do not differ. 
3) If m is a a-additive measure, then integral from the definition 3 does not 

differ from the classical one (for definition see e.g. [2]). 
4) For a-maxitive measures N. Shilkret in [6] defined the integral of 

a non-negative measurable function as follows: / dm = sup am{x, f(x) = a}. If 
Jsh a>0 * 

a ©-measure m is a a-maxitive measure, we assert that J / = / for each 
r Jsh 

non-negative measurable function/. Proof: Clearly J # = g for each NSF g. 
Jsh 

Let f = 0 be measurable and denote Ea = {x, f(x) = a}. Then J/ = sup {$g, g=f, 

g is a NSF} = sup {Ja%Efl} = / .On the other hand if g =f, g is a NSF, then 
a>0 Jsh 

/ g = f g ^ f f, hence / / = sup {fg,g£f, g is a NSF} S f / . 
JSh Jsh Jsh 

We leave the easy proof of the following theorem to the reader. 
Theorem 1. Let f, g, h be measurable functions such that J/, fg, \h have 

a sense. Then 
1. f = 0^>if=0 
2. f=g^jf=Sg 
3. f=^h = g, f, g are integrable => h is integrable 
4. f is integrable iff \f\ is integrable 
5. Let c e ( - oo, oo), c=̂= 0. Then f is integrable iff cfis integrable and fcf = cJ/. 
Theorem 2. Let f be a non-negative integrable function on (X, if, m). Let us 

define a set function vf: if—> (0, oo) as follows: vf(E) = I / = J/%E for each Eeif. 

Then vf is a ©-measure on if. 
Proof. It suffices to show that vf is 0-additive and continuous from below. First 

we show the ©-additivity. Let A, Be if, A nB = 0 and e > 0 be arbitrary. Then the 
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NSF(5f=/exists such that v , ( A u B ) - e < v„(A) © v„(B) = v,(A) © v,(B). Since 
£ was arbitrary v,(AuB) =̂  v,(A) © v,(B). On the other hand, for each e>0 the 

NSF h^f exists such that v,(A)©v,(B) = (v„(A) + | ) © (vn(B) + | ) = 

(vn(A)©vn(B))+ ( | © | ) = v„(AuB) + e = v,(AuB) + £. Since e was arbitrary 

the inequality v,(A)©v,(B) = v,(AuB) holds. 
The proof of the continuity from below is realized in three steps. Let E, e Sf 

(/'= 1, 2, ...) be mutually disjoint. 

1. First let / = a%A for some a > 0 and AeSf. v,(|jEA = fax ,-, , . P, 

= am(Q(AnE,) j = a sup m(|J(AnE,)) = sup / a z ,-, (AnE;) = 

sup v^ljE-j-

2. Let/ = 2a«%A, where a,>0, A, e if are mutually disjoint (/ = 1, 2, ..., k). Let 
i = l 

us denote /, = a,%Ai (/ = 1,2,..., k). Then by the proposition 3 viQ -5) 

= ®v/i(pfi) = ̂ { © ^ ( p ^ ) } = su
n

p{v/(yE,)[ 
3. Let / be a non-negative integrable function and e>0 be arbitrary. Then the 

NSF # = / exists such that v/Q-S) - £<vJ l jE . ) = supvi l jE . ) = 

sup v,( U En = v/( U E«) • Since e was arbitrary one has vi {jEij = sup v,( (J E j . 

Integration with respect to a continuous ©-measure 

In this section we consider a fixed continuous ©-measure m on a a-ring if of 
subsets of X-£0 (i.e. if En is a decreasing sequence of sets in if with empty 

intersection and m(Ek)<oo for some k, then lim m(En) = 0). 

Theorem 3. Let {/„}~=i be a sequence of bounded measurable functions such 

that fn[0. Let such an index k exist that m(N(fk))<oo. Then lim ffn =0. 
n—»oo 

Proof. Let £>0 be arbitrary. We put E = N(fk) and we assume m(E)>0 (for 
£ 

m(E) = 0 the theorem is obvious). Let us denote e'=—r=r and En = {x, 

/n(jc) = e'} (n = l, 2, ...). /„ | 0 implies En [0 and by continuity of m one has 
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l imm(E n ) = 0. Let us denote b = m a x / k . Then for n^k, OgJ / n = \ U 

+ I /„ § bm(En) + e'm(E-En) ^ bm(En) + e. Hence O^lim//„ g 
JE-En «-*°° 

lim (6m(En) + e) = £. e was arbitrary, thus lim J"/n=0. 
n-»oo n-»oo 

Theorem 4. Let fn, f (n = 1, 2, ...) be integrable NSF-s such that fn | / . Then 

lim//„ = / / . 

Proof. The functions f-fn (n = l, 2, ...) are bounded and / - / n | 0 . Since 

m(N(f))<oo one can apply the theorem 3. Hence lim J ( / - / n ) = 0 and since 

0 g j 7 - j 7 „ g / ( / - / „ ) forn = l , 2 , . . . one has lim //„ = / / • 
rt—»oo 

Theorem 5. Let /„, / (n = 1, 2, ...) be NSF-s such that /„ | / and lim //„ < oo. 
n - * o o 

Then / is integrable. 
Proog . 1) First we assume / = £* for some A e &. We can suppose fx =£0. Let us 

denote 0n =min/ n /N( / n ) for n = l , 2 , . . . . Then J/ngj3nm(N(/n))g/31m(N(/n)) 

and one has m(N(fn))^-^- J/n. Hence m(A) = lim m ( N ( / n ) ) ^ ~-lim //„<<». 
p1 .n-*oo P J n-+oo 

fc 
2) Let / = 2a«XA. f o r s o m e a«e(°> °°)> A,e5P (i = l , 2, ..., fc) A,nA, = 0 for 

1 f 1 1 
i^y. Then / J U T«#A. implies 0 ^ — / j ^ , |XA, and lim —/n%A^lim — | / n < o o . 
Hence m(A.)<oo for / e { l , 2, ..., k) and this implies m(N(/))<oo, i.e. / is an 
integrable function. Notice that we did not use the continuity of m. 

Theorem 6. Let {/«}"=-1 be a sequence of non-negative measurable functions 

such thatfn\f. Then J7 = lim J/n. 
rt—»oo 

Proof. If the lim J/n = oo, the assertion is clean Let the lim J/n<oo and for 
n—*oo n_>oo 

n = l , 2 , . . . take a sequence {giV^i of NSF-s such that gi£i\fn. Denote 
hn=max{gn

1\ gn
2\ ..., gn

n)} for n = l, 2, .... Then hn are NSF-s, hn\f and 

lim fhn < oo. Let g be NSF, g ̂ / . Denote rn =min (hn, g) |m in (/, #) = #. Then 
n - * o o 

frn^fhn for Ai = 1, 2, ... thus lim J7n g l im jhn < oo. Hence g is integrable by the 
n-+oo n—»oo 

theorem 5. Suppose J"/=oo. Then NSF-s pm (m = l , 2, ...) exist such that pm^f 

and jpm>m. pm is integrable for m = l , 2 , ... and the l imJp m = oo. Then 
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sn =min (hn, pm) | min (/, pm) = pm and by the theorem 4 fpm = lim Jsn§lim fhn. 

Then also the lim fpm ^ lim fhn<™, which is a contradiction. Thus J/<oo. Let 

E>0 be arbitrary. Then the NSF t^f exists such that ff-e<ftfkff. Denote 

tn =min (hn, t) | min (f, t) = t. Thus lim Jtn = ft by the theorem 4. Hence ff -e< 

ft = lim ftn ^ lim fhn ^ lim ffn^ff. Since 8 was arbitrary J7 = lim f/n. 
n—»oo n — » o o n — * o o n—»00 

Theorem 7. Lei/, # be non-negative measurable functions on (X, Sf, m). Then 
ff@g = ff®$g-

Proof. Take NSF-s /„, gn (n = l ,2 , ...) such that /„ | / , a„|</. Then 

fn®gn \f®g and by the theorem 6 and the proposition 4 J7©g = sup Jf„©g„ 
n 

= supj/„©ja„ = sup J/„©supJ.g„ = J7©J\g. 

Product of ©-measures 

Let (X,Sf,p), (Y, :T, v) be measurable spaces with finite and continuous 
n 

©-measures ]U, resp. v. Let 91 be a ring of all finite disjoint unions M = (J (A, x B.) 
i = l 

where A, e Sf, B, e3~ (i = 1, 2, ..., rc) and denote by Sfx J the a-ring generated by 
9l.LetMeSfx9~. For each JC e X, y e Y define sections Mx = {ye Y, (x, y)eM}, 
My = {xe X, (x, y)eM}. Then Mx eST,Mye Sf. Further define functions /M: X-> 
(0, a>), ^^ : Y->(0, oo) as follows: /M(JC) = V ( M J , gM(y) = \i(My). 

Lemma. Let MeSfxST. Then the functions fM, gM are non-negative 
measurable. 

Proof. Let Me91, M = p ( A , x B l ) where AeSf, B^ST and AxB{ are 
i = l 

mutually disjoint (i = l, 2, ...,n). For all JCGX /M(JC) = v(p(A l xB l ) x ) 

= ®v(AxBl)x. Hence /M = ©V(B.)XA,. By the propositon 4 /M is a NSF and 
i = l i = l 

hence is measurable. Similary gM is a NSF. Let M be a class of all MeSfx :T such 
that both /M, gM are measurable. Then 91 a M. By continuity of \i and v, ^ is 
a monotone class and hence SfxSJaM. 

Remark. It is not difficult to see that for Me Sf x ST the functions /M, gM are 
integrable. 

Let us define real functions cp, xp on Sfx 9~ as follows: q)(M) = J/M^JU, 

xp(M) = fgMdv for all Me ^ x ST. 
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Theorem 8. The functions <p, \p are finite and continuous ©-measures. 
Proof. Clearly cp is finite and cp(0) = O. Let M,Ne3>x3', MnN = 0. Then 

cp(MuN) = J/MuNd]u = J ( / M © / N ) dju = J / M dp © J/N dp = <p(M) © cp(N). Let 
Ma | 0 , Mne<fx3' (n = \,2, ...). For all jceX (M„)x |0 and by continuity of v 

lim v((M„)x) = 0. Hence fMn | 0 and by the theorem 3 lim cp(Mn) = 0. Thus cp is 
n—>oo n—+QO 

oo 

continuous. Let En e tfx 3' (n = 1, 2, ..,) are mutually disjoint. Put E = | J En and 
n = l 

Fn = E - U - 5 . (n = l,2, ...). Then F n | 0 and hence lim cp(Fn) = 0. (p(E) = 

? ( 0 E ) © (p(Fn). Hence cp(E) = l i m J l j E . ) = ®<P(E«). Hence cp is 
\ i = l / "-°° \ i = l / n = l 

a ©-measure. For I/J the proof is dual. 
Theorem 9. LetMetfx 3'. Then cp(M) = \p(M). 
Proof. Let Me 31, M= (j(A, x B,) where A, e &, B, e3',Aix B, are mutually 

i = l 

disjoint (i = l ,2 , . . . , n). Then f/M dfi = f ©V(B,)XA, d/* = ©JV(B,)%A, 
J i=l i=l 

= ®M(A,)v(.B,) = [ © ^ ( A O ^ d v = |^Mdv.Thus(p(M) = t / ; (M)ona .Le t^ 
i=i J i=i 

be a class of all sets Me9>x3' such that q)(M) = \p(M). Then J< is a monotone 
class by the continuity of q), resp. \p, and 31 cz M. Thus S^x 3'aM. 

We shall write p X v for a function q> and we shall call it a product of ©-measures 
/*, v. 

Let /i be a real function o n X x Y . For all JC eX, y e Ylet us define real functions 
hxy hy on y, resp. X, in the following way: hx(y) = h(x, y), hy(x) = h(x, y). 

Theorem 10. Let h: Xx y—> (0, oo) be an integrable function. Then the func­
tions / :X->(0 , oo), g: y—>(0, oo) defined as follows: f(x) = jhxdv, g(y)^ 
jhy dju are integrable and moreover jh dju x v = jf dju = jg dv. 

Proof. 1) First \eth=XE,Ee&?x3~. Then hx =XEX and f(x) = jhx dv = v(Ex) = 
/E(JC). Thus jh dfx x v = \i x v(E) = jfE dpi = jf dju. 

2) Let h be a NSFon X x Y. Then jh dpi x v = ®(Xiii x v(Ei) = © a i jx& djuX 
i = l i = l 

v==©a, JdxcE^dv) dp = ©Ja.vaJS),) dp = J g a ^ E , ) * ) dp 

- f(jhx dv)d» = J*/dp. 
3) Let h be an arbitrary non-negative function on XxY. Take NSF-s hn 

(n = l ,2 , ...) such that /i„f/i and denote /„(*) = j(K)x dv for all jceX, (n == 

1,2,...). The functions /„ (n = l, 2,...) are p-measurable, thus the lim fn is 
n-*°° 

iu-measurable. By the theorem 6 jh dp x v = lim J/in dp x v = lim jfn dp 
n-*<*> n-*oo 
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= Jlim/„d,i = J(lim/(*.„), dv)d/i = J(Jlim (hn)x dv) d^ = J(J/tx dv) dM 

= $fdfi. 
The function / is integrable since h is integrable. By the same arguments one can 

prove that g is integrable and \g dv = jh d/x x v. 
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ИHTEГPИPOBAHИE ПO ©-MEPE 

Ivica Maгinová 

Peзюмe 

B cтaтьe пoкaзaнo, чтo кaк интeгpиpoвaниe a-aддитивныx меp и a-мaкc гивныx меp, тaк 
и пpoизвeдeниe этиx мep мoжнo paccмaтpивaть oднoвpeмeннo. 
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