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Math. Slovaca 29,1979, No. 1,73—82 

OSCILLATORY PROPERTIES OF SOLUTIONS 
OF A FOURTH-ORDER NONLINEAR DIFFERENTIAL 

EQUATION 
VINCENT §OLTES 

In [1] and [2] sufficient conditions were presented for the solutions of the 
equation 

y™ + p(x)y" + q(x)y' + r(x)h(y)=f(x), 

which satisfy an initial condition, to be oscillatory. 
For g(x) = 1, the-result of this paper do not follow from the results of [1], [2], and 

vice verba. The work extends to the set of theorems about the sufficient conditions 
for the oscillatory behaviour of the solutions. The same method is used in all the 
works. 

The present paper presents sufficient conditions which ensure that the solutions 
of the equation 

(1) [Q(x)y'"Y +p(x)y" + q(x)y' + r(x)h(y)=f(x) , 

which satisfy a certain initial condition, are oscillatory. For g(x) = 1 the results are 
an extension of those of [1] and [2]. 

We shall assume throughout that g(x)>0, gf(x) = 0, gff(x) = 0, q(x) = 0, that 
p(x), q(x), r(x), f(x) and h(y) are continuous for all xe (x0, oo), y e ( -oo , oo) 
where x0e( — oo, oo). 

We shall consider the solutions of (1), which exist on (x0, oo). 
Let 

nx) = g(x)y(x)y'''(x)-g(x)yf(x)yff(x) + \gf(x)yf2(x) + hq(x)y2(x) 

F^) = Q(x)y\x)yfff(x)-\g(x)yff2(x) + \p(x)yf2(x) + r(x)H(y(x)) 

H(y)=(yh(s)ds 
JO 

Lemma. Suppose that q(x)eCl(x0, oo) and that for all x e (x0, oo) and 
ye(-oo, oo), y±Q 
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2Q(x)q'(x)+p2(x)<0, sgnr(x) = sgnh(y)y. 

Then for any nonoscillatory solution of (1) such that 

(*> F W _ r fflW J. -H.SO 
J*o24(*)0(*)+P 00 

exactly one of the following statements holds: 

(i) y ( j c )>0 , y ' ( x ) > 0 , y"(jc)._0 /ora I I JC_:JC2_;JC0 

(i i) y ( x ) < 0 , y ' ( j c ) < 0 , y"( jc)__0 for all JC_.JC2_.JC0. 

Proof. Let y(jc) be a nonoscillatory solution of (1) satisfying (2). Then there 
exists JCji-JCo such that y(jc)=£0 for all JC_.JCI. Multiply (1) by y(jc) and integrate 
from JC0 to JC_.JC0, obtaining 

(3) F(x) + P Q(t)y"\t) dt + P p(t)y"(t)y(t) dt-\ P q'(t)y\t) dt-
Jx0 Jx0 JXQ 

- s f 0"(Oy'2(O dt+ P r(t)h(y(t))y(t) dt = F(x0)+ P f(t)y(t) dt. 
Jxo Jx0 Jx0 

Evidently for any real b, x, a > 0 we have 

(N) ajc2 + fcjc_:-^-. 
4a 

Since Q(X)>0 and 2Q(x)q'(X) + F2(jc) < 0 , we can use the last inequality to prove 
that 

Q(x)y''2(x)+p(x)y(x)y''(x)^-f^y2(x), 

-ir2,'(jc)+g^]y2(^)-/(x)y(x)S? jl{x^\f v 
L Q(x)\ " V 2q(x)Q(x)+p2(x) 

Using this, (3) yields 

( 4 ) F(x)-\\X
6"(t)y'\t)dt+ P r(t)h(y(t))y(t)dt^ 

Jx0 Jx0 

f(t)Q(t) šF(Xo)-ľ 
Jx0 

2q(t)Q(t) + p\t) držÅľošO 

for every JC _.;c0. Omitting nonnegative terms on the left-hande side of the relation 
(4), we have for every x^xx: 

(5) A[___]^_2 i_£l 
d* L y(x) J 2 Q(x)' 
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v " (JC ̂  
Thus the function . is nonincreasing. This means that y"(x), y'(*) are 

monotonous in (JC2, °°), where JC2=JC,. 

The following cases must be considered: 

1. y( jc)>0, y '( jc)>0, y"(x)=0 
2. y(jc)<0, y '( jc)<0, y"(x)=0 
3. y(jc)>0, y '( jc)>0, y " ( j c )<0 
4. y(jc)<0, y '( jc)<0, y"(x)>0 
5. y(jc)>0, y '( jc)<0, y" ( jc )>0 
6. y(jc)<0, y '( jc)>0, y" ( jc )<0 
7. y(jc)>0, y '( jc)<0, y"(x)=0 
8. y(jc)<0, y '( jc)>0, y " ( j c ) ^0 

for every JCSJC2§JC,. 

We shall prove the cases 3—8 are contradictory. 
Suppose that case 3 holds. From (5) we have 

y"(x)=y"(x)^y"(x2) 
y(x2) y(x) y(x2) ' 

and therefore 

y"(jc)=Sy"(jc2)<0. 

Integrating this from JC2 to JC ^x2, we obtain 

y'(jc)^y'(jc2) + y"(x2 ) ( jc- jc2 ) , 

which is a contradiction, since y'(x)>0. 
Case 4 is disposed of analogously. 
Suppose that case 5 holds. From (4) we can derive that there exists a positive 

constant A2 such that 

F ( j t ) S - A 2 < 0 for all x^x^x0 

this means that 

g(x)y(x)y'"(x)<-A2 for every JC^JC2. 

Since y(x) decreases, we have 

and integrating this from x2 to JC &JC2 we obtain 
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Q(X)У"(X)-Q'(X)У'(X)+ Ґ Q"(t)У'(t) át 
Jx2 

< 

A2 

<-—r^)(x-x2) + g(x2)y"(x2)-Q'(x2)y'(x2), 

which again leads to a contradiction. 
In the same way we show the impossibility of case 6. 
If the case 7 or 8 hold, then there would exist x3=JC2 such that y(x3) = 0 — again 

we have obtained a contradiction. 

Theorem 1. Suppose that the hypotheses of the Lemma hold and that, in 
addition, h(y) is nondecreasing and p(x)^0 for every ye( — °°, °°) and 
x e (jc0, oo)? respectively. 

If 7^ = r(x)dx = co, f(x)dx 
Jx0 ť V*1 Jx0 \Jx0 

< o o , 

then any solution of (1) satisfying (2) is oscillatory on (JC0, oo). 

Proof. Let y(jc) be a nonoscillatory solution of (1) which satisfies (2). Accord­
ing to our Lemma, there exists JCI=JC0 such that either 

1. y(jc)>0, y'(x)>0, y"(jc)§0 or 
2. y(jc)<0, y '( jc)<0, y " ( j c ) ^ 0 for any JC^JCI. 

Suppose that 1 is true. Then we have from (1) 

[Q(x)y'"(x)\^f(x)-h(y)(xl))r(x). 

Integrating from xx to JC^JCJ we get 

Q(x)y'"(x)^\ f(t)dt-h(y(xl))fX r(t)dt^Q(xl)y'"(xl). 
J*\ JXi 

Therefore there exists a positive constant B2 such that for JC^JC 2 ^JCI we have 

B2 

y " ' ( * ) - - • Q(X) 

and thus y"(x)—> - oo asx—>oo — a contradiction. 
Analogously we show that 2 cannot hold. 
This completes the proof of Theorem 1. 

Theorem 2. Suppose that the hypotheses of our Lemma hold and that, in 
addition, for every x e (JC0, oo) 

76 



<°°, 

p(x)^0, l im in f^^Se , 
y->°° y 

where e is a positive constant 

If Wi7\=\ *r(x)dx = co, J f(x)dx\ 
Jx0 fV-*/ Jx0 \Jx0 I 

then any solution of (1) which satisfies (2) is oscillatory on (x0, °°). 

Proof. Suppose that y(x) is a nonoscillatory solution of (1) which satisfies (2). 
Suppose that, e.g. 

y(x)>0, y'(jc)>0, y"(x) = 0 for all x=xl=x0. 

Since by hypothesis liminf —— !=£, there exists a constant K such that for any 
y—oo y 

y=K 
h(y)^e 

y " 2 " 

Since y(x)—>°° as JC—>o°, evidently there exists x2=Xi such that for all x=* 2 

ň(y(£))>£ 
y(лr) - 2 -

From (1) we have for every x =x2 

[Q(x)y'"]'Шf(x)-ìy(x)r(x). 

Integraiting from x2 to JC =JC2 we obtain 

(6) 

In this case 

and thus 

Q(x)y'"(x)ШQ(x2)y'"(x2) + f f(t) dř-f £ Г(OУ(0 dť. 

y(x)-y(x2)=ľy'(t)átШy'(x2)(x-x2) 

Jx2 

y(x)>y'(x2)(x—x2) for all x=x2. 

The last inequality in conjuction with (6) shows that 

Q(x)y'"(x)^Q(x2)y'"(x2) + f f(t) dť| - § У'(x2) f (t-x2)r(t) àt, 
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which means that by the hypotheses of this Theorem there exists a positive constant 
C2 such that for all x__x3=*2 

C2 

y"'(x)__ —r, whence 
Q(X) 

which is again a contradiction, since y"(x)__0. 
The proof for the case y ( x ) < 0 , y'(x)<0, y"(jt)__0 is analogous. 
This complete the proof of Theorem 2. 

Theorem 3. Suppose that the hypotheses of our Lemma hold. If 

q(x) í xo Q(x) 

then any solution of (1) satisfying (2) is oscillatory on (x0, o°). 
Proof. Let y(x) be a nonoscillatory solution of (1) which satisfies (2). Integrat­

ing (5) from Xi to x^xx we get 

_________._![*___,,, 
y(x)~ y(Xi) 2)XtQ(t)at' 

y"(x) 
whence —r-~—» — °° as x —* °°; this is a contradiction according to our Lemma. 

y(x) & 

This completes the proof of Theorem 3. 

Theorem 4 . Suppose that the hypotheses of our Lemma hold and that, in 
addition, p(x), r(x) e Cl(x0, oo) and for all x e (x0, oo) 

2q(x)-p'(x)-\f(x)\^0, r ( „ ) _ 0 , r ' ( j c )_0 . 

/ / 

r_(Ei _,_+_, 
Jxo Q(X) 

then any solution of (1) which satisfies the relations (2) and 

( 7 ) F1(JCO) + U " | / ( * ) | C _ = K 1 _ 0 

is oscillatory on (x0, °°). 

Proof. Suppose that y(x) is a nonoscillatory solution of (1) which satisfies (2) 
and (7). Multiply (1) by y'(x) and integrate from x0 to x__x0, obtaining 
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( 8 ) F ^ + U" [2q(t)-p'(t)]y'2(t)dt- f r'(t)H(y(t))dt = 
"-* Jx0 JxQ 

=F1(Xo)+ P f(t)y'(t) dt-\ f p'(t) ( y ' W dt. 
Jx0 --•Jx0 

This leads easily to 

F ^ + ll' [2q(t)-p'(t)-\f(t)\]y'2(t)dt-
Jx0 

- f r'(t)H(y(t)) dt^F^xJ + h P |/(f)| dt^K^O. 
Jx0 Jx0 

Omitting nonnegative terms on the left-hande side of this relation, we have for all 

d ry 'WU lP(x) 
dx[y'(x)\- 2Q(X) 

y"(x)^y"(x1) t r p ( 0 , f 

y'(x)-y'(x1)
 2)XxQ(t)at-

v"(x) 
Thus .. .—» — ooasjt—»°o — a contradiction according to our Lemma. 

y (*) 
This completes the proof of Theorem 4. 

Theorems. Suppose that the hypotheses of our Lemma hold and that, 
moreover p(x), r(x)eC1(x0, °°) and 

X^X^Xo 

and therefore 

2q(x)-p'(x)>0, r(x)^0, r'(x)^0 

for all x є (x0, °°) 

Lo Q(X) 

then any solution of (I) which satisfies (2) and also 

< 9> F^+^2^TPM6X=K'S0 

is oscillatory on (x0, °°). 
Proof. Using (N), we see that 

ï[2q(x)-p'(x)]y'2(x)-f(x)y'(x)^- %&-
2[2q(x)-p'(x)У 
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Therefore (8) yields 

Fl(x)~[0
 r'(')H(>;(0) d*^-(*o) + i £ 2q(!)-)p'(t) dt~° 

for all JC^JCQ. The rest of the proof repeats that of Theorem 4. 
In the sequel we shall assume that /(JC)H=0, thus considering the equation 

(10) [Q(x)y"']'+p(x)y" + q(x)y' + r(x)h(y) = 0. 

Theorem 6. Suppose that the hypotheses of our Lemma hold and that in 
addition 

p(x)^0, r(x)^0 forall x e (x0, oo). 

If 

[>Qf)=[,xq(x)dx=™> 
then any solution of (10) satisfying (2) is oscillatory on (x0, oo). 

Proof. Let y(x) be a nonoscillatory solution of (10) satisfying (2). According to 
our Lemma, there exists JCI=JC0 such that either 

1. y ( x ) > 0 , y'(*)>0, y"(x)^0 or 

2. y(x)<0, y'(x)<0, y"(x) = 0 fora l l jc^ jd . 

Consider the case 1. From (10) we see that for all JC^JC, 

[Q(x)y'"Y^o. 

Suppose that there exists x2=xx such that y" ' ( jc2)<0. Integrating the last relation 
from JC2 to JC §JC2 , we obtain 

Q(x)y'"(x)^Q(x2)y'"(X2) 

y'"(x)^Q(x2)y'"(x2)-^ forall JC^JC2 . 

f°° djc 
Since by hypotheses ——=oo? this means that y" ( j c ) -» -oo as JC->OO 

Jx0 Q(x) 
- a contradiction. Thus y"'(x) = 0 for every x >x,; double integration from x, to 
x =Xt shows that 

y'(x)=y"(xl)(x-xl) forall x=Xl. 

From (10) we have for every x=xt 

[Q(x)y'"\^-q(x)y'(x)^-y"(Xi)(x-Xi)q(x) 

and therefore 
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Q(x)y'"(x)=Q(xi)y'"(xi)-y"(xi)l (t-x,)q(t)dt. 
Jxi 

Since I xq(x) = °° by hypothesis, there exists a positive constant D2 such that 
Jx0 

D2 

y ' " ( x ) = -—T for all xi^x2=*i, 

which is a contradiction since y ' " ( * ) = °-
The method of proof is analogous to that of case 2. 

This completes the proof of Theorem 6. 
The proof of the following Theorem would be analogous. 

Theorem 7. Suppose that the hypotheses of our Lemma hold and that in 
addition p(x)eCl(x0, oo) and p(x)^0, r(x)^0, q(x)-p'(x)^0 for all 
x e (x0, oo). 

// 

ĹЉ=Ĺx[q(x)-p'(x)]dx=co' 
then any solution of (10) w12JC1i satisfies (2) is oscillatory on (x0, oo). 

R e m a r k . Evidently any solution of (10) which has a double zero on (x0, oo) 
satisfies at this point (2) as well as (7) and (9). 

Thus for equation (10) the requirement that a solution satisfy the initial 
condition (2), (7) or (9) may be substituted by the requirement that solution have 
a double zero in (x0, oo). 
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O KOЛEБЛEMOCTИ PEШEHИЙ HEЛИHEЙHOГO 

ДИФФEPEHЦИAЛЬHOГO УPABHEHИЯ ЧETBEPTOГO ПOPЯДKA 

Bинцeнт Ш o л т e c 

P e 3 ю м e 

B eтoй paбoтe пpивeдeны тeopeмы, дaющиe дocтaтoчныe ycлoвия для тoгo, чтoбы любoe 

pcшeниe ypaвнeния 

ІQ(x)y'"Y +P(x)y" + q(x)y' + r(x)h(y) = f(x), 

yдoвлeтвopяющeгo нaчaльнoмy ycлoвию, кoлeбaлocь в (x0), o°). 
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