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OSCILLATORY PROPERTITIES OF SOLUIIONS
OF A FOURTH-ORDER NONLINEAR DIFFERENITIAL
EQUATION
VINCENT $OLTES

In [1] and [2] sufficient conditions were presented for the solutions of the
equation

yP+p(x)y” +qx)y’ +r(x)h(y)=f(x),

which satisfy an initial condition, to be oscillatory.

For ¢(x) =1, theresult of this paper do not follow from the results of [1], 2], and
vice verba. The work extends to the set of theorems about the sufficient conditions
for the oscillatory behaviour of the solutions. The same method is used in all the

works.
The present paper presents sufficient conditions which ensure that the solutions

of the equation
(1) o)y +p(x)y” +q(x)y" +r(x)h(y)=f(x),

which satisfy a certain initial condition, are oscillatory. For o(x) =1 the results are
an extension of those of [1] and [2].

We shall assume throughout that o(x)>0, o'(x)=0, o’'(x)=0, q(x)=0, that
p(x), q(x), r(x), f(x) and h(y) are continuous for all x € (xo, ®), y €(— %, ®)
where x, € (— o, »),

We shall consider the solutions of (1), which exist on (x,, ®).

Let

F(x)=ox)y(x)y" " (x)—o(x)y'(x)y" (x)+30'(x)y"*(x) +iq(x)y*(x)
Fi(x)=0(x)y'(x)y"" (x) —30(x)y'"*(x) +ip(x)y*(x) + r(x)H(y(x))
HO)= [ h(s) as -

Lemma. Suppose that q(x)€C'(xo, ®) and that for all x e {x, ©) and
ye(—oo’ OO), y¥0
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20(x)q'(x) +p*(x)<0, sgnr(x)=sgnh(y)y.
Then for any nonoscillatory solution of (1) such that

@ = Pe(x) .
E “‘”‘L 2q()o(x) +p(r) ¥ Ke=0

exactly one of the following statements’holds :

(i) y(x)>0, y'(x)>0, y"(x)=0 forall x=x,=x,
(i) y(x)<0, y'(x)<0, y'"(x)=0 forall x=x,=x,.

Proof. Let y(x) be a nonoscillatory solution of (1) satisfying (2). Then there
exists x; = x, such that y(x)#0 for all x=x,. Multiply (1) by y(x) and integrate
from x, to x =x,, obtaining

® F@)+ [ ey @+ [ p@y @y© a-4[ a0y a-

x

[ ey @+ [ roroOw© d=Fe+ [ foyo a.

Evidently for any real b, x, a >0 we have

O

2

N) ax*+bx=——.
4a

Since ¢(x)>0and 2¢(x)q’(x) + p?*(x)<0, we can use the last inequality to prove
that

QMY () + Py @y (0 -2 ),
_1 ' M 20\ > fz(x)Q(x)
2 ES e -z 58O
Using this, (3) yields
) F@ =4[ oy @ di+ [ romG @) ars

x 2
=F(x -f [OeW) 4 <k <g
(o)~ )., 2qwe @ +pi0 =K
for every x =x,. Omitting nonnegative terms on the left-hande side of the relation
(4), we have for every x =x,:

5 d[y'®)]<_.9(x)
©) dx [y(x)]_ “o(x)
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y"'(x)
y(x)
monotonous in ( x,, ©), where x,=x,.

The following cases must be considered:

Thus the function is nonincreasing. This means that y''(x), y'(x) are

y(x)>0, y'(x)>0, y"(x)=0
y(x)<0, y'(x)<0, y"(x)=0
y(x)>0, y'(x)>0, y"(x)<O0
y(x)<0, y'(x)<0, y"(x)>0
y(x)>0, y'(x)<0, y"(x)>0
y(x)<0, y'(x)>0, y'(x)<O0
y(x)>0, y'(x)<0, y"(x)=0
y(x)<0, y'(x)>0, y”"(x)=0

for every x =x,=x,.

We shall prove the cases 3—8 are contradictory.
Suppose that case 3 holds. From (5) we have

y(6) @) _y"(x2)
y(x2) — y(x) T y(x)’
and therefore
y'(x)=y"(x:)<0.

Integrating this from x, to x =x,, we obtain

Y X)Sy'(x2)+y"" (x2) (x —x2),

which is a contradiction, since y’'(x)>0.
Case 4 is disposed of analogously.

Suppose that case 5 holds. From (4) we can derive that there exists a positive
constant A? such that

F(x)=-A’<0 forall x=x,=x,
this means that
e(X)y(x)y"""(x)< —A”? forevery xZx,.

Since y(x) decreases, we have

2

e A
Q(x)y (X)< —y(x2)

and integrating this from x, to x =x, we obtain
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o(X)y" (x)— ')y’ (x) + j "oy () de<

X2

2

(x5 (x —x2) +o(x2)y " (x2) —0'(x2)y ' (x2),
which again leads to a contradiction.

In the same way we show the impossibility of case 6.

If the case 7 or 8 hold, then there would exist x5 = x, such that y(x3;) =0 — again
we have obtained a contradiction.

Theorem 1. Suppose that the hypotheses of the Lemma hold and that, in
addition, h(y) is nondecreasing and p(x)Z0 for every ye(—®,») and
x € (x,, ®), respectively.

* dx

! E=fr(x)dx=°°,

| ey ax| <=,

then any solution of (1) satisfying (2) is oscillatory on (x,, ).

Proof. Let y(x) be a nonoscillatory solution of (1) which satisfies (2). Accord-
ing to our Lemma, there exists x, =x, such that either

1. y(x)>0, y'(x)>0, y"(x)=0 or
2. y(x)<0, y'(x)<0, y"(x)=0 foranyx==x,.

Suppose that 1 is true. Then we have from (1)
[e @)y ()] =f(x) —h(y)(x))r(x).

Integrating from x, to x =x, we get

0y =] 10 at=hoye) [ 1) i+ oGy (x).

Therefore there exists a positive constant B? such that for x Zx,=x, we have

2

“o(x)

and thus y’’(x)—» — % as x - — a contradiction.
Analogously we show that 2 cannot hold.
This completes the proof of Theorem 1.

y/ll(x)é

Theorem 2. Suppose that the hypotheses of our Lemma hold and that, in
addition, for every x € (x,, ®)
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p(x)=0, liminf @;8,
yrco

where ¢ is a positive constant.

- r
If ——=| xr(x)dx=,
b 0 ), T

[ o0 axf <=,
then any solution of (1) which satisfies (2) is oscillatory on {x,, ®).

Proof. Suppose that y(x) is a nonoscillatory solution of (1) which satisfies (2).
Suppose that, e.g.

y(x)>0, y'(x)>0, y”"(x)=0 forall x=x,=x,.

Since by hypothesis lim inf @2 €, there exists a constant K such that for any
y—®
y=K

From (1) we have for every x =x,

ey 8
lo(x)y"") Sf(x) =3 y(x)r(x).
Integraiting from x, to x Zx, we obtain

(6)

x

o)y W Sewy @)+ [ 1w a-3[ roy@a.

X

In this case

Y=y = [y drzy' ) = x2)
and thus
y(x)>y'(x;) (x —x,) forall x=ux,.

The last inequality in conjuction with (6) shows that

o)y (x)=e(x2)y"" (x2) +

f: f(@®) de

~£y(x) f " (¢ =xa)r(e) dt,
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which means that by the hypotheses of this Theorem there exists a positive constant
C? such that for all x=x;=x,

2
y'"'x)= - o whence

o(x)’

o [ dt
r x § " x _CZJ’ ,
Y )=y () =C* | T
which is again a contradiction, since y''(x)=0.
The proof for the case y(x)<O0, y'(x)<O0, y''(x)=0 is analogous.
This complete the proof of Theorem 2.

Theorem 3. Suppose that the hypotheses of our Lemma hold. If
“q(x)
22 dy = oo,
x0 ©(X)

then any solution of (1) satisfying (2) is oscillatory on (x,, ®©).
Proof. Let y(x) be a nonoscillatory solution of (1) which satisfies (2). Integrat-
ing (5) from x, to x =x, we get

Yy G 1" q() o
y(x) T y(x)  2),0()
y'(x)

y(x)
This completes the proof of Theorem 3.

whence — — o as x — o this is a contradiction according to our Lemma.

Theorem 4. Suppose that the hypotheses of our Lemma hold and that, in
addition, p(x), r(x)e C'(x,, ) and for all x € (x,, ®)

2q(x)=p'(x) = |f()|=0, r(x)=0, r'(x)=0.
If

“p(x)
0 0(X)

then any solution of (1) which satisfies the relations (2) and

d_x: +OO,

™ Fileo) +5 | 100l dr =K, =0

is oscillatory on (x,, ®).

Proof. Suppose that y(x) is a nonoscillatory solution of (1) which satisfies (2)
and (7). Multiply (1) by y’(x) and integrate from x, to x =x,, obtaining

78



® R3] RaO-pOy @ a-[ roORGO) d=

=)+ [ [y @ d—3[ o' 6@y o.

This leads easily to
Fi)+1[ 2a0=p' O~ Ol 0) di -

—f: r(OH () dtéFl(x0)+%f: If)] de=K,=0.

)

Omitting nonnegative terms on the left-hande side of this relation, we have for all

XZX,=Xo

px)

[y"(x)]§ _

and therefore

Yy [0
- o)

Thus 2 (x)
y'(x)
This completes the proof of Theorem 4.

— — o as x — o —a contradiction according to our Lemma.

Theorem 5. Suppose that the hypotheses of our Lemma hold and that,

moreover p(x), r(x) € C'(x,, ®) and
2q(x)—p'(x)>0, r(x)=0, r'(x)=0

for all x € {x,, )
If

)
Le(x)d" e,

then any solution of (1) which satisfies (2) and also

) Fl(xo)+%£:5ﬁmdx=m§o

is oscillatory on (xo, ).
Proof. Using (N), we see that

1240 =P W) ~ @y ()2 — g L

79



Therefore (8) yields

Fl(x)—f r'()H(y(t)) dt =Fy(x,) +2 0 ﬁ(—[—)dtéo

for all x =x,. The rest of the proof repeats that of Theorem 4.
In the sequel we shall assume that f(x)=0, thus considering the equation

(10) [e(x)y”' T +p(x)y"" +q(x)y’ +r(x)h(y)=0.

Theorem 6. Suppose that the hypotheses of our Lemma hold and that in
addition

p(x)=0, r(x)=0 forall x e (xo, ®).
If

= dx fm
—_— X X dx =0 5

J2e=], 2ae

then any solution of (10) satisfying (2) is oscillatory on {x,, ®).

Proof. Let y(x) be a nonoscillatory solution of (10) satisfying (2). According to
our Lemma, there exists x, =x, such that either

1. y(x)>0, y'(x)>0, y"(x)=0 or
2. y(x)<0, y'(x)<0, y"(x)=0 forallx=x,.

Consider the case 1. From (10) we see that for all x =x,

[e(x)y""]'=0.

e

Suppose that there exists x, =x, such that y
from x, to x =x,, we obtain

o(x)y"""(x)=0o(x2)y""" (x,)

(x2) <O0. Integrating the last relation

rry 117 1
Yy (x)=0(x2)y (xz)azx“) forall x=x,.

%

Since by hypotheses j

X0

——=o0, this Means that y'’(x)— —© as x—®
o(x) v

—a contradiction. Thus y'’’(x) =0 for every x Zx, ; double integration from x, to
X =x, shows that

y'(xX)Zy"(x1) (x —x,) forall X=x;.
From (10) we have for every x =x,
[ex)y""I'==q®)y ()= ~y"(x,) (x —x,)q(x)
and therefore
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e(x)y”'(x)éo(xl)y"’(xl)—y”(xl)f (t—x)q(t) dt.

Since f xq(x)= o by hypothesis, there exists a positive constant D? such that

2
y”’(x)é—gl()x) forall x=x,=x,,

which is a contradiction since y'’''(x)=0.

The method of proof is analogous to that of case 2.
This completes the proof of Theorem 6.
The proof of the following Theorem would be analogous.

Theorem 7. Suppose that the hypotheses of our Lemma hold and that in
addition p(x)eC'(xo, ®) and p(x)Z0, r(x)=0, q(x)—p'(x)=0 for all
x € (Xo, ®).

If

L:%zﬁjx[ﬂx)—p’(x)] dx = oo,

then any solution of (10) which satisfies (2) is oscillatory on (x,, ®).

Remark. Evidently any solution of (10) which has a double zero on (x,, ®)
satisfies at this point (2) as well as (7) and (9).

Thus for equation (10) the requirement that a solution satisfy the initial
condition (2), (7) or (9) may be substituted by the requirement that solution have
a double zero in (x,, ®).
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O KOJIEBJIEMOCTHU PEIIEHUH HEJUHEWUHOIO
JINPPEPEHLIHUAJIBHOI'O YPABHEHUWSI YETBEPTOI'O IMOPAIKA

Bunuent llonTec

Pesiome

B etoit paGoTe npuseeHbl TEOPEMbI, [AIOLIME JOCTATOUYHbIE YCIOBUS Sl TOrO, YTOObl Jt06G0O€
PCUICHUC ypaBHEHUS

o)y T +px)y” +qx)y" +r(x)h(y)=f(x),

YJIOBIETBOPAIOLUIETO HAYANBLHOMY YCIOBHIO, KOE6aN0och B X,), ).
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