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ABSTRACT. We study a technique to obtain compact spaces from two fixed 
subsets of a semigroup with uni t element. We apply tha t technique to obtain 
compactifications of completely regular Hausdorff topological spaces. We estab­
lish the relationship between our compactification technique with other known 
ones. In particular, we study the Stone-Cech, Wallman, k points (k < to), and 
0-dimensional compactifications. Certain types of compactifications introduced 
here are always of Wallman type but the converse is not known to us. Finally 
P-spaces and F-spaces are characterized. 

Introduction 

Let X be a completely regular space and let C(X) be the ring of all continu­
ous real-valued functions on X. The set of maximal ideals in C(X) endowed 
with the Stone topology, which is called the structure space for C(X), is homeo-
morphic to /3AT, the Stone-Cech compactification of X. The concept of maximal 
z-filter is closely related to the concept of maximal ideal: the Stone-Cech com­
pactification of X can also be obtained by means of the maximal 2:-niters on 
X. This compactification could also be obtained by means of the minimal ideals 
of zero-sets of X. 

One of the aims of this paper is to introduce a concept that is dual to the 
concept of maximal ideal on C(X). This is achieved by introducing the concept 
of PC -filter on a semigroup with unit. 

In Section 1, the family P(C) of all minimal PC -filters is endowed with a 
topology Tpc such that (P(C),Tpc) is compact. In Section 2, we obtain the 
conditions that a family of continuous functions C must satisfy in order that 
P(C) be a Hausdorff compactification of X. The compactifications of Alexan-
droff, Stone-Cech and many others, in the following sections, can be obtained 

1991 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 54D80; Secondary 54D35. 
K e y w o r d s : ring of continuous functions, maxima l ideal, ultrafilter, compactification. 

187 



A. AIZPURU — F. MARTINEZ 

by using different families L. Finally, P-spaces and P-spaces are characterized 
by using our techniques. 

The real-compactifications of X are obtained in [10] by using some rings of 
continuous functions. Although the way followed in [10] is rather different to 
ours, both techniques use adequate subsets of C(X) to obtain compactifications 
of X. 

1. P£-filters 

Let A be a non-empty set endowed with an associative operation + , whose 
zero element will be denoted by 0. Let P be a set such that P f1 j4 / 0 and 
0 £ P . Let L C A be such that 0 G £ and P n £ / 0. 

DEFINITION 1.1. Let p be a non-empty subset of L. We will say that p is a 
PL -filter if p satisfies: 

1) 0 £ p ; 
2) If { a l 5 . . . , a n } C L and ax-\ \-an G P , then there exists i G { 1 , . . . , n} 

such that a{ G p. 

It is clear that if p is a PL -filter and a G L 0 P , then a € p. 

Let p be a PL -filter. We will say that p is a minimal PL-filter if there does 
not exist a PL -filter q such that q C p and p ^ q. By Zorn's lemma, if p is a 
PL -filter then there exists a minimal PL -filter contained in p. 

THEOREM 1.2. Let p be a minimal PL-filter. If { a l 5 . . . , a n } C L and ax + 
• • • + an G p, then there exists i G { 1 , . . . , n} such that a{ G p. 

P r o o f . Let us suppose that a1-\ \-an G p and that { a x , . . . , an}np = 0. 
Since p is a minimal P£-filter, we have that q = p\ {a1 + • • • + an} is not a 
PL -filter. If q = 0 and a G P H £ , then a = ax + • • • + an and there exist 
i G { l , . . . , n } such that a{ e p. Therefore, g is non-empty. Since g is not a 
P£-filter, there exists {6 1 ? . . . , bm} C L\q such that bx + • • • + bm G P . We 
can suppose that ^ G p , then we have that bx = ax + • • • + an. This iterative 
reasoning allow us to conclude that (a1 + - • • + an) + ^ + (ax + • • • + an) G P , 
which contradicts that {ax,...,an}np = 0. • 

Let us denote by P(L) the set of all minimal PL -filters. We also use the 
notation o(a) = {pG P(L) : a G p} and c(a) = {p G P(L) : a £ p} for every 
aeL. 

Let T p £ be the topology for P(L) determined by the subbase {o(a) : 

aeL}. We have that {c(a) : a G L} is a closed subbase for Tp c . 
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THEOREM 1.3. (P(C),Tpc) is compact 

P r o o f . Let {c(a{)} 7 be a family of elements of the closed subbase which 
has the finite intersection property. For every finite subset J C / , there exists p G 
P(C) such that p G f| c(aj. Therefore ]T a• (£ P and g = C \ ({aj^j U {0}) 

ieJ ieJ 
is a PC -filter. Let q' G P(C) be such that q' C q. For every i G I we have that 
a2 (^ g' and therefore g'G f| c ( a j . D 

2GI 

Remark 1.4. If P C P ( £ ) , then the closure of B in (P(C),Tpc) is cl(P) = 

{aePCC): aC \J b\. 

THEOREM 1.5. Let us suppose that, for {a, b} C A, the condition a-\-a-{-b G P 
implies that a + b G P . / / p is a PC-filter, then p is minimal if and only if for 
every a G p there exists b G C\p such that a + b G P . 

P r o o f . Let us suppose that a € p and that a + b <£ P for every b e C\p. 
We have that g = p \ { a } is not a PC -filter and there exists {bx,..., bm} C C\q 
such that bx + • • • + bm G P . We can suppose that bx e p. Therefore b1 = a, 
a + (b2 + • • • + bm) G P and b2 + • • • + bm G p. By Theorem 1.2, we can assume 
that b2 G p . This iterative reasoning allow us to conclude that a + a G P and 
that a + 0 G P . This is a contradiction, because 0 G C \p. 

If p is not a minimal P£-filter, then there exists a PC -filter q such that 
g C p and q^ p. Let a £ p\q. By hypothesis, there exists b £ C\p such that 
a + b G P Hence, a G g or bGg. • 

EXAMPLE 1.6. Let (JF, V, A/ ) be a Boolean algebra with unit element and zero 
element, which will be denoted by x and 0 respectively. We consider T endowed 
\ lth the operation V as the operation + . This operation is associative and its 
unit clement is 0 Let P = {x} and let C — T. Clearly, (P(T),TpT) I a 
0 ( mi n lonal compact Hausdorff space and the Boolean algebra of its clopen 
s b t is 'somorphic to the Boolean algebra T. Hence (P(T),TP:F) is the 
Stone . p i e of T ([11]). It should be noticed that every minimal PT-filtcr is a 
i * xim il filter of the Boolean algebra T and conversely. 

2. P(C) spaces in C+(X) 

Let (Y, T) be a completely regular Hausdorff space and let C(X) be the 
ring of all real-valued continuous functions on X. It is clear that / G C(X) is 
mvertible in the ring C(X) if and only if f(x) ^ 0 for every x G X. If a G M, 
then we will denote by a G C(X) the corresponding constant function. A zero set 
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in X is a set of the form z(f) = {x e X : f(x) = 0} for some / e C(X). The 
collection of all zero sets in X will be denoted by Z(X). The complement of a 
zero set is called a cozero set and is denoted by coz(f) = {x e X : f(x) ^ 0 } . 
Let 

C+(X) = {feC(X): / ( x ) > 0 , xex}, 

endowed with the + operation, and let P be the set of the functions / G 
C+(X) that are invertible in C(X). If C C C+(X) is such that 0 e C and 
C n P ^ 0, then we will consider the topological space (P(C),Tpc). We will 
try to find conditions on the set C in order that (P(C),Tp c) be a Hausdorff 
compactification of X. 

T H E O R E M 2 . 1 . 

1) If P ^ C is a PC-filter, then p is minimal if and only if for every f e p 
there exists g e C\p such that f + g e P. 

2) If P € P(£) and Q Z5 a PC-filter such that p (jL q, then there exists 
{f:9} C C such that f e p\q, g e q\p and f + g e P. 

3) Let p e P(C). If {/, g} C C and f • g ep, then f ep and g ep. 
4) Let p e P(C). If f e p, g e C and coz(f) C coz(g), then g ep. 

P r o o f . It is clear that 1) is a consequence of Theorem 1.5. 

If f €p\q, t n e n there exists g e C\p such that f + g e P , and so g e q\p. 
This proves 2). 

For 3), if / • g e p, then there exists h e C\p such that / • g + h e P. Hence 
f + heP, g + heP and {f,g}Cp. 

For 4), let h e C\p be such that / + h e P. We have that g + h e P and 
therefore, g e P. • 

DEFINITION 2.2. We will say that C has the (A) property if for every {/, g} C 
C we have that f + g e C and / • g E C. 

THEOREM 2.3 . Let us suppose that C has the (A) property. Then: 

1) IfpeP(C) and {f,g}Cp, then f-gep. 
2) If P £ P(£) and f € P> ^en f + g G p for every g G C. 
3) For every {/, g} C C, 

3a) o(f) n o(g) =o(f.g), 

3b) o(f)Uo(g) = o(f + g), 

3c) c(f)nc(g) = c(f + g), 

3d) c(f)Uc(g) = c(f-g), 

3e) {o(/) : / € £} is an open basis for Tpc . 
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P r o o f . 
1) There exists {j, h] C C \ p such that / + j £ P and g + h £ P. Hence 

/ • g + j + he P and / • g £p. 
2) There exists h £ C\p such that / + he P . Hence ( / + g) + h £ P and 

f + g£p. 
3) is a consequence of 1) and 2). D 

DEFINITION 2.4. If C has the (A) property, then we will say that a PC -filter 
p is multiplicative if for every {/, g} C p we have that / • g £ p . 

R e m a r k 2.5. Note that if x G A , then px = {f £ C : f(x) ^ 0} is a 
PC -filter. If, for every x £ X, px is a minimal PC -filter, then we can define 
the mapping (/?: A -» P ( £ ) by (.O(x) = p^, for every x G A . 

THEOREM 2.6. I/ x G A . /Tien p x is minimal if and only if for every f G £ 
sHc/z l/m£ x G coz(f) there exists g G £ 5u.c/i £/m£ x G z(#) C coz(f). 

P r o o f . 
Necessity. 

Let f £ C be such that x G coz(f). We have that f € px and so there exists 
g £ C\p such that f + g £ P. Therefore x G z(g) C coz(f). 

Sufficiency. 
Let f £ px. Since x G coz(f), there exists g G £ such that x G z(#) C coz(f). 
This proves that f + g £ P and g £ px. D 

DEFINITION 2.7. We will say that £ has the (B) property if for every / G £ 
and every x G coz(f) there exists # G £ such that x G z(g) C coz(f). 

THEOREM 2.8. Let us suppose that C has the properties (A) and (B). Let 
ip: X —> P ( £ ) 6e tte mapping defined by tp(x) — px for every x £ X. Then, 
(P(£) , (f) is a compactification of X if and only if {coz(/) : f £ C} is an open 
basis of X. 

P r o o f . 
Necessity 

Let U be an open set in A and let x £ U. Since tp is a homeomorphism of A 
onto <p(X), then there exists a / G C such that (/?(x) G o(/) D </?(AT) C ip(U) 
and, consequently, x G coz(f) C [/. 

Sufficiency. 
Let {x,H} C A , x ^ y. Since {coz(/) : / G 12} is an open basis of A , there 
exists f £ C such that x G coz(f) C A \ {y}, and so y?(x) 7̂  <£(&)• Since 
ip(coz(f)) — o(f) Pi (/?(A) for every / G £ , (/? is a homeomorphism of A onto 
(^(A"). We claim that <p(X) is dense in P ( £ ) • Let G be a non-empty open subset 
of P(C) and let p £ G. There exists f £ C such that p £ o(f) C G. Since 0 ^ p, 
there exists x G A such that f(x) 7̂  0. This proves that <p(x) £ o(f) C G. D 
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DEFINITION 2.9. We will say that £ has the (C) property if {coz(/) : / G £} 
is an open basis of X. 

DEFINITION 2.10. Let p be a P£-filter. We will say that p is fixed if 
fl coz(f) ^ 0. We will say that p is free if f| coz(/) = 0. 

/ep /GP 

R e m a r k 2 .11 . Let us suppose that £ satisfies the properties (B) and (C). 
1) For every closed set F C X and every x G X \ F there exists g G £ such 

that x G z(g) and z(O) n F = 0. 
2) If p is a P£-filter, then p is fixed if and only if p — px for some x e X. 

Let us prove that, in this case, P| z(f) = {x}. If p is fixed and {x,y} G 
fec\P 

f] coz(/) , x ^ H, then, by the (C) property, there exists g £ £ such that 
/Gp 
O(x) = 0 and g(y) - a / 0, a G M. Let P = {z G A : g(^) < !]}. There 
exists h E £ such that H G ^(/i), z(/i) H P = 0, and so h + g G P This 
contradicts that h £ p and g ^ p. Hence, there exists an unique x G A" such 
that {x} = p | coz(f). Since p^, is minimal, p = px. Finally, if p = px, then it 

/Gp 
is clear that f] z(f) — {x}. 

fec\P 

This proves that every fixed P£-filter is minimal. 
3) If p is a minimal P£-filter, then we have either f] z(f) — 0 or 

fec\P 

f] z(f) — {x} f° r some x G X. In the latter case p = px. 
f£C\P 

4) If, in addition, £ satisfies the property (A) then X is compact if and only 
if every minimal P£ -filter is fixed. 

Our next aim is to find conditions on £ in order to (P(£) , tp) be a Hausdorff 
compactification of X. 

THEOREM 2.12. If £ satisfies the properties (A). (B) and (C), then P(£) is 
a Hausdorff space if and only if for every {f,g} C £ such that f + g G P th re 
exists {/', g'} C £ such that {/ + / ' , g + g'} C P and f • g' = 0 

P r o o f . Let us suppose that P(£) is a Hausdorff space. Let {f g} C £ be 
such that f + g e P. We have that c(f) H c(O) = 0 and there exist two disjoint 
open subsets G1 and G2 of P ( £ ) such that c(f) c G± and c(O) C G2. For every 
p G c ( / ) , there exists h G £ such that p G o(/ip) c G1. Since c( / ) is compact, 
there exists {p 1 ? . . . , p n } c c(/) such that c(/) c o(/ ipJ U • U o(hp ) G 
If / ' = hpi + • • + /ipn , then c(/) C o(/ ;) C Gx . Sin ilarly there e - sts / £ 
such that c(g) C o(g') c G2. Since o(/ ;) n O(g;) = 0, we have that / • g' _ 0 
and {/ + / / , g + g/} C P , because c(f) C o(f) and c(O) Co(O ;)-
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Conversely, let {p, q} C P(C), p T£ q. If f € p\q and g G C \ p are such 
that / + g e P , then there exists {/ ' ,#'} C C such that {/ + f',g + g1} C P 
and f • g' = 0. Consequently, q G o(f), p G o(g') and o(f) fl o(g') = 0 . D 

DEFINITION 2.13. We will say that C has the (D) property if for every 
{/, g} C C such that / + g G P there exists {/', #'} C £ such that {/ + / ' , 
g + g'}cP and f'-g' = 0. 

R e m a r k 2.14. 
1) Let us suppose that C satisfies the (D) property and that {p, q} C P(C), 

p ^ q. There exist / G p\q and g G q\p such that / • g = 0. This proves that 
every multiplicative PC -filter contains an unique minimal PC -filter. 

2) If C = C+(X), then C satisfies the properties (A), (B), (C) and (D). 

THEOREM 2.15 (STONE-CECH COMPACTIFICATION). Let X be a com­
pletely regular Hausdorff space. The compactification (P(C+(X)),ip) of X is 
equivalent to the Stone- Cech compactification (@X,e) of X. 

P r o o f . Let z(f) and z(g) be two disjoint zeros in X. We have that 
¥>(*(/)) C c ( / ) , p(z(g)) C c(g) and that cl((p(z(f)))ncl((p(z(g))) C c(f)Hc(g) 
= c(f + g) = 0, because / + g G P . • 

In the next theorem we determine the homeomorphism between the compact-
ifications (@X,e) and (P(C+(X)),(p) of X. 

THEOREM 2.16. (/3X, e) and (P(C+(X)),ip) are equivalent through the map­
ping 

^:PX->P(C+(X)), 

t H- 4>(t) = { / G C+(X) : * £ e ( « ( / ) ) ^ | . 

P r o o f . We first show that <f>(t) is a PC+(X)-filter for every i G (3X. It is 
clear that 0 $. 4>(t). If {fv . . . , / „ } C c+(X) satisfies / a + • • • + / n 6 P , then 

2 = 1 

Hence there exists i G { 1 , . . . , n} such that fi G (j>(t). 
We now show that (j)(t) is minimal for every t G /?_K. Let / G ^ ( t ) , then 

0 x 
t ^ c(z(f)) and there exist hP G C+(/3X) and a closed neighborhood Vt C (3X 

of t such that hP(Vt) = {0} and ^ ( e ( z ( / ) ) ^ X ) = {1}. 

193 



A. AIZPURU — F. MARTINEZ 

-ßX 
Let h = h? o e. We have that / + h e P and t € e(z(h)) . Thus h £ 

C+(X)\</>(t). 

Let us check that <fi is one to one. Let {t1:t2} C (3X be such that t1 i=- t2. 

There exists {h{,/i£}c C+(/?X) such that coz(/if) ncoz(/i£) = 0, *-_ E coz(tYf) 

and t2 G coz(h%). Then /i1 G <K*i)> /i2 £ ^ 2 ) ' where t \ = h{ o e and 

/i2 = ti2 o e. Since /ix • /i2 = 0, ^(/^) 7- </>(£2). 
We now show that <j> is continuous. Let (ta)aeI be a net in /3X that converges 

to t G PX. Since (f>(t) G o(/) for some / G C + (X) , there exists a 0 G / such 

that £a ^ e(z(f)) for every a > a 0 , a £ I- Hence, 0(£a) G o(/) for a > a 0 . 
It is clear that <£ o e = (/?. • 

Remark 2.17. 
a) It is easy to prove that the subring C+(X) of all bounded functions 

/ G C+(X) satisfies the properties (A), (B), (C) and (D) and that also 
(P(C+(X)),cp) is equivalent to (@X,e) by means of the homeomorphism: 

^ : / 3 X - > P ( C ; ( X ) ) , 

t ^ <}>(t) = {/ G C;(X) : t i e{z(f)fX} . 

b) Let us observe that every minimal PC+(X)-filter is a family of continuous 
functions and that it is a point in the compact space P(C+(X)). The proof of 
Theorem 2.16 lets us check that if p G P(C+(X)), then p = {/ G C+(X) : p £ 
c\(y(z(f)))} and that if / G C + (P (C + (X) ) ) and J(p) ^ 0, then / = Jap G p . 

THEOREM 2.18 (ALEXANDROFF C O M P A C T I F I C A T I O N ) . Let: X be a lo­
cally compact Hausdorjf space which is not compact. Let us denote by C the set 
of functions f G C+(X) such that f(X\K) is a singleton for some compact set 
K CX. Then: 

1) C satisfies the properties (A). (B). (C) and (D). 
2) The compactification (P(C),tp) is equivalent to the Alexandroff compact­

ification of X. 

P r o o f . 
1) It is obvious that £ is a subring of C(X) and that C satisfies the properties 

(B) and (C), because X is locally compact. If {h^h2} C C and hx -f h2 G P , 
then we consider h= ^ ^ G C, gx = ( l /2 - tY)V0G .£, g2 = ( t i - l / 2 ) V 0 G C. 
We have {/i1 + gl5 /i2 -f g2} C P and Ox • a2 = 0. 

2) Let us prove that P(C) \ (p(X) is unitary. Suppose that there exist two 
different elements p and q in P(C)\ip(X). Let {/, g} C C be such that cl(o(/)) n 
cl (o(g)) = 0, p G o(/) and g G o(g). Since / G £ , there exist a compact 

194 



HAUSDORFF COMPACTIFICATIONS OF COMPLETELY REGULAR SPACES 

K C X and a real number b G R such that f(X\K) = {b}. Let us observe that 
if b = 0, then cl(o(/)) C c\((p(K)) C <p(X), because if is compact, which is 
impossible. Hence b ^ 0 and P(£)\( /?(X) C cl(<p(X\K)) C c l (o( / ) ) . Therefore 
q G cl(O(/)), which is a contradiction. • 

Remark 2.19. Under the hypotheses of Theorem 2.18, it is easy to check that 
the following results hold: 

• The set p0 of functions / G C such that (X \ K) (jL z(f) for every 
compact set K C X , is a multiplicative PC -filter. 

• For every p G P(C)\(p(X), every compact set K in X and every / G C, 
we have that z(f) n (X \ K) + 0. 

• P(C) \ (p(X) contains an unique point: the unique minimal PC -filter 
contained in p0. 

In the sequel, we will prove that the compactifications (P(C),tp) are Wall-
man-type ([2]). Let us recall the main characteristics of this type of compact ifi-
cation. Let C be a collection of subsets of X ; we will say that C is a lattice on 
A" if {0, X } c C and C is closed under finite intersections and joins. A lattice 
C will be called a Wallman base on X if: 

(1) C is base for the closed subsets of X , 
(2) C is a normal lattice on X (i.e. for every {a, b} C C such that aflb = 0, 

there exists {c, d} C C such that a C X \ c , o C X \ d, and cUd = X ) , 
(3) C is a disjunctive lattice on X (i.e. for every closed F in X and every 

x G X \ F there exists a G C such that x G a and a D F = 0). 

The set of all C -ultrafilters will be denoted by w(C). 

In order to topologize w(C), let us denote c* = {.7~ G H;(C) : c G T} for 
every c G C. Then, {c*}ceC is a base for the closed sets of some topology for 
w(C). It has the property that w(C) is a compactification of X if and only if 
C is a Wallman base on X (with respect to the embedding map w: X —> w(C) 
defined by w(x) = {a G C : x G a}). The space (w(C),w) is called, in 
([3]), the Wallman-Frink compactification and, in ([9]), the Wallman-Shanin 
compactification. A compactification ( X ' , a ) of X will be called a Wallman-
type compactification if there exists a Wallman base C on X such that (A"', cr) 
and (w(C),w) are equivalent. 

THEOREM 2.20. If X is a completely regular Hausdorff space and C C C + (X) 
satisfies the properties (A). (B). (C) and (D), lben C = iz(f)}fec ^s a 

Wallman-base on X and the compactifications (P(C),(p) and (w(C),w) are 
equivalent. 

P r o o f . If feC and g E C, then f - g e C and f + g e C. Hence 
-(f) n 2(0) G C and z(f) U 2(0) G (7. Since C is a closed basis of X , by 
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Remark 2.11, it is clear that C is disjunctive. Likewise, if f\ G C, f2 G C and 
z(fi) n ZU^) — 0» ^en w e deduce, by (D), that there exist 9\ G £ , g2 G C such 
that z(f1)cX\z(g1), z(f2)cX\z(g2) and z(9l) U z(g2) = X. 

We now show that the compactifications (P(C),(p) and (w(C),w) are 
equivalent through the mapping h: P(C) -> w(C) defined by h(p) = {z(f) : 
f G C\p} for every p G P(C). 

We first show that h is well defined. If p G P(C), then h(p) is a C-ultrafilter. 
If / £ p , then / is not invertible, hence z ( / ) ^ 0 and 0 ^ MP) • If *( / i ) £ h(p) 
and z( / 2 ) G /i(p), then /-_ G £ \ p and / 2 G £ \ p . Therefore fx + f2eC\p 
and ;>,(/-_) fl z( / 2 ) G /i(p). Since p is minimal, if z(f) C z(g) and *( / ) G /i(p), 
then z(g) G /i(p). In order to prove the maximality of h(p), we consider g e C 
where z(#) ^ /i(p). We have that g G p and there exists f e C\p such that 
f + g e P. Therefore z ( / ) n zfo) = 0 and z(f) G /i(p). 

Let us check that h is one to one. If {px,p2} C -P(£), Pi / P2»
 t l i e i 1 ifc i s 

clear that there exists / G Pi\p2 and z ( / ) G MP2) \ MPi) • 
Since 

M c ( / ) ) = h{{p G P ( £ ) : fip}) = {hip) : z(f) G h(p)} = * ( / )* 

for every / G £ , it is clear that h is continuous. 
Finally, h o (̂  = Hj because we have that 

™(-0 = {*(/) G C : x G ^ / ) } = {z(f) G o : p x G c ( / )} = h{<p(x)) 

for every x £ X. D 

R e m a r k 2 .21 . 

a) If a Wallman base C on X is given, then we can ask if there exists some 
C C C+(X) such that (P(£),(/?) and (w(C),w) are equivalent. Let us observe 
that if C is contained in Z ( X ) , then £ = {/ £ C+(X) : z(f) £ C} satisfies 
the properties (A), (B), (C) and (D). We also have, as in Theorem 2.20, that 
the compactifications (P(C),ip) and (w(C),w) are equivalent. 

b) Let A be a subring of C(X). An ideal 7 in .4 is a filter ideal ([2]) in A 
when Z[I] is a Z[A] -filter. It is clear that an ideal I is a filter ideal in A if and 
only if z(f) ^ 0 for every / £ I. The set of maximal filter ideals is denoted by 
F[A] and {/* : / £ A}, where /* = {J e F[A] : / £ / } , is a closed basis of 
some topology for F[A]. F[A] is a Hausdorff compactification of X if and only 
if Z[A] is a Wallman-base on X. In this case the compactifications F[A] and 
?D(Z[A]) of X are equivalent. 

c) Let us suppose that A is a subring of C+(X) such that the properties (B), 
(C) and (D) hold. We have: 

1) If I is a filter ideal in A, then {/ £ A : / ^ / } is a PA-filter. 
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2) If p is a minimal PA-filter, then {/ G A : f £ q] is a maximal filter 
ideal in A. 

3) If / is a maximal filter ideal in A, then {/ G A : / ^ / } is a minimal 
PA-filter. 

From these results it is easy to deduce that the compactifications F[A], P[A] 
and H;(Z[A]) of X are equivalent. Moreover, the mapping (j> : F[A] —> P(A) 
defined by (j)(I) = {/ G A : f (£ 1} for every i" G F[A], is a homeomorphism 
and (f)oip = (p: where ij) is the mapping that corresponds to the compactification 
F[A). 

4) In the appendix we characterize P-spaces and F -spaces through some 
results that evoke G i l l m a n - J e r i s o n [4]. 

3. P^(C) spaces in C+(X) 

Let X be a completely regular Hausdorff space and let C*(X) be the subring 
of bounded functions in C(X). Let C*_(X) = C*(X) n C+(X). We denote by P+ 

the set of / G C+(X) such that there exists a > 0, o G R , such that f(x) > a 
for every x G l . 

It is clear that P+ nC*_(X) is the set of / G C*_(X) such that / is invertible 
in the ring C*(X). 

Let C C C+(X) be such that 0 G C and £ n P* 7̂  0 and let us consider the 

compact space (-P*(£),TP £ ) . We will denote o*(/) = {p G P5ts(£) : / G p}, 

c*(/) = {p G P , (£ ) : / G £ \ p } for every / G £ . 

Remark 3.1. 

1) Conditions 1), 2) and 3) in Theorem 2.1 hold if we replace P by P^. 
Condition 4) does not hold, see Example 3.14. 

2) Theorem 2.4 also holds if we replace P by P^, o(f) by o*(f), c(f) by 
c*(f) andrP f j C hyTp^c. 

3) For every x G X, we have that px = {/ G £ : / ( # ) 7̂  0} is a P^/T-filter. 
4) The concept of multiplicative P^C-filter can be defined in a similar way 

to Definition 2.4. 

It easy to check that the following result holds: 

THEOREM 3.2. Let x G X. Then, px is a minimal P^C-filter if and only if 
for every f G C such that x G coz(/) there exists g G C such that x G z(g) and 

f + gzP.-
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DEFINITION 3.3. We will say that L has the (B') property if for every / e L 
and every x e coz(/) there exists g e L such that / -f- g e P„ and x e z(g). 

It is clear that if L satisfies (B'), then it also satisfies (B). As in Theorem 2.8, 
the following result can be proved: 

THEOREM 3.4. Let us suppose that L has the properties (A) and (B') and that 
tp^: X -» P^(L) is the mapping defined for every x e X by (f^(x) = px . Then 
(P^(L), ip^) is a compactification of X if and only if L has the (C) property. 

DEFINITION 3.5. Let p be a P+£-filter. We will say that p is fixed if 
P| COZ(/) ^ 0. We will say that p is free if f| coz(/) = 0. 

ftp fep 

Remark 3.6. If L satisfies the properties (B') and (C), then: 

1) For every closed set F C X and every x e X \F there exist g G L and 
a e M, a > 0, such that x e z(g) and g(F) C (a, -f-oo). 

2) If p is a P^L-filter, then p is fixed if and only if p = px for some x e X. 
In this case f] z(f) = {x}. 

fec\P 

3) If p is a minimal P^-f i l ter , then either f] z(f) = 0 or f] z(f) = {x} 
fec\P fec\P 

for some x e X. In the latter case p = px. 
4) If L also satisfies (A), then X is compact if and only if every minimal 

P F-filter is fixed. 
* 

DEFINITION 3.7. We will say that L satisfies the (D') property if for every 
{Lg} C L such that / + g e P+ there exists {/',#'} C L such that {/ + / ' , 
g + g'}cP* and f'-g' = 0 . 

THEOREM 3.8. If L satisfies the properties (A). (B') ; (C) and (D') ; then 
(P^(L), (p^) is a Hausdorff compactification of X . 

P r o o f . If {p, q} C P(L), p ^ q, then there exists some / e p\q. Since 
fep, there exists g G L\p such that / + g e P^. By hypothesis, there exists 
{/',#'} CL such that {/ + / ' , g + g'}cP* and / ' • g' = 0 \ Therefore qeo*(f'), 
p e o*(g') and O*(/7) n o*(g') = 0. • 

R e m a r k 3.9. 
a) Let us suppose that L satisfies (D'). If {p. q} C P*(L) and p ^ q, then 

there exist f e p\q and g G q\p such that f -g = 0. Hence, every multiplicative 
P^/2-filter contains an unique minimal P^L-filter. 

b) It is easy to prove that C^_(X) satisfies the properties (A), (B'), (C) 
and (D'). 
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THEOREM 3.10 (STONE-CECH COMPACTIFICATION). (P* (C*_(X)), (f J 
is a Hausdorff compactification of X which is equivalent to (PX, e). 

P r o o f . Let z(f) and z(g) be two disjoint zero-sets of X. We can sup­
pose that {/, g} C C+(X). If we consider the functions h = -p—, hl = 
(h - | ) V 0, h2 = ( | - h) V 0, then we have that h1 + h2 G P^ and that 
c*(hx) H c*(l\) = c*(hx + h2) = 0. Therefore <p+(z(f)) C c*(l\)> ^ ( ^ ( g ) ) C 
c*(h2) and c l ( ^ ( ^ ( / ) ) ) H c l ( ^ ( z ( g ) ) ) C c*(h,+h2) = 0. • 

R e m a r k 3 .11 . It is clear that (P+ (C+(X)), ip^) is equivalent to (pX,e). 

Now, we will give an explicit homeomorphism between the compactifications 
that appear in Theorem 3.10. 

THEOREM 3.12. The compactifications (PX,e) and (P^(C+(X)), < p j , of X 

are equivalent by means of the mapping <j>: (3X —> P^(C+(X)) defined by (j)(t) = 

{/ G C*+(X) : fP(t) ^ 0} for every t e PX, where f13 G C((3X) is such that 

f°e = f. 

P r o o f . We first show that <p(t) G P+ (C+(X)) for every t G PX. It is clear 
that 0 i <f>(t). Let {/-.,..., fj C C*+(X) be such that / l T - + / n 6 P # . Clearly 

fi+-'- + fn is Avertible in C+((3X) and therefore, there exists i G { 1 , . . . , n} 

such that f?(t) ^ 0 . 
If / G 0(£), then / ^ z ( /^ ) and there exists some hP G C+((3X) such that 

/^( t ) = 0 and hP(z(fP)) = {1}. Therefore, hP + f is invertible in C((3X). If 
/? -h^oe and f = f^oe, then we have that f + heP*. Hence 0(£) is minimal. 

Let us prove that cp is continuous. Let ( £ a ) a G / be a net in /3X that converges 
to t G pX and let / G C*_(X) be such that </>(£) G o*( / ) . We have that t £ z(f$) 
and therefore there exists a0 G I such that if cr > a 0 , a e I, then t a ^ ^ ( /^ ) • 
This proves that 4>(ta) G o*(f) for every a > a0, a e I. 

Finally, it is clear that <f> o e = ip^ . D 

The following theorem give us a method of obtaining any Hausdorff compact­
ification of a completely regular space. 

THEOREM 3.13. Let (X',a) be a Hausdorff compactification of X and let 
C={feC+(X): / = / o a , JeC+(X')}. Then (P# (£),¥>*) is a Hausdorff 
compactification of X . that is equivalent to (X',a) by means of the mapping 
0: X' -> P^(C) defined by (p(x') = {/ G C : J(x') ^ 0} for every x' G X'. 

P r o o f . It is clear that C satisfies the property (A). 
Let us prove that C satisfies (B'). Let / G £ , x G coz(f) and b G 1 , b > 0, 

be such that f(x) = b. It is clear that g = (b — / ) V 0 G £ . x G 2(a) and 
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In order to prove that C has the property (C), let G C X be an open set and 
let x e G. There exists an open set V C X' such that a(G) = V n a(X) and 
there exists J G C+(X') such that J(a(x)) = 1 and J(X'\V) = {0}. Therefore 
/ = / o a G C and x G coz(f) C G. 

Let us check that C satisfies the property (D'). Let {/, g} C C be such that 
/ + g G P + . There exists a G 1R, a > 0, such that ( / -f g)(x) > a for every 
x G X. Then / ' = (f - / ) V 0 G £ , g' = (f - g) V 0 G C and we have that 
f'.g' = 0 and {/ + / ' , 5 + ^ } c P r 

Finally, it is clear that 0 is a homeomorphism and <j)o a — ip^. • 

In the next example we will establish the essential differences between P^(C) 
and P(C). 

E X A M P L E 3.14. 

1) If p is a minimal P^£-filter, then P^ n C C P. We will see that / G £ 
can be invertible in C(X), that is / G P f l £ , and, however, f £ p. We consider 
cj with the discrete topology. It is easy to prove that the function / : u —> K 
defined for every i G CO by / ( i ) = 1/i does not belong to any free filter of 

2) If A is a finite subset of u and p G P^(C+(cc;)) is a free filter, then 
coz(x^c) C coz( / ) , XAC ^ P a n d f ^P-> thus condition 4) in Theorem 2.1 does 
not hold. 

3) Let (X1 ,oi) be a Hausdorff compactification of X and let C — {/ G 
C+(X) : / o a = / , / G C + ( K ' ) } - Theorem 3.13 shows that £ satisfies 
the properties (A), (B'), (C) and (D') and that P^(C) is equivalent to X'. 
On the other hand, it is easy to prove that £ satisfies (D). Therefore, P(C) 
is a compactification of X which, in general, does not coincide with X1. For 
instance, if we consider the spaces uo with the discrete topology 70; = u U {00} , 
the Alexandroff compactification of CJ, and £ = {/ G C+(CJ) : / ° 7 = / , / G 
C+(7cO)} , then it can be proved that P(C) is equivalent to (3u. 

Let us suppose that £ C C+(X) satisfies the properties (A), (B'), (C), (D) 
and (D'). The next theorem shows the relationship between the compactifications 
(P(£),(D) and (P,(£),¥>,) o f l . 

THEOREM 3.15. If C C C+(K) satisfies properties (A), (B') ; (C), (D) and 
(D'), tten P+(£) < P ( £ ) . 

P r o o f . If 7? G P ( £ ) , then p is a multiplicative P^£ filter Let us ^onsidei 
the mapping G: P ( £ ) -> P„(£) such that, for e\ery p G P £ ) , Gfp 1 t i e 
unique minimal P^£-filter contained in p . For every J G p x is ft u n i t 
P£-filter and a minimal P^£-nlter. Therefore Gop — p^.J^ma ly, e will pro e 
that if {(/?(xQ)} 7 is a net in p(X) that converges to p G P ( £ ) \ ^ Y), then 
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the net { ^ ( ^ Q ) } a G / converges to G(p). Let / G C be such that G(p) G o*(f). 
Since G(p) C I>, then / G p and p G o ( / ) . Hence there exists a0 E I such that 
(/?(xa) G o(/) for every a > a 0 , a G I. Therefore / ( # a ) / 0 and </?*(x

a) £ °*(f) 
for every a > a0, a G I. • 

Remark 3.16. 

1) In the proof of Theorem 3.15 we can check that if there exists a continuous 
mapping g: P(C) -> P*(C) such that g o (p = ( ^ , then g(p) is the minimal 
P^C-filter contained in p for every p G P ( £ ) . 

2) If C C C+(X) satisfies properties (A), (B')> (C), (D) and (D'), and if 
P n C = P+ n C, then P ( £ ) = P^(C) and T p £ = Tp#>jC. 

3) Let X be a locally compact Hausdorff space and let C be the set of 
the mappings / G C+(X) such that f(X \K) is a singleton for some compact 
K C X. We know that C satisfies (A), (B), (C) and (D) and it is easy to prove 
that C satisfies (B') and (D'). By Theorem 3.15, (PJ£ ) , ( / ? J < (P(C),ip) and 
(P^(C), (p^) is equivalent to the Alexandroff compactification of X. 

In the next section we will try to obtain compactifications (P^(C), (p^) of X 
such that: 

1) If / G £ , then there exists J G C+(P^(C)) such that Jo cp^ = f. 

2) I f £ l C / : 2 , t h e n (PJCJ,<p\) < ( P , ( £ 2 ) , t f ) . 

DEFINITION 3.17. We will say that C C C+(X) is a c-set of X if it satisfies: 

i) CCC*+(X). 
ii) £ satisfies the properties (A) and (C). 

iii) If / G C and a G R, then ( / - a) V 0 G £ and (a - / ) V 0 G £ . 

4. P*(C) spaces, where £ is a c-set of X 

If £ is a c-set of X, then: 

(a) C satisfies (D') because if {hXlh2} C C and hx + h2 E P+, then there 
exists a E l , a > 0, such that (h1-\-h2)(x) > a for every x G X. Therefore g1 = 
( f - / h ) v 0 G C, g2 = ( f - ^ 2 ) v 0 G ^ and we have that {h1+g1, h2+g2} C P*, 
gi ' <72 ~~ ° • 

(b) C satisfies (B') because if / G C and f(x) = a, a G M, a > 0 , then 
i ^ F {z e X : / ( z ) < §} and, by the properties of 12, there exist g G 12 
md 6 G , b > 0, such that g(x) = 0, g(F) = {b}, and f + g e P*- Therefore, 
if £ is a c-sct of X, then (P+(£),<£*) is a Hausdorff compactification of X. 
Tinally, it is clear that C*_(X) is a c-set of X. 
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THEOREM 4 .1 . Let C be a c-set of X and let (P^(C), (p*) be the corresponding 
Hausdorff compactification of X . Then: 

a) For every f G C there exists f G C+(P^(C)) such that f o ^ = f. 

b) For every p G P*(C) we have that f G p if and only if f(p) ^ 0. 

P r o o f . 

a) We will prove that if (<P*(xa))aeI is a net in ip*(X) that converges to 
p G P„(C), then {f(x

a))aGi c o n v e r & e s m -̂ - If the net ( / ( - 0 ) Q e I does not 
converge in R, then there exist two subnets {f(xa))aeI and (f(x

a))aei °^ 

(f(xa)) GI and two positive real numbers ml < m2 such that (f(xa)) 

converges to m1 and (f(xa)) f converges to ra2 . Let us consider the functions 

Ql = (f- mid^ULz) VO, g2 = (2^1
3

+m2 - / ) v 0. These two functions are in C. 
We can suppose that gx(xa) = 0 for every a G Ix, and then ip*(xa) G c*(gx). 

We also have that ^*(X
Q) G c*(g2) for every a G I2. Hence p G ^ ( a j f l c * ^ ) = 

c*(g1 + g2), which is false because gx -\- g2 is invertible in C*(X) and, therefore, 

c*(g i+g 2 ) = 0-
b) Since / G £ is invertible in C*(K) if and only if / is invertible in 

C(P^(C)), it is easy to prove that the set H = {/ G C : f(p) ^ 0} is a 
minimal P+£-filter contained in p for every p G P*(C). Hence, H = p. • 

Remark 4 .2. 
1) If C C C^(X) is a c-set of X with the property (D), then we can consider 

the compactification (P(C),(p) of X and, as in part (a) of Theorem 4.1, it can 

be proved that if / G C, then there exists / G C+(P(C)) such that f o cp = f. 
We also have that if g: P(C) -> P^(C) is the continuous mapping such that 
g o ip = (p^ and f £ C^ (P^(C)) is such that / o <p^ = f. then f o g = f. 

2) Let us observe that part (b) of Theorem 4.1 does not hold, in general, 
for the compactification (P(C),(p). To see this, let (7^ ,7) be the Alexandroff 
compactification of u and let C = {/ G C+(CJ) : / o 7 = / , / G C+(7cO)} . 
We have that £ is a c-set of u that satisfies the property (D), (P(C),(p) is 
equivalent to (3UJ and there exists / G C + (P (£ ) ) such that / o cp = f for every 
/ G C. Let g: cO —> R be the function defined for every i G u by #(i) = i . For 
every p G P(C) \ (p(uj) we have that g G p, because a is invertible in C(CJ) , but 
f(p) = 0. 

It is important to know if (P+(£), c/?̂ ) is equivalent to (P(C),ip) because in 
this case we would have that (P^(C),ip^) is a Wallman-type compactification. 

THEOREM 4 .3 . Let C be a c-set of X that satisfies the property (D). Then, 
(P(C),(p) is equivalent to (P^(C),(p^) if and only if for every {px,p2} C P(C), 
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px ^ p2, there exists {fvf2} C C such that f1 -f- f2 is invertible in C*(X), 
fx ept \p2 and f2 ep2\p1. 

P r o o f . Let us suppose that both compactifications are equivalent and let 
G: P(C) —r P+(C) be a continuous and bijective mapping such that Gocp = (^ . 
If {pl,p2} C £ , px 7̂  p2,

 t n c n G(px) 7̂  G(p2) and there exists / G C such that 
% ) G o * ( / ) and G(p2)^_O*(/) .Let 7^C + (P s K (£ ) ) be such that 7 ° V * = / -
Clearly, J(G(p2)) = 0 and f(G(Pl)) = a > 0. If we define /-_ = ( / - f )V0, / 2 = 
( f - / ) v 0 , t h e n {f,J2}cC, / x + / 2 is invertible in C*(X), /-_ e G(Pl) C Pl 

and / 2 G G(p2) c 1^2 • ^ e t u s P r o v e t n a t / i $- I>2 (similarly, we could prove that 
f2 £ pl). If f1 G p2, then p 2 G o(fx) and there exists a net {<p(xa)}aeI

 c ° ( / i ) 
that converges to p2. Hence, f(xa) > f for every a G / , and f(G(p2)) > f, 

because {G(<p(-0)}aei = {^*(^a)} a GI c o n v e r S e s t o G(P2) • 
By Theorem 3.15, we know that (Pm(C),(pJ < (P(C),(p). Let G: P(C) -> 

P*(£) be a surjective continuous mapping such that G o ^ = ^ . Let us check 
that G is one to one: let {pvp2} C P ( £ ) , px ^ P2] there exist /-_ G C and 
/ 2 G £ such that /x G /?-_ \ p 2 , f2 G p 2 \ p x and /x + / 2 is invertible in C*(X). 
We have that f2 (£ G(Pl) and /-_ ^ G(p2) . Hence, /x G GQ^) and / 2 G G(p2) . 

D 

The following theorem will allow us to compare the compactifications ob­
tained through the c-sets of X. 

THEOREM 4.4. Let Cx and C2 be two c-sets of X. If for every {p1,p2} C 
P*(£\) > Pi 7̂  P2, there exists f G C2 such that f G px \p2, then (P^(Cx),ip\) < 

(P*(£2)^1). 

P r o o f . We define h: ipl(X) -» P*(C±) by h(ipl(x)) = ip\(x) for every 

x G A\ Let p G P*(C2) \<pl(X) and let ( ^ ( x a ) ) a G / be a net that converges in 

P+ (£ 2 ) to p . If ( / i ( ^ ( x J ) ) a G / = (vJ(-C a)) a G / does not converge in P*(CX), 

there are two subnets (v\(xa))aeh and (y\(x2
a))aeh of (ip\(xa))aeI and two 

different elements gx and q2 in P^(CX) such that ((r°l(xa))aEI c o n v e r S e s t o #1 

and (^p\(xa))aeI converges to q2 . By hypothesis, there exists f e C2 such that 

/ G qx \ q2. Let 7 £ C(P<.(£-_)) b e s u c h t n a t 7 ° V>\ = / • There exists a E l , 
a > 0, such that / ( g j = a and / ( x a ) > 2a/3 for every a e I1. Since / G £ 2 , 

there exists J £ c + ( p * ( £ 2 ) ) s u c h t h a t 7 ° </?* = / • T h e n 7 ( P ) > 2 a / 3 - Since 

f((h) — 0, we can suppose that f(xa) < a/3 and f(p) < a /3 for every cr G I2. 
a 

R e m a r k 4.5. The following statements are consequences of Theorem 4.4. 
(a) If Cx and C2 are c-sets of X and Cx C £ 2 , then P + (£ 1 ) < P^(C2). 
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(b) If £ is a c-set of X , then (P^(C),(pJ is equivalent to (/?X,e) if and 
only if for every {q1:q2} C P^(C*_(X)), qx± q2, there exists / G C such that 

/ € tfi \ 02 • 
(c) Let ( X ' , a ) be a Hausdorff compactification of X. Let £ be a c-set of 

X. The compactifications (P+(£) , ip^) and ( X ' , a ) are equivalent if and only if 
the two following conditions are satisfied: 

(1) For every / G C there exists / G C(X') such that / o a = f. 
(2) {z(g)} eC is a closed basis of X'. 

If (P , (£ ) , c^ ) is equivalent to (/?X,e), then (P^(C;(X)) , cp°) is equivalent 

to (P3le(£),(/?+) and there exists a homeomorphism \I>: P ^ ^ ^ X ) ) -^ P>K(£) 

such that tf o<# = c/V If {g i ,g2} C P , ( C ; ( X ) ) , ^ / q2, then * ( 9 l ) / *(g2) 

and there exists / G £ such that / G *(qx) \ # (g 2 ) . Let / G C+(P^(£)) and 

7 G C + ( P , ( C ; ( X ) ) ) be such that Jo ^ = / j m d J o j £ = / . We have that 

7(*(<Zi)) T4 0 and 7(*(9 2 ) ) = °- S i n c e 7 ° * = 7 , then J(q,) ^ 0 and J(q2) = 0 
and therefore / G qx\q2. This proves (b). 

For (c), let us assume that (1) and (2) hold, then for every x' G X' we can 
check that <f)(x') = {/ G C : / (x ; ) 7̂  0} is a minimal P^- f i l t e r and then we 
can consider the mapping cj>: X' -> P+(£) defined for every x' G X ' by 4>(x'). 
It is plain to prove that 0 is an one to one continuous map and that 0 o a = ^ . 

Conversely, let us suppose that (X',cY) and (P^(£),(/? J are equivalent. There 
exists a homeomorphism \I> of X ' onto P*(£) such that * o a = ^ . For every 

/ G £ there exists 7 G C+(P„(£)) such that 7°<f \ = / > 7 ° * G C(X') 

and / o \I> o a = / . On the other hand, let F be a closed set in X' and let 

x' G X'\F. Then tf(x') g * ( F ) and there exists / G £ such that ^(a;') £ c*(/) 

and * ( F ) C C * ( / ) . By Theorem 4.1, we deduce that J(V(x')) ^ 0 and that 

J{9(F)) ={0}. Therefore x' <£ z(Jo^) and F Cz(Jo^). 

B e 11 e y and L e s s a r d [1], [5] have studied a method of obtaining a compact 
space by using a non-empty set X and a set V of bounded continuous real-
valued functions on I . An outline of the method is the following: for every 
x G X , they consider the mapping 8X: V —•> R defined by 8x(f) = f(x) for 
every / G V. Let D , C R be a compact set such that Im( / ) C Dj. The set 
[ ] D f , endowed with the product topology, is a compact space. Moreover, the 

fev 
space Xy = {8X, x G X} C fj D , is a compact Hausdorff space with the 

fev 
induced topology. In these papers they prove that Xy is the set of functions 
v: V —•> R such that there exists a net (xa)aeI C X such that (^Xa(f))aej 
converges to v(f) for every / G V. If j : X —>> Xy is the mapping defined by 
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j(x) = 5X for every x G X , then j(X) is dense in Xy and (Xy,j) is a Hausdorff 
compactification of X if and only if V satisfies the three following conditions: 

(a) VcC*{X), 
(b) V separates the points of X, 
(c) for every x G X and every neighborhood U of x 

there exists {/15..., / n } C V such that (/-_(#),.. •, fn(
x)) is not in the 

closure of the set {(A fa),..., fn(y)) : yeX\U}. 

THEOREM 4.6. Let C be a c-set of X. Then: 

1) (Xc,j) is a Hausdorff compactification of X . 
2) The compactifications (Xc,j) and (P^(C),(p^) are equivalent. 

P r o o f . 

1) Clearly, j is one-one. Let us show that j is continuous: if (xa)aeI is a 
net in X that converges to x G X , then the net (f(x

a))aeI converges to f(x) 
for every / G 12, and then (SXa)aeI converges to Sx. The mapping j - 1 is also 
continuous because if (Sx ) a e I is a net that converges to 5X, x G X and Vx is a 
neighborhood of x in X , then there exists f € C and a G K , a > 0, such that 
f(x) = 0 and f(Vx) = {a}. Since (f(xa))aeI converges to / ( x ) , there exists 
a0 <E I such that / ( x a ) < a for every a > a0. Therefore xa G Vx if a > a 0 , 
a e I. 

2) Let us consider the mapping I: X°c -» P,,.(£) defined for every v G K£ by 
l(v) = pv, where pv = {/ G 13 : */(/) ^ 0 } . Let us show that pv is a minimal 
P+£-nlter . Clearly 0 g p v and if {/-_,..., fn] C £ , /-_ + • • - + / n G P , , then there 
exists a G M, a > 0, such that (fx + • • • + fn)(x) > a for every x G X. Since 
l/ G A"£ there exists a net (xa)aeI in X such that ( A O r J + h fn(xa))aeI 

converges to */(/-_ + • • • + / n ) . Then v(fx + • • • + fn) = i ^ / J + • • • + i / ( / J > a 
and there exists i G {1 , . . . , n} such that v(f{) / O . T o prove the minimality of 
Vv,

 l e t / e ^ be such that i/(/) = a, a G R, a > 0. Then £ = ( § - / ) V O E . £ 
and we have that / + g G P^ and z/(#) = 0 . Therefore g ^pu. 

3) Let us prove that / is one-one. Let {z/, v'} C X£ be such that v ^ v'. We 
can assume the existence of {a, b} C R and / G £ such that z/(/) < a < b < 
i / ' ( / ) . Let t=(f- -*±*) V 0. Then £ G C, v(t) = 0 and v'(t) ^ 0. Therefore 

^ IV \ P„ • 

4) In order to prove that / is continuous, let us consider a net (va)aeI in 
X°c converging to v G X°c and let f e C be such that l(v) G o*(f). Clearly, 
v(f) ^ 0 and there exists a0 G I such that va(f) ^ 0 for every a G / such 
that a > a0 . Therefore, l(va) G o*(/) . Finally, it is clear that l o j = cp^. • 
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5. Countable compactifications 

Let X be a Hausdorff space. It was shown, in [6], that the two following 
statements are equivalent (M a g i 11 's theorem): 

(a) X has a n-point Hausdorff compactification. 
(b) X is locally compact and contains n mutually disjoint, open sets 

n 
{Gv . . . , Gn} such that X \ |J G• is compact but X \ [J G. is not 

i=i j^i 
compact for every i G { 1 , . . . , n } . 

A family of open sets { G 1 , . . . , G n } with these properties is called an n-star 
of X. 

Now, we will give a brief description of this compactification. Let { G x , . . . 
n 

. . . , Gn} be an n-star of X and let K = X \ [J G-. Let {zx,..., zn} be a set 
z = l 

with n distinct elements that are not in the space X. Let Z = X U {zl,..., zn} 
and 

B = {H C X : H is open in X } 

U {if U { z j : i G { 1 , . . . , n} , if C K is open in X 

and (K U G-) D (K \ H) is compact i n l } , 

then B is an open basis for a topology for Z. Let a: X —r Z be the mapping 
defined by a(x) = x for every x G X. Then (Z, a) is a n-point Hausdorff 
compactification of X that will be called as the compactification induced by 
the n-star { G 1 5 . . . , Gn}. Let us observe that in Z there exist n open sets 
tfp . . . , [ / n , whose closures are mutually disjoint, such that zi G cX for every 
i G { 1 , . . . , n } . Hence, there exist n different numbers a 1 ? . . . , an and / G C+(Z) 
such that /(cX) = {a-} if i G { l , . . . , n } . Let us denote Vi = Ui\ {z{} and 
/ = / o a. We have that {V15..., Vn} is a n-star of X such that there exist / G 
C+(X) and n different numbers a l 5 . . . , an such that /(VJ = {a-} for every z G 
{ 1 , . . . , n } . In this case, the family {V1,..., Vn} will be called a separated n-star. 
It is easy to prove that the n-point compactification induced by {V^, . . . , Vn} is 
equivalent to the compactification induced by { G l 5 . . . , Gn}. We can conclude 
that any n-point compactification is equivalent to the one induced by a separated 
n-star. 

It should be mentioned that M a g i U ' s theorem ([6]) is still true if we 
change, in condition (b), the term n-star by the term separated n-star. For 
instance, if v/e consider in R the 2-star {( — oo, 0), (0, -f-oo)}, then a 2-point 
compactification is induced that is equivalent to the one induced by the 2-star 
{(—oo, —1), (1, -foo)} . The second 2-star is separated but the first is not sepa­
rated. 
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THEOREM 5 .1 . Let X be a locally compact Hausdorff space. Let { G l 5 . . . , Gn} 
be a separated n -star of X and let (Z, a) be the n -point compactification induced 
by {G-p . . . , Gn}, where Z = XU{z1,... ,zn} . Let L be the set of functions f G 
C^(X) such that for every i G {1, • • . , n} there exists a compact set K{ C GtUM, 

n 
where M = X \ IJ G% is compact in X. such that f is constant in Gi\Ki. 

i=l 

Then L is a c-set of X and the compactifications (P^ (£),(/? J and (Z,a) are 
equivalent. 

P r o o f . It is obvious that if {/, g} C L, then { /±g , / • g, f Vg, / Ag} C L. 
We will prove that {coz(/) : / G L} is an open basis of X. Let U be an open 
subset of X and let x G U. Since X is locally compact, there exist an open set 
V C X and a compact K in X such that x G V C K C U. Let / G C*_(X) 
be such that f(x) = 1 and f(Vc) = {0}. For every _^G { 1 , . . . , n} we have that 
G • U M is compact and Gz D K C G% U M. Hence, G% D K is a compact subset 
of X and f(Gi \ G{ n K) = {0}. Therefore / G C, x G coz(f) C U and we 
obtain the compactification (P* (£),<£*) of K. Since M is compact in X and 
cl((/^(Af)) C ( ^ P O , we have that 

P(L) \ <p,(X) = [ c l f c , ^ ) ) \ ^ ( X ) ] U • • • U [ c l ( ^ ( G J ) \ ^(X)} . 

Let us prove that, for every i G { 1 , . . . , n } , cl((/?+(GJ) \(^j | t(X) is an unitary set. 
If c\((p^(Gz)) \ y>*(X) = 0, then we would have that c\(<p^(Gi)) is compact in 
ip^(X), ^ ( G - ) is compact in ip+(X) and G{ is compact in X. Since G• U M 
is closed and GiU M C G{U M, then we would have that G% U M is compact, 
which is false. 

Let us suppose that p G c\(ip^(Gz)) \ ip+(X) and let / G L be such that p G 
o*(/) . Since / G £ , there exists a compact JFQ in X such that K{ C G{UM and 
there exists a - G R such that f(Gi\Ki) = {a J . If a i = 0, then f(Gi\Ki) = {0} 
and [ c l ^^G^) ) \ <p^(X)\ C\o*(f) = 0. Therefore â  ^ 0 and we can see that 
cl((^(Gz)) \ ^ ( X ) C o*(f). This proves that c l ^ G - ) ) \<f^(X) is an unitary 
set, which will be denoted by p{ for every i G { 1 , . . . , n}. 

Let us prove that if { i , j} C { l , . . . , n } , i ^ j , then ^ ^ p?.. Since 
{ G 1 ? . . . , Gn} is a separated n-star there exists g G C^(X) such that g(Gi) = â  
for every i G { 1 , . . . , n}, where a{ ^ a- if i ^ j ; clearly g G L. Let us suppose 
that at < a •. If h = (g — a{) V 0, then h e L and there exists h G C+ (P+(£)) 
such that /i o (^ = h. It is clear that h(pz) = 0 and /i(p-) ^ 0. Therefore 
/i G p3 \ p . . 

Now, we prove that the compactifications (Pj|t(£),(/?s|t) and (Z, a) are equiv­
alent. We consider the mapping /: Z —> P^(L) defined for every x G X by 
/(x) = l(a(x)) = (p+(x) and, for i G { 1 , . . . n } , by Z(zJ = £L. We have that / 
is one to one and onto and that I o a = <p^. Let us check that I is continuous. 
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Let i G { 1 , . . . ,n} and let (xa)aeI be a net in X that converges to z{. Since 
G{ U {z{} is an open neighborhood of z{ in Z, let us suppose that xa G G{ for 
every a £ I. Let f £ C be such that p. G o* ( / ) . We have that there exist a 
compact set K. C G- U M and a- G R \ {0} such that / (G- \ ivT-) = {a-}. Since 
(Gi \ K{) U { z j is a neighborhood of zi m Z, then there exists a0 e I such 
that x a G G{ \ K{ for every a> a0, a G / . 

Therefore / ( x a ) = a- and / (z a ) G o*(/) for every a > a 0 . • 

R e m a r k 5.2. Let us observe that, under the hypotheses of Theorem 5.1, we 
have that CnP = CnP^ . Hence (P(C), tp) and (P^(C), ip^) are equivalent and 
(Z, a) is a Wallman-type compactification. 

Let (Z, a) be a compactification of X. If Z\a(X) is finite, then we have that 
Z \ a(X) is compact. If Z \ a(X) is compact, then X is locally compact. The 
spaces X such that the corresponding (Z, a) are compact and countable were 
characterized in [7]. Now, let us investigate when Z \ a(X) is homeomorphic to 
7CJ , the Alexandroff compactification of u. 

THEOREM 5.3. Let X be a locally compact Hausdorff space and let (Z,a) be 
a compactification of X such that Z\a(X) is homeomorphic to ju. Then there 
exist two sequences, (G,)-(ZN and (-B.-WN of open sets of X such that: 

i>2 

1) For every n G N, { G l 5 . . . , Gn, -Bn+1} is a separated (n + 1) -star of X . 
2) U GkcBn+1. 

k>n+l 
3) If {i,j} C N and 1 < i < j , then Bj C J5.. 

P r o o f . We denote Z \ a(X) = N U {oo} and we define f:Z\ a(X) -r E 
by f(i) — 1/i for every i G N, and /(oo) = 0. The continuous extension of 
f to Z will be also denoted by / . Let (eJ^GN C (0,1) be a sequence such 
that if E{ = (\ - e., \ + e .) , then Ei n Ej = 0 for {i,j} C N a n d i / j . 
We set Di = [0, i + £.) . For every i G N, let G- = ( / o a ) - 1 ^ . ) and let 
-Bi+i = ( / ° ^ ) _ 1 ( ^ + i ) • W e w i l 1 P r o v e t h a t {Gx, • • •, Gn , B n + 1 } is a separated 
(n + l)-star of X for every n G N. We have that, 

z\[/-1(f;1)u...u/-1(-- ,
n)u/-1(£>..+1)] 

is compact in Z and is contained in a(X). Hence, 

a-i[Z\(r\E1)U---ur1(En)ur1(Dn+1))}=X\(G1U-..UGnUBn+i) 

is a compact set that will be denoted by M n + 1 . 
Let us prove that M n + 1 U G • for j G { 1 , . . . , n}, and that M y r̂  a r e 

not compact subsets of X. If M n + 1 U G • is compact in A", then £ \ (af]\j ) y 

a ^ - ) ) is open in Z and so [Z \ (a(Mn+1) U aCG^-))] n Z " 1 ^ ) = {j} is'open, 
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which is false. We also have that [Z \ ( a ( M n + 1 ) U a ( 5 n + 1 ) ) ] n f~1(Dn+1) = 
{ r a G N : m > n + 1} U {00} and therefore, M n + 1 U I?n+1 is not compact in X. 
It is clear how to prove (2) and (3). • 

DEFINITION 5.4. Let X be a topological space. Any pair of sequences of open 
sets in X which satisfy the properties 1), 2), 3) in Theorem 5.3 will be called 
an u -star of X. 

THEOREM 5.5. Let X be a locally compact space such that there exists an 
u-star(Gi)ieN, (B i) i>2 of X. We denote Mi+1 = X \ G 1 U G 2 U - • • U ^ U B ^ 
for every i G N. Let C be the set of the functions f G C+(X) such that there 
exists n0 G N such that if n >n0, n G N. then there exists a family of compact 
sets K1,..., ifn+1 m X such that K{ C GiUMn+1, f is constant in Gi\Ki for 
every i G { 1 , . . . ,n} . I^n+1 C # n + 1 UMn+1 and f is constant in J 3 n + 1 \Kn+1. 
Then, C is a c-set of X and P*(C) \ ip*(X) is homeomorphic to 70;. 

P r o o f . It is clear that if {/, g} C C, then {/ ± g, f • g, f V g, / A g} C C. 
Let us prove that {coz(/) : / G C} is an open basis of X. Let U be an 
open set in X , and let x G U. Since X is locally compact, there exist an 
open set V and a compact set K such that x G V C K C U. Let / G 
C+(X) be such that f(x) — 1 and f(Vc) = {0}. For every n G N and every 
i G { 1 , . . . ,n} we have that GiH K is a compact subset of Gi U M n + 1 and 
f(Gi \Gin K) = {0}. We also have that F?n+1 n K is a compact subset of 

#n+i u Mn+i a n d / ( B n + i \ S n + i ri K) = {0}. Therefore / G C and x G 
c o z ( / ) c U . 

Since £ is a c-set of X, we obtain the compactification (P^(C), ipj of X and, 
as in Theorem 5.1, we have that, for every i G N, cl(y?i|c(Gi))\<^s|i(X) is an unitary 
set, which will be denoted by {p{}. Let us prove that if { i , j} C N and i < j , 
then p. ^ pj . We have that { G 1 ? . . . , G - , . . . , G j5 Bj+1} is a separated ( j+ l ) - s ta r 
of X and there exist / G C+(K) and {a1? a 2 , . . . , a j + 1 } C K such that if k G 

{ l , . . . , j } , then f(Gk) = {ak} and / ( # j + 1 ) = {aj+1}. Since (J Gfc C Bj+1 
k=j+i 

and J5 n + 1 C J B J + 1 for every n > j , we have that / is constant in G- for 
i G { 1 , . . . , n} , and / is constant in L?n+1 • Therefore / G C. 

Now, let us suppose that a- < â -. If h = ( / - a j V 0, then /i G £ . Let 
71 G C^(P^(C)) be such that hoy^ = h.We have that b,(p.) = 0 and h(p3) / 0; 
therefore h £ Pj\pi-

Let us prove that {pt : i G N} is a discrete subset of P+(C). Let i G 
{1 . . . ,H} and let us consider the ( i - f l ) - s t a r { G 1 ? . . . , G z , i ? i + 1 } . There exist 
/ G C*(N) and { a - , . . . , a t + 1 } C R such that / (G x ) - { a j , . . . , / ( G J = 
{a } , f(Bl+1) — { a z + 1 } . We have that / G £ . Let us suppose that a t < a2+1 

dill let g - (f-at) V0 G £ and 7/G C+(P,,.(.£)) be such that T / o ^ = g. Then, 
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g(cl(^(G,))) = {0} and g{cl(ip,(Bi+1))) = {al+1 - a j . The set 

A = {p e Pm(C) : g(p) < (al+1 - a{)/2} \ { p l j P 2 , . . . . p . ^ } 

is open in P+(C) and A fl {p• : i G N} = {pz}. 
Let K — P^(C)\tp^(X), then K is compact and we have that K\{p{ : i G N} 

7̂  0. We claim that i f \ {p{ : i G N} is an unitary set and K is homeomorphic 
to 7CJ. Let {p, q} C K \ {p• : z G N} and let / G £ be such that p G o*(/) . 
Let n G N be such that there exists a family of compact sets K1,..., Kn+1 such 
that KiCGiU Mn+1, / is constant in G • \ K{, i ^ n + 1 C Hn+1 U M n + 1 and / 
is constant in Bn+1 \ Kn+1 for i G { 1 , . . . , n}. We have that 

K = Pt(£)\<p,(X) 
n 

U(cl(^(G í))\^(X)) 
Li=i 

U c l ( ^ ( S n + 1 ) ) \ ^ ( X ) 

= {p1 , . . . ,pJu[cl(^(Bn + 1))\^(X) 

Therefore {p, q} C c l ( ^ ( H n + 1 ) ) \ ^ ( X ) , J(p) =~f(q) and g G o*(/) , which 
implies that p = q. • 

R e m a r k 5.6. 
a) Let X be a locally compact space and let (Z, a) be a compactification 

of X such that Z \ a(X) is homeomorphic to 70; and let (G-) i G N , {B%)i>2 be 
the oj-star obtained in the proof of Theorem 5.3. Let C be the subset of C+(X) 
defined in Theorem 5.5. It is not difficult to prove that (P*(C),<p*) a n d (Z,a) 
are equivalent. 

b) If h G C is invertible in C(X), then h is also invertible in C*(X) and 
consequently, (P(C),tp) and (P^(C),(p^) are equivalent. 

c) If (Z, a) is a compactification of X such that Z \ a(X) is homeomorphic 
to 70;, then (Z, a) is a Wallman-type compactification. 

6. Zero-dimensional compactifications 

Let us recall that a topological space X is called 0 -dimensional if X has 
a base of clopen (open and closed) subsets. In this section, we will study the 
0-dimensional compactifications of a completely regular Hausdorff space X. 

We denote by SC+(X) the subset of C+(X) of finite-valued functions. If 
/ G SC*+(X), then / = alXAl +••• + anxAn , where {av . . . , aj C R+ and 
{Ax,... ,An} is a partition consisting of disjoint clopen subsets of X. It is 
well known ([8]) that if X has a 0-dimensional compactification, then X is 
0-dimensional. 
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T H E O R E M 6.1. 

a) The following statements are equivalent: 

1) X is 0-dimensional. 
2) SC*+(X) is a c-setof X. 
3) There exists a c-set C of X such that C C SC*_(X). 

b) If C C SC*+(X) is a c-set of X, then (P^(£),(/?J and (P(£),ip) are 
equivalent 0-dimensional compactifications of X. 

P r o o f . 

a) 1 = > 2: It is sufficient to show that the family of cozero-sets of functions 
in SC^(X) is an open basis of X. Let U be an open set in X and x G U. There 
exists a clopen set A C X such that x G A C U and x G coz(x^) C U. 

It is obvious that 2 = > 3. 
3 = > 1: Let U be an open set in X and let x G U. There exists / G C 

such that x G coz(/) C [/. We have that / = axxA + • • • + &nXA > where 
{ a 1 ? . . . , a n } C R and { A 1 5 . . . , An} is a partition of clopen sets of X. Let us 
assume that f(x) = a1 and let e > 0, £ G US, be such that [ax — e, ax + e] n 
{0, a 2 , . . . , a n } = 0. If Q = f~l (\ia1 — £, ax + £]), then Q is a clopen set of X 
and x G Q C U. 

b) It is obvious that £ n P = £ n P^. • 

THEOREM 6.2. Let C be a c-set of X such that (P+(£),</?„.) is 0-dimensional. 
Then: 

1) For every clopen set A of P*(C) there exists g G C such that: 

a) A = o*(g). 
b) There exists a > 0, a eR, such that g(p) > a for every p G o*(g), 

where g G C+ (P#(£)) is such that g ° V* — 9 • 
c) C — coz(g) is a clopen of X and Xc ^ ^ • Moreover, A = 

coz(xc7); ^ e r e XC G c+{p*(£)) satisfies Xc0{P*=^C' 
2) Fel C be the set of finite-valued functions f G C. Then, C is a c-set 

of X and the compactifications (P^ (£),(/? J and (P^(C),(p'+) of X are 
equivalent. 

3) Let T be the set of clopen subsets A C X such that XA ^ ^ • Then T is a 
Boolean algebra on X and is an open basis of X. Therefore it is a Wall-
man base on X. If (w(T),w) is the Wallman-Shanin compactification 
of X, then (w(T),w) and (P^ (£),(/? J are equivalent. 

P r o o f . 
1) Let A be a clopen set in P+(C). Since A is compact, there exists a family 

{ A , . . . , / n } C C such that A = o * ( / 1 ) U - - - U o * ( / J . L e t ff = A + ••• + / „ -
Then g G C and A = o*(g). For b), assume that there exists pn G o*(g) such 
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that 0 < g(pn) <l/n for every n e N. If q is a cluster point of {pn : n e N}, 
we have that g(q) = 0 . On the other hand q e g* and g(q) 7̂  0, because o*(g) 
is a clopen set in P(C). For c), let us observe that C = coz(g) and B = z(g) are 
clopen sets of X, because coz(g) = g~l ([a, +00)) .Let h = (a - g) v 0; we have 
that /i = axB

 a n d therefore Xs £ £• Since Xc = (1 ~~ XB) V 0> w e a l s o n a v e 

that x c G £ . It is easy to prove that if x c G C+(P+(C)), then A = c o z ( x c ) , 
where Xc0<P+=Xc 

2) Let us prove that {coz(g) : g G £ '} is an open basis of X. Let G be 
an open set in X and let x e G. There exist an open set H in P*(C) and a 
clopen set A in P„(>C) such that ip(G) = Hn p p f ) and ip(x) e A C H. By 
lc) , we have that A = coz(xc) , where Xc ^ ^ a n d Xc ° V?* = Xc* Therefore 
X c G C and x G coz(xc) C G. Hence £ ' is a c-set of X . Let (P+ (£ ' ) , v?'J be 
the corresponding compactification of X. If g G £ ' , then g G £ and there exists 
g G C+(P^(C)) such that go^+ = g. Moreover, the family {coz(g)} £ / , where 
g o (^ = O for every g G £ ' , is an open basis of P^(C), because if H is open in 
P+(C) and q e H, then, by lc) , we have that q G coz(xA) c H, where XA ^ ^ ' 
and XA ° ^* = XA • Hence, by Remark 4.5, we have the required equivalence. 

3) It may be seen, as in the proof of 2), that T is an open basis of X. Let 
us prove that T is a Boolean algebra. If A G T, then xAc = ( 1 ~ ~ X A ) V 0 ^ £ 

and therefore Ac G T. If {A,B} C F , then XA + X# £ £ a n d 2XAnB = 

((XA + X B ) ~ I ) V 0 G £ therefore i n B G f . Finally, if {A,B} C F and 
.A H B = 0, then XAUB = XA + XB

 e C a n d A U J ^ G F ; if A n £ ^ 0 , then we 
have that AU B e T because A\B,B\A, AnB e T. Hence T is a Wallman 
base on X. Let (w(T),w) be the Wallman-Shanin compactification of X. Let 
us observe that w(T) is the Stone space of the Boolean algebra T ([S]). 

For every p G P+(C), we define H(p) = {A e T : XA ^ P)• We C i a i m t n a t 

H(p) is a maximal filter of T. Let {-4,5} C H(p), then XAHB — XA ' XL? £ P 
and A n B G H(p). Let {A, 19} C T be such that A C B and A G H(p). 
Then we have that XA + XA^ is invertible in C*(X) and XAC ^ P- Therefore 
XB ^ P a n d ^ ^ # ( P ) - Moreover, if j4 G f and A ^ H(p), then XA £ P a n d 

XA + XAC = * G P- Hence XA< £ P a n d ^ c € H(p). 

Let H: P*(£) -» iU(F) be the mapping defined by H(p) = {A e T : xA £ P} 
for every p G P+(C). This mapping is one to one because if {p, q} C P*(C) and 
p ^ g, then there exists f e C such that f e p\ q and there exists A G .F* 
such that 7} G c o z ( x J C o*(f), where x A G C + ( i^( / : ) ) and XA ° <£* = XA • 
Therefore A G H(p) \ H(<?). 

If A G JF, then coz(xA) = o*(xA) and {o*(xA) '• A G F } is a closed base of 
P+(C). For every A G F we have that H(o*(xA)) = H({p e P+(C) : xA £ P}) 
= {H(p) : A e H(p)} = A* and {A* : A e T} is a closed basis of w(T). • 
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R e m a r k 6.3. Let H"1: w(F) -> P+(C) be the inverse of H. For every F G 
w(F), H~l (F) is the set of functions / G C such that there exists some A G F 
such that inf{/(x) : x G A} > 0. 

COROLLARY 6.4. 
a) Let C be a c-set of X. Then (P^ (£),(/? J is 0-dimensional if and only if 

(P^(C),(p^) and (P*(C'),<p[) are equivalent, where C is the set of the finite-
valued functions of C. 

b) Let (Z,a) be a Hausdorff compactification of X. Then (Z,a) is 0 -dimen­
sional if and only if (Z,a) and (P„. (£),</>*) are equivalent, where C is the set 
of finite-valued functions f G C+(X) such that f o a = f, / G C(Z). 

c) If (Z,a) is a 0 -dimensional compactification of X, then (Z,a) is a 
Wallman-type compactification. 

Let us recall that a space X is called strongly 0 -dimensional if for every 
/ G C(X), g G C(X) such that z(f) H z(g) = 0 there exists a clopen set A 
in X such that z(f) C A and z(g) C Ac. It is easy to see that X is strongly 
0-dimensional if and only if for every {/, g} C C+(X) such that f+g is invertible 
in C*(X) there exists a clopen set A in X such that z(f) C -A and z(#) C Ac. 
It is well known ([8]) that (3X is 0-dimensional if and only if X is strongly 
0-dimensional; we will obtain a stronger version of this results by generalizing 
the concept of strongly 0-dimensional space. 

DEFINITION 6.5. Let £ be a c-set of X, we will say that X is C 0 -dimensional 
if for every {/, g} C C such that / + g is invertible in C*(X) there exists a 
clopen A of X such that z ( / ) C A, z(g) C Ac and x ^ € £• 

It is easy to prove that if X is £ 0-dimensional, then X is 0-dimensional. 

THEOREM 6.6. Let C be a c-set of X. Then P*(C) is 0-dimensional if and 
only if X is C 0 -dimensional. 

P r o o f . If P*(C) is 0-dimensional, {/,g} C C and / + g is invertible in 
C*(X), then we have that J + g is invertible in C(P5le(£)), where J G ^ ( P ^ / : ) ) 
and g G C+(P„.(£)) are such that f°(p*=f,go(p^=g and z ( / ) n z(g) = 0. 
There exists a clopen set in P*(C), coz(x^) , where XA ^ ^ a n (^ X A ° ^ — XA > 
such that z(f) C COZ(XA)

 a n d z(g) C z(xA)- Therefore z(f) C A, z(g) C Ac 

and XA ^ £ • 
Now, let us assume that X is C 0-dimensional. We claim that P*(C) is 

0-dimensional. Let p G P*(C) and let / G £ be such that p G o*(f). We can 
suppose that J(p) = b > 0, where 6 G 1 , / G C + ^ O C ) ) , / o ^ = / . Let 
/x =- ( / - | ) v 0 and f2 = (f - f) V 0. We have that {/15 / 2 } C C and that 
/ i + h i s invertible in C*(X). Hence, there exists a clopen set A c X such 
that z(fx) c A, ^( /2) C Ac and XA G £• W e n a v e t n a t C O Z (XAC) is a clopen 
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in P*(£) , where XA- e C+(P^(C)), XAC ° ^* = * A c • J t i s e a s y t o c h e c k t n a t 

pecoz(xAc)Co*(f). D 

7. Appendix 

In this section, we will introduce the concept of multiplicative PC+(X)-filter 
or, briefly, multiplicative filter. 

By using Zorn's lemma, it is easy to check that if q is a multiplicative filter, 
then there exists a maximal multiplicative filter p such that q C p. Now, we 
will give a characterization for the maximal multiplicative filters. 

THEOREM 7.1. Let p be a multiplicative filter, then p is maximal if and only 
if the existence of a function g G C+(X) such that f • g ^ 0 for every f G p 
implies that g G p. 

P r o o f . Sufficiency is obvious. Let g G C+(X) be such that / • g ^ 0 for 
every / G p. We have that q = {/ • gn : f G p , n G N} is a multiplicative filter 
and g G q. Therefore p = q and g G p. • 

DEFINITION 7.2. Let (P(C+(X)),cp) be the Stone-Cech compactification of 

X. For every p G P (C + (X) ) we denote Sp = {f e C+(X) : p G cl(<p(coz(/)))} . 

If x G X , we denote Sx = {/ G C+(X) : x G coz(/) } . 

Remark 7.3. 
a) Let p G P ( C + ( X ) ) . Then we have: 

1) If {/, 9} C C+(X) and / • g G Sp, then {/, </} C S". 
2) pc£P. 
3) / G Sp if and only if for every g G p we have that / • g / 0. 
4) If / G S^ and g G p , then f - g E Sp. 
5) p is the unique minimal filter contained in 5 P . 
6) If q is a multiplicative filter and p C g , then q C Sp. 
7) If f e Sp \p, then there exists a multiplicative filter q such that / G q 

and p C q C Sp. 

b) Let us recall that a point x of a topological space X is a p-point if and 
only if, for each function / G C + (X) , the condition / (x ) = 0 implies that there 
exists a neighborhood Vx of x such that f(Vx) = {0}. It is plain to prove that 
x is a p-point of X if and only if px = Sx. A topological space X is called a 
P -space if and only if every point is a p-point. We also have that X is a P-space 
if and only if every cozero-set is a clopen in X . The following statements are 
equivalent: 

1) X is a P-space. 
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2) Every multiplicative filter is minimal. 
3) Every multiplicative filter is a maximal multiplicative filter. 
4) Every multiplicative filter q satisfies that if {/, g} C C+(X) and f-g G q, 

then {/,#} C q. 
5) Sp = p for each minimal filter p. 

A completely regular space X is a F-space if and only if two disjoint cozero-
sets are completely separated. 

THEOREM 7.4. X is a F-space if and only if Sp is multiplicative for every 

PeP(C+(X)). 

P r o o f . If X is a F-space and Sp is not multiplicative, where p G 
P(C+(X)), then there exist / G Sp and g G Sp such that p (£ cl((D(coz(/ • g))). 
Therefore there exists h G C+(P(C+(X))) such that h(p) ^ 0 and 
h(c\((p(coz(f • g)))) — {0}. We have that h = h o (p e p and h • f • g = 0. 
Since coz(/ • h) Pi coz(g • h) = 0, we have that there exists / G C+(X) such 
that /(coz(/ • h)) = {1} and /(coz(g • h)) = {0}. Since / G Sp and h G I>, then 
/•b , G Sp and p G cl((/?(coz(/-t\))). Similarly, we have that p G cl((/?(coz(g-fo))). 
If 7 G C ^ P ^ (X))) is such that ~lo(p = l, then 7(p) = 1 and ~l(p) = 0, which 
is a contradiction. 

Conversely, let / G C + (X) and g G C+(K) be such that coz(f) Hcoz(g) = 0. 
Since the hypotheses implies that c\((p(coz(f))) Hc\((p(coz(g))) = 0, the Theo­
rem is a consequence of Uryson's lemma. • 

THEOREM 7.5. X is an F-space if and only if for every multiplicative filter 
q there exists p G P(C+(X)) such that q = Sp. 

P r o o f . The necessity is almost obvious. We shall verify only the sufficiency. 
Let p G P(C+(X)) and let q be a maximal multiplicative filter such that p C q. 
There exists, by hypothesis, pf G P(C+(X)) such that q = Sp'. Since p C Sp 

and pf C Sp , we have that p = pf and 5 P is multiplicative. • 

It is well known ([4]), that X is a F-space if and only if j3X is a F-space . 
Now we will use our model of /3_Y, the space P(C+(X)), and our techniques to 
prove this result. 

THEOREM 7.6. X is a F-space if and only if P(C+(X)) is a F-space. 

P r o o f . 
Necessity. 

Let { / ,g} C C+(P(C+(X))) be such that coz ( / ) n coz(^) = 0. Since X is a 
F-space there exists h G C+(X) such that h(coz(f)) = {1} and h(coz(g)) — {0}, 
where / = / o ip and g = g o cp. Let h G ^ ( P ^ p Q ) ) , where hoy = h. 
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Clearly h(c\(ip(coz(f)))) = {1} and we have 7i(coz(7)) = {1}. Similarly 

h(coz(g)) = {0}. 

Sufficiency. _ 
Let {/,</} C C; (X) and let {J,g} C C+(P(C+(X))), where / o <p = f and 
go cp = g. It is easy to prove that coz(f) ncoz(g) = 0. By hypothesis, there 
exists h e C+(P(C+(X))) such that h(coz(f)) = {1} and h(coz(g)) = {0}. If 
h = h o <£, we have that h(coz(f)) = {1} and /i(coz(g)) = {0}. • 

Remark 7.7. In this paper, our main interest has been in obtaining compact-
ifications, of a Hausdorff completely regular space X , of type (P(£),ip) and 
(P^(C),(p^), where C C C + (X) . For some remarkable compactifications, we 
have found the corresponding family C of functions. For other compactifica­
tions, we propose the characterization of the corresponding families of functions. 
Moreover, we suggest the manipulation of the initial sets, A, C and P to get 
interesting compact sets. 
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