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GENERALIZED TOPOLOGICAL SPACES
IGOR ZUZCAK

The properties of structures defined by a given set X and a relation, respectively
relations defined on a class of subsets of X and satisfying some conditions are often
studied. Such structures are given for example in [1], [2], [3], [5], [7] and [8]. The
best known structures of such type are topological spaces defined by a closure
operation [6].

In the present paper we introduce a new class of spaces, called r-spaces, as
a generalization of topological spaces.

We shall use the notations from [4] and 2* will denote the class of all subsets of
X. The notation A = B means that A is a subset of B and if A is a proper subset of
B we write A < B. Specific terms will be explained when used for the first time.

Let X be a nonempty set and g be a relation on 2*. Let us consider the following
properties of o:

R,) for each subset A of X there is a subset B of X such that ApB

Rz) ﬂQﬂ ’

R;) if ApB, then AcB

R,) if AgB, then BoB

R;) if A c B and BpB, then there is a subset C of X such that AoC and C< B
R,) if ApB, then there is no subset C of X such that A cCc B and CoC.

Remark 1. It is easy to prove that the properties R,—Rs are independent.

Remark 2. Let (X, ) be a topological space, where 7 is the class of closed
sets. Let us define a relation ¢ on 2* as follows:

ApB iff B is the closure of A.

It is clear that o satisfies R,—R,.

Definiction 1. The relation o with the properties R,—Rg will be called a relation
of closure on 2%,

The pair (X, @) is called an r-space if X is a nonempty set and g is a relation of
closure on 2%.

Let (X, @) be an r-space. If for the subsets A, B of X we have ApB, then we say
that B is a closure of A. A set A < X satisfying AgA will be called a closed set. The
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complement of a closed set will be called an open set. A set A = X is said to be an
interior of Bc X if X — A is a closure of X — B. The relation o defined by

AoB iff (X—B)o(X-A)

is called the relation of the interior relative to .

From Remark 2 we can see that each topological space is an r-space. Unlike
topological spaces in an r-space a set may have more than one closure — see the
next example.

Example 1. Let (X, 9,) and (X, 9,) be two topological spaces, where I, and
T, are classes of closed sets in (X, ) and (X, J), respectively. Let A = X. Let B
be the closure of A in (X, 7,) and let C be the closure of A in (X, J3). Define
a relation ¢ on 2* as follows
a) if B C, then ApB
b) if Cc<B, then ApC
¢) if B&€C and C¢ B, then AgB and AgC.

The relation g satisfies the properties R,—Rs. It is clear that in the case c) the set A
has two distinct closures B and C.

In what follows we shall give another characterizations of r-spaces.

Since the notion of the relation o of the interior relative to @ is dual to the
relation o of the closure, from the properties R,—Rg it follows:

Theorem 1. Let (X, 0) be an r-space. Let o be the relation of the interior
relative to 9. Then g satisfies the following conditions
K,) for each subset A of X there is a subset B of X such that BcA
K,) XoX
K,) if BOA, then Bc A
K.) if PoA, then BoB
K;) if B < A and BoB, then there is a subset C of X such that CoA and Bc C
Ke) if BoA, then there is no subset C of X such that Bc Cc A and CoC.

Theorem 2. Let o be a relation on 2* satisfying conditions K,—Ks. Let us define
a relation ¢ on 2% as follows

AoB iff (X-B)o(X-A).

Then g is a relation of closure on 2%, (X, @) is an r-space and o is the relation of
the interior relative to o.

Let ¥ be a nonempty class of subsets of a set X, let AcX and let xe X.
Throughout this paper the symbols ,%, *% and %(x) denote

¢)) +F={Be%:AcB},
) AF={(BeF:Bc A},
(3 F(x)={Be%:xeB}.
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Theorem 3. Let (X, 0) be an r-space. Then the class of closed subsets of X, i.e.,

the class T ={A c X: ApA} satisfies the following conditions:

Q: 0, XeT

Q,: for every Ac X and B € ,J there is a minimal element C of .9 such that
A cCcB.

Moreover, ApB iff B is a minimal element of the class ..

Proof. From the property R; it follows that @€ J and from the properties R,
and R; we have Xe€ J. Let A c X. According to R;, R; and R, the class o7 is
nonempty. If B € ,J then by R; there is a subset C of X such that AoC and C c B.
By R; AgoC implies A =« Cc B. C e 7 according to Ry, hence C € .9 and by R, the
set C is a minimal element in 7. To show that ApB iff B is a minimal element of
the class o7 suppose first ApB. Then by R, B € J and from Rg it follows that B is
a minimal element of ,J. To prove the converse suppose that B is a minimal
element of ,J. Since B € o, then Be 7, i.e. BoB and A c B. From R; it follows
that there is a subset C of X such that ApC and C c B. From ApC we have Ce€ .
by R; and R,. The minimality of B implies C=B. Hence ApB.

Theorem 4. Let X be a nonempty se and I be a class of subsets of X satisfying £2,
and ,. Let us define a relation ¢ on 2* as follows
(4) AoB iff B is a minimal element of the class ,J. Then o satisfies R,—R¢ and T

is precisely the class of all closed subsets of the r-space (X, o), i.e.,
T={AcX:ApA}.

Proof. First we prove the property R,. For every A €2* the class .7 is
nonempty, as it contains X according to €2,. Then by £, there is an element B € ,J
such that AgB.

Since @ e T, it is clear that @ is a minimal element of 37 and so we have R,.

The property R; follows from the fact that for every element B € 2* for which
ApB we have B € o9 by the definition of o. But »J contains only subsets of X
containing A.

ApB implies that B € 47, hence B € . From this it follows that B is a minimal
element of 57, i.e., BoB holds. This proves R..

To prove Rs suppose that A = B and BgB. Then B €sJ and so B e J. Since
A c B, we have Be .. According to Q, there is a minimal element C of .7 such
that A c Cc B. Therefore, by the definition of o we have AgC and Cc B.

The last property Re follows immediately from the definition of g: if AgB, then
B is a minimal element of ,J. Hence there is no C € 7 such that A < C and C < B.

We complete the proof by showing that 7 ={A c X: ApA}. Let A € J holds.
Then A is a minimal element of 7. Hence by (4) ApA is true. This means that
TJc{AcX:ApA}. Now let ApA hold. Then by (4) A is a minimal element of
+J. Hence we have A € J. This means that {A c X: ApA}c J. From these
inclusions we get 7={A c X: ApA}.

By duality we get the following theorems.
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Theorem 5. Let (X, @) be an r-space and let T be the class of all closed subsets
of X. Then the class of all open subsets of X, ie., the class &=
{AcX:(X—-A)eJ)} satisfies the following conditions :

Q: 0,XeD
Qj: for every A =X and B € *9 there is a maximal element C of “% such that
BcCcA.

Theorem 6. Let X be a nonempty set and 9 be a class of subsets of X satisfying
2] and Q;. Then the class

T={AcX:(X-A)eD}

satistfies §2, and 2, and 9 is precisely the class of all open subsets of the r-space

(X, 0), where g is the relation on 2* defined by (4). The relation o defined on 2*

by

(5) AoB iff A is a maximal element of the class ®°% is a relation of the interior
relative to o.

Remark 3. From the above theorem it is clear that if & is a class of subsets of X
satisfying € and 2, then there is a unique r-space having 9 for the system of all
open sets.

Example 2. Let G be a universal algebra. Let & be the class that consists of all
subalgebras of G and of the empty set. We shall prove that & satisfies Q1 and Q3.

The proof of Q7 follows easily from the definition of 9. To prove £; let A be
a subset of G. The system “9 is partially ordered by the relation of inclusion <.
Since @€ 9, it is clear that 9 is nonempty. Moreover it is clear that the union of
an arbitrary chain of subalgebras of G belonging to “% is a subalgebra of G
belonging to “%. Hence by the Kuratowski—Zorn Theorem it follows that each
element B € *9 is contained in a maximal element C € *%. This means that ) is
satisfied.

Example 3. Let X be a partially ordered set and let & be the class of all convex
subsets of X (see, e.g., Fuchs [9]). Then & satisfies £ and Q5.

Example 4. Let X be a connected topological space. Let & be the class of all
connected subsets of X. Then 9 satisties 2, and €25.

In Examples 3 and 4 the proof of the properties Q and 2 is analogous to the
proof of the corresponding parts in Example 2. We recall that the proof of £,
depends largely on the use of the statement: the union of an arbitrary chain of
elements of “9 is an element of 9. But in Example 3 this statement is clear and in
Example 4 it follows from Theorem 21 of [4].

Remark 4. It is easy to see that if we consider the class & described in
Examples 2 and 3, then the intersection of an arbitrary class of elements of 9 is an
element of 9. But the class & described in Example 4 does not satisfy this
condition.
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Definition 2. Let (X, ) be an r-space. A preneighbourhood of x € X is a subset
of X of the form {x}UA, where A is an open set. By a neighbourhood of a point
x € X we mean any open subset of X containing x.

Remark 5. If (X, o) is an r-space and 9 is the class of all open subsets of X,
then by (3) 9(x) denotes for each x € X the class of all neighbourhoods of x.

As an immediate consequence of Theorem 5 and Definition 2 we have the
following

Theorem 7. Let (X, o) be an r-space and @ be the class of all open subsets of X.
Then {9D(x)}..x satisfies the following conditions:
N,) There is a point x € X such that X € D(x).
N.) If Ve D(x), then xe V.
N;) If Ve @(x) and y e V, then Ve D(y).
N.) Let A be a subset of X, let x € A and let V € 9(x) such that V < A. Then there

is a maximal element V,, in “%(x) such that Vc V,cA.
Moreover, @ ={@#}u |J @(x) holds.
xeX

Theorem 8. Let X be a nonempty set. For each x € X let 9(x) be a class of

subsets of X such that {D(x)}..x satisfies the conditions N;, N,, N5 and N, of

Theorem 7. Then the class D,= |J D(x)u{@} of the subsets of X satisfies the

xe€X

conditions §{ and Q) of Theorem 5. Moreover let (X, ¢) be the r-space
(uniquely) determined by 9, (Theorem 6). Then for every x € X the system of all
neighbourhoods of x in the r-space (X, @) is the system {D(x)}.cx, i.e., D(x)=
D,(x) for each x € X.

Proof. The proof of Q{ follows easily from the definition of &, and from N,. To
prove Q} let A be a subset of X and let V € @,, where V < A. Suppose first V# 0.

From this and from the fact that @,= |J @(x)u{#} it follows that there is an
xeX

element x € X such that Ve @(x). Then by N, there is a maximal element V,, of
A9 (x) such that V< V,, c A. It remains to be proved that there is no element V, of
9, such that V,, = V,c A. Suppose that this is not true, i.e., there is V, € @, with
V..c V,c A. Since V,€ @, and V, # 0, we see at once that there is an y € X such
that V, € @(y). But by N, we have x € V and since V c V,, then x € V,. And so by
N; V, € *%(x), which is impossible, since V,, c V, and V,, is a maximal element in
A% (x). Now let V=@. Consider two cases: ‘

1) There does not exists V,; € *9D, such that V; # @. In this case it is clear that the
empty set is the maximal element of &, contained in A.

2) There is V, €D, such that V, #@. This case has already been discussed in the
first half of the proof.
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We have shown that 9, satisfies Q] and Qj. According to Remark 3 there is
a unique r-space (X, o) having @, for the system of all open sets. Now it remains to
be shown that {@(x)},.x is the class of all neighbourhoods of the r-space (X, o),
i.e., that @(x) = D,(x) for each x € X. Let first x € X and V € D(x). Then by N, and
definition of 9, we have xe V and Ve @,. Thus Ve @,(x). If Ve @,(x), where

xeX, then Ve P, and xe V. Since Ve P, and D, = |J D(x)u{B}, then there is

xeX

a y € X such that Ve %P(y). But then Ve 9D(x) by N..

In the theorems of this chapter we have proved that an r-space can be described
in several ways:
1) by a relation o =2* X 2% sati fying R,—Rs;
2) by a relation o < 2* X 2* satisfying K,—Ko;
3) by a class I <2* satisfying Q, and Q,;
4) by a class @ = 2* satisfying Q] and Q3;
5) by a class {D(x)}.cx satisfying N,—N.,.
We have also seen that in every r-space there are always uniquely defined:
1) the class of all closed sets;
2) the class of all open sets;
3) the relation of closure;
4) the relation of the interior;
5) the class of all neighbourhoods.

If it does not cause ambiguity we often refer to the r-space as X instead of the
more proper form (X, g). We shall be explicit in cases where precision is necessary

(for example if we are considering two different relations of closure for the same set
X).

Some properti s of closures and closed sets

Theorem 9. Let there be given an r space X and let I be the class of all closed
subsets of X. Then
a) if B and C are closures of a set A < X and B+ C, then B& C and also C£ B (i.e.
(B-C)#@ and (C—B)+0);
b) if Bisa closure of aset A = X and A = C c B, then B is also a closure of C;
c) each closed subset of X has only one closure.
Proof.
a) since B and C are closures of A, then B, Ce 7. If B< C (C = B), then C(B)
cannot be a minimal element of »J, which contradicts(4);
b) if B is a closure of A, then B is a minimal element of 7. Since A = C c B then
B belongs to <7 and it is clear that B is a minimal element also of -7 ;
c) if A isclosed, then A € ,J and A is even the smallest element of ,J. Therefore
by (4) A has only one clo ure and A is the unique closure of A.
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Theorem 10. Let X be an r-space and {A,};es is a class of closed subsets of X.
Then all sets of {A,}.cs are closures of the same set iff A, is a closure of the set
N A., for each s€S.

seES

Proof. If all sets of { A, },.s are closures of [] A,, they are evidently closures of

s€ES

the same set. On the contrary, if all the sets of { A, },.s are closures of the same set

Bc X, thenby R; B¢ (ﬂ A,). According to b) of Theorem 9 each set of {A,};.s

SES

must be a closure of [ A,.
s€eS

Corollary 1. If X is an r-space, A, B<c X, A and B are closures of the same set
and A # B, then AnB cannot be closed.

Proof. By Theorem 10 A and B are closures of AnB. But by c) of Theorem 9
each closed set has only one closure. Therefore Ar1B cannot be closed.

We shall now characterize closed sets, closures and interiors of sets in terms of
neighbourhoods and preneighbourhoods.

Let X be an r-space, {D(x)}.x be the class of all neighbourhoods and & be the
class of all open subsets of X.

Theorem 11. Let X be an r-space, A =B c X and let A be open. Then A is an
interior of B iff for each x € X — A and each neighbourhood V of x containing the
preneighbourhood V,={x}UA of x we have VN (X — B)#.

Proof. By (5) A is an interior of B iff A is a maximal element of the class *9.
But this is if and only if for each open subset V of X containing {x}UA, where
xeB—A, we have Vn(X - B)#0.

Since closed sets are complements of open sets, the dual statement of
Theorem 11 also holds.

Corollary 2. Let X be an r-space, A < B < X and B is closed. Then B is a closure
of A iff VnA#@ for each x € B and each neighbourhood V of x containing the
preneighbourhood V, = {x}u(X — B) of x.

Theorem 12. Let X be an r-space and A < X. Then A is an open set iff for each
x € A and each preneighbourhood V, of x such that V,c A there is a neighbour-
hood V, of x satisfying V,c V,c A.

Proof. If A is open, then for each x € A the set A is a neighbourhood of x. This
proves one half of the theorem. To prove the other half suppose that A is not open.
Then there is an interior C of A such that C= A and C is open. Let xe A — C.
Then the set V,={x}uC is a preneighbourhood of x and we have Cc V,c A.
Since C is an interior of A, C is a maximal element of “%. Therefore for the
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preneighbourhood V, of x there is no neighbourhood V, of x such that V,c V,c
A.

As a dual consequence of Theorem 12 we have the following corollary.

Corollary 3. Let X be an r-space and B c X. Then B is a closed set iff for each
x¢B and each preneighbourhood V, of x such that V,nB=@ there is
a neighbourhood V- of x such that V,c V, and V,nB =0
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