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TOTAL DOMATIC NUMBER
AND DEGREES OF VERTICES OF A GRAPH

BOHDAN ZELINKA

In [3] the interconnections between the domatic number of a graph and the
degrees of its vertices were studied. Here we shall transfer those results to the
total domatic number. All considered graphs will be undirected graphs without
loops and multiple edges; they may be finite or infinite.

The domatic number of a graph was introduced by E. J. Cockayne and
S. T. Hedetniemi [1], the total domatic number by the same authors and
R. Dawes [2].

A subset D of the vertex set V(G) of an undirected graph G is called
dominating (or total dominating) if for each ve V(G) — D (or each xe V(G)
respectively) there exists a vertex y € D adjacent to x. A partition V(G) is called
a domatic (or totally domatic) partition of V(G) if all of its classes are dominat-
ing (or total dominating respectively) sets in G. The supremum of cardinalities
of all domatic (or total domatic) partitions of G is called the domatic (or total
domatic respectively) number of G and denoted by d(G) (or d,(G) respectively).
The domatic number is well-defined for every non-empty graph, the total
domatic number for every non-empty graph without isolated vertices.

The minimum degree of a vertex of G will be denoted by 6(G). The quoted
authors have proved that d(G) < 6(G) + 1, d,(G) = 3(G) for every graph G.
We shall prove results for d,(G) which are analogous to the results from [3]
for d(G).

Theorem 1. For each non-zero cardinal number a there exist a graph G in which
each vertex has the degree at least a and whose total domatic number is 1. If a is
finite, then there exist both a finite graph with this property and an infinite one.

Proof. We shall use a graph which is almost the same as that in [3].
Choose a cardinal number b > 2a. Let 4 be a set of the cardinality b, let B be
the set of all subsets of 4 which have the cardinality a. The vertex set of G will
be AU B. A vertex ue A will be adjacent to a vertex ve B in G if and only if v
is a set which contains the vertex u. No two vertices of 4 and no two vertices
of B will be adjacent. Evidently the degree of any vertex of B is a and the degree
of any vertex of A cannot be less than a.



Suppose that d,(G) = 2; then there exists a totally domatic partition {D,, D,}
of G. From the definition it is clear that a totally dominating set cannot be
independent; this implies that none of the sets D,, D, is a subset of 4 or of B.
The sets A, =AnD, Ay,=AnD,, B,=BnD,, B,=Bn D, are non-empty
and pairwise disjoint. As |4| = b > 2a, at least one of the sets A,, 4, has the
cardinality greater than a; without loss of generality let |4,| > a. Then there
exists a subset C of A4, of the cardinality a. The set C is a vertex of B. As the
set C contains no vertex of A,, the vertex C is adjacent to no vertex of 4,.
As B is independent, C is not adjacent either to a vertex of B,; thus C is not
adjacent to a vertex of D, and D, is not a totally dominating set in G, which is
a contradiction. Hence d,(G) = 1.

If a is finite, then b may be chosen as a finite number or a transfinite cardinal
number. This implies that the required graph may be either finite, or infinite.

Now we shall prove a theorem giving a lower bound for &,(G) in terms of
0(G) and the number » of vertices.

Theorem 2. Let G be a finite undirected graph with n vertices, let 6(G) be the
minimum of degrees of vertices of G. Then

d,(G) Z [n/(n — 6(G) + 1]

and each subset of V(G) with n — 6(G) + 1 vertices is a totally dominating set
in G.

Proof. Consider the complement G of G. A subset D of the vertex set
V(G) of G is a totally dominating set in G if for each xe V(G) there exists a
vertex y which is not adjacent to x in G. If some vertex has the degree r in G,
it has the degree n — r — 1 in G. Hence the maximum of degrees of vertices
of Gis n — 8(G) — 1. Let D be a subset of V(G) having at least n — §(G) + 1
vertices. Then each vertex xe V(G) can be adjacent to at most n — (G) — 1
vertices of D in G; even if xe D, then there exists a vertex ye D which is not
adjacent to x in G and thus is adjacent to x in G. This implies that each subset
of V(G) with at least n — 6(G) + 1 vertices is a totally dominating set in G.
Consider a partition of V(G) into classes having n — 6(G) + 1 vertices each,
with the exception of at most one which would have more vertices. Evidently
there exists such a partition having [n/(n — 6(G) + 1)] classes; this is a totally
domatic partition. Hence d,(G) = [n/(n — 6(G) + 1)].

Theorem 3. Let G be an undirected graph whose vertex set has the infinite
cardinality a, let G be its complement. If the supremum of degrees of vertices
of G is less than a, then d(G) = a.

Proof. In [3] a quite analogous theorem for d(G) instead of d,(G) is pro-
ved. In [4] it is proved that if d(G) is infinite, then d,(G) = d(G). This implies the
assertion.
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The bound from Theorem 2 is probably not the best. For 6(G) =n — 3 we
can express the following theorem.

Theorem 4. Let G be a finite undirected graph with n vertices, where n = 9, let
0(G) = n — 3. Then d(G) = [n/2].

Remark. Here [r/2] denotes the greatest integer less than or equal to n/2
This is the maximum value of d,(G) at the given n (see [4]).

Proof. Consider the complement G of G. In G the maximum degree of a
vertex is 2. Therefore any connected component of G is either a circuit, or a path,
or an isolated vertex. Let G, be the subgraph of G consisting of all connected
components which are paths or isolated vertices. If G, has at least three vertices,
then it is possible to add some edges to G (i.e. to delete some edges from G) in
such a way that G, becomes a circuit. The graph obtained from G (or of G) in
this way will be denoted by G* (or G* respectively). If G, has at most two
vertices, then. we put G* = G, G* = G. The graph G* is a spanning subgraph
of G; if d,(G*) = [n/2], then evidently also d,(G) = [n/2].

Thus we shall prove that d,(G*) = [n/2]. If a totally domatic partition of G*
has [n/2] classes and n is even, then each class consists of two vertices (evidently
no one-element set can be totally dominating); if n is odd, then one has three
vertices and all the others two vertices. A two-element subset of V(G*) is totally
dominating in G*, either if its elements belong to distinct connected components
of G*, or if they belong to the same connected component of G* and their
distance in it is at least 3. (If this distance is 1, then they are not adjacent in G*;
if it is 2, then there exists a vertex non-adjacent to both of them in G.) In G*
there is at most one connected component having one or two vertices, while all
the others are circuits. We shall construct a totally domatic partition 2 of G
with |2| = |n/2]. Let G** be the subgraph of G* consisting of all connected
components being circuits. In each connected component of G* with an odd
number of vertices choose one vertex; let the set of chosen vertices be M.
Evidently |M| = |V(G)| (mod 2). Choose a partition of M into sets such that
either anyone has two vertices, or one has three and any other has two vertices.
All these sets will belong to 2. Now in each circuit of the length £ = 6 we may
choose [k/2] pairs of vertices having the distance [k/2]. Thus if there are no
circuits in G** of the length less than 6, the totally domatic partition of G** is
ready. Suppose that there are circuits Cy, ..., C, of G** of lengths 4 or 5 for
p = 2. In anyone of them of length 5 there is one vertex of M. In each C; denote
the vertices not belonging to M by u|, uj, uj, ui. Then we take the pairs {ui, u * '},
{ui,ui* "} foralli = 1, ..., p, taking i + 1 modulo p, and put them into 2. Now
suppose that there are circuits Cj, ..., C; of the length 3 for ¢ = 2. In anyone
of them one vertex is in M. In each C; we denote the vertices not belonging
to M by v}, vl and the pairs {v}, v * '} will be added to 2. Then the case remains
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when there is exactly one circuit of the length 3, or exactly one circuit of the
length 4 or 5. Distinguish particular subcases:

(a) One circuit C§ of the length 3 and one circuit C; of the length 4.

From M omit the vertex belonging to C3 and add a vertex of C}. Then choose
a one-to-one correspondence between the vertices of C; and the vertices of Cj
not belonging to M. Add the pairs of corresponding vertices to 2.

(b) One circuit C; of the length 3 and one circuit C¢ of the length 5.

Choose a one-to-one correspondence between the vertices of C3 not belong-
ing to M and two vertices of C% not belonging to M and put pairs of correspond-
ing vertices into 2. Now two vertices of Cs remain; thus we have not a totally
domatic partition of G**. But as n = 9, there are further vertices of G*. If n = 9,
the ninth vertex is isolated in G* and we put the set consisting of it and of the
mentioned two vertices into 2. If n = 10, then we add to 2 two pairs, each
consisting of one vertex of C% and one vertex not in C5u C%. In the case n = 11
there would be two triangles in G*, which would not be this case. If n > 12, then
there is at least one set in 2 consisting of vertices outside C;u C5; omit it
from 2 and add two pairs, each of which consists of one vertex of this pair and
one remaining vertex of Cs. In all the cases we obtain a totally domatic partition
of G*.

(c) Exactly one circuit C” of the length less than 6.

There exists at least one circuit of the length at least 6 and thus at least three
pairs of vertices outside C” which belong to 2. Choose one or two of them
(according to the length of C”), omit them from 2 and choose a one-to-one
correspondence between vertices of C” not belonging to M and vertices of the
chosen pairs. Put the pairs of corresponding vertices to 9.

Thus we have constructed a totally domatic partition of G** (in the case (b)
even of G*). Now there are at most two vertices of G* which are not in G**.
If there is none, then G** = G* and we are ready. If there is one such vertex v
and n is odd, we add this vertex (as the third) to an arbitrary pair from 2; if n
is even, then from the (unique) three-element set being in 2 we omit one vertex
and to & we add the pair consisting of this vertex and v. If there are two such
vertices v,, v,, we omit one pair from 2 and add two pairs, each consisting of
one of the vertices v,, v, and one vertex of the omitted pair. In all the cases we
obtain a totally domatic partition 2 of G* and also of G.

Theorem 5. Let n be an integer, 3 < n < 8. Then there exists a graph G
with n vertices for which 6(G) = n — 3 and d,(G) < [n/2].

Proof. For n =3 it is the graph consisting of three isolated vertices. For
n = 4 it is the graph consisting of two vertex-disjoint paths of the length 1. For
n = S it is the circuit of the length 5. For n = 6 it is the wheel with six vertices.
For n = 7 it is obtained from this wheel by adding one new vertex and joining
it by edges with all vertices distinct from the centre. For n = 8 it is the graph
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obtained from the preceding one by adding a new vertex and joining it by edges
with all vertices which are not centres.
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TOTAJIBHO JOMATHUYECKOE YUHUCJIO U CTEINNEHU BEPIIMH 'PAD®A
Bohdan Zelinka
Pe3rome
ToTajbHO NOMHHAHTHBIM Ha3bIBaeTCsd MOAMHOXecTBO D MHoxectBa V(G) BepumH rpada G,
obnaparouiee TeM CBOHCTBOM, YTO A KaxAoro x € V(G) cyuecTByeT BeplInHa y€ D, CMeXHas
¢ BepLIMHO# x. MakcuMaJibHOE YUCII0 KJ1accoB pa3bueHus MHoxecTBa V(G), Bce Ki1acchl KOTOPOro
ABJAIOTCA TOTAJIBHO JOMMHAHTHBIMH MHOXECTBAMHM B G, Ha3bIBAaETCS TOTAIBHO JOMATHYECKHM

uucsioM rpada G u obosnavaercs yepes d,(G). Usyuarorcs otHouenus mexay d,(G) u CTeneHsIMH
BeplunH rpada G.
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