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ON THE ASYMPTOTIC BEHAVIOUR
OF THE SOLUTIONS OF NONLINEAR
DELAY DIFFERENTIAL SYSTEM

JAN FUTAK

L

Let R denote the n — dimensional vector space. Let P(t), Q(t), R(t),be n X n
regular matrices such that P(t), Q(t) e C(J=[t,, ©), R"), and R(t) € C(( — », x),
R™).

We consider a nonlinear delay differential system of the form

(1) o 2()=P@f(, Q(1)z(t), R[A(N)]z[R(1)]),

where z, f are n — dimensional vectors.

Throughout the paper we assume that f(t, u, v)e C(D = JX R" X R", R") and
h(t)e C(J, (— =, »)), h(t)<t. The symbol || - || denotes come convenient norm of
vector or matrix.

The fundamental initial problem is formulated as follows : Let @ be the set of all
continuous vector valued function ¢(t) defined on the initial set E,, where

E,=[inf h(1), to], if inf h(t)> —o, and E,=(—, t]

otherwise. It is to find a solution z(¢) (a vector valued function) of the system (1) on
the interval J satisfying the initial conditions

(2 2(t) = @(to), z[h(D]=@[h(D], h()<t, @e®.

The asymptotic behaviour of solution of systems of ordinary nonlinear differen-
tial equations is treated in many papers by various authors, as Brauer and Wong
[1], Trench [10], Hallam and Heidel [5], Hosam El—Din [6], Svec [8] and
others. The asymptotic behaviour of functional differential equations was studied
by Svec [9], Kato [7], and others. The existence and boundedness of the solutions
of nonlinear delay differential system is studied in [4].

In this paper we will investigate asymptotic behaviour of the solutions of (1).
Further, we will study asymptotic properties of solutions of perturbed nonlinear
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delay differential system with respect to the behaviour of solutions of the
unperturbed linear svstem of ordinary differential equations.

Denote by Z the set of all solutions z(¢) of all initial problems (1), (2).

We will say that a solution z € Z has the property (V), if

(V) 2(t)>c as tox,

holds, where ¢ e R" is a constant vector.

Theorem 1. Suppose that
(1) wy(r), wy(r)e C([0, =), (0, ©)) are nondecreasing and bounded functions,
(it) Yi(t), po(t)e C(J, [0, »)) and

(3) | w@dr<e [Ty di<e,

(in) IPOIf(r, (1), R[A(D]v) = f(r, Q(1)ai, R[A(1)]0)]]| <
<yu(Do(llu=all)+ya(w]v = 5]l), on D,

(iv) fJQHP(t)f(t, 0,0)|| dt<K <.

Then every solution z € Z is defined on J and for this solution there exists
a constant vector ¢ € R" such that the property (V) holds. Conversely, for every
constant vector ¢ € R" there exists a solution z € Z on J such that (V) holds.
Proof. a) Every solution z € Z can be written in the form

@) )= z(t(,)+£ P(s)f(s, Q(s)z(s), R[A(s)]2[h(s)]) ds, teJ.

From the assumptions of theorem and from (4) we obtain:

Jzl<lal+ [ IPE)G, Q)z(s), RIElhDI] ds<
<l @I+ [ PO, Q6)s), RIMG IR =15, 0, 0)+
+15,0 Ol ds =gl + [ TG ol + ol ds +

+J" I1P(s)f(s, 0, 0]| ds.

Using (3) and (iv), from the last inequality it follows that z(¢) is bounded on J.
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This guarantees the existence of ze Z on J and

[ P()f(t, Q((1)2(¢), R[A(D)]2[A(D)]) di <.

Therefore from (4) it follows that z(t)— ¢ as t— . Hence (V) holds.

b) Let ce R" be a constant vector. Let G be the set of all vector valued
functions g(¢) continuous on E,uJ and bounded in the norm || - ||.

Define, on the set G, a norm by

la@)ll-= sue llg@l.

The set G endowed with the norm || - || is a Banach space.
Denote

F={g(0); llg()|-<A, te E,uI} =G,

where
A=|c||+ K+ K.+ K and K11>w1(a)f Pi(1) dt, K2>(uz(a)f ya(t) dt,

for every real n}lmber a=0.
Define an operator T on F by the equations

) (T ©=c=[ PO)fs. Q)g(s), RISl ds, <,
(T9) (== [ P&)(5, Q6)g(s), RIAG)Iglh(sI) s, t€,
where g[h(t)]=q[h(?)], h(t)<to.
It is evident that F is a convex closed set.

We show that TFc F.
If te E,, then

I(T) @< llell+ [ NP5, Q5)a(s), RUk(sNglhDI] ds<
<llell+ [ i) onlla@l+viaxlglh(s)lh ds + [ 1P, 0, 0l ds<

<|lel +(u1(A)f wi(s) ds+w2(x)f a(s) ds + K<||c|| + Ki+ Ko+ K<A.

Since
lell+ [ IPG)(s. Q@g(s), Rik(sYalhDI| ds <|lel|+
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+ﬁn”P(S)f(sa Q(s)g(s), R[h(s)g[h(s)))]| ds, fortel

the same reasoning as above gives ||(Tg) (¢)|| <A. Therefore for each t € E,uJ we
have ||(Tg) (t)||-<A.

Further, we show that T is continuous on F. Let {g.}--, be a sequence in F such

that || g. — g||-—0 as n— . Since F is a closed set, it follows that g € F and for t € J
we have

1(Tan) )= (Ta) Ol = || P&)f(s. Qs)g(6). RUAG)gl(s)D ds =
= | PO, Q)9 (5). U5 Ngu(5)) dl <
<[ IP@IfGs. Q5)(s), RIKIgTHE)
= (s, Q()gn(s). RIA1g. DI ds = " U.5) ds.

From the last inequality it follows

1(T30) (0= (Tg) (O =sup (Tyn) (0= (Tg) Ol <sup { |~ V(o) a].

Since U.(s)—0, n— . and U,(s)<y1(s)(21) + y(s)w2(21), using the Lebes-
gue Dominated Convergence Theorem we obtain

I(Tg.) (t) = (Tg) (O)||-—0 as n—.

But this means that T is continuous on F.

Now, from the fact that TF < F if follows that the functions of TF are uniformly

bounded (in the norm). If t,, t, € J, t, < t,, are two arbitrary points, then we have the
following estimate for T:

1(Tg) (1= (Tg) (IS0, [ “wn(s) ds+ 0,2 [ ") s
n f | P(s)f(s, 0, 0))| ds.

The right hand side of this inequality does not depend on g and therefore the set
TF of functions is equicontinuous.
The Schauder Fixed Point Theorem implies that operator T has fixed point

g € F, which means that g is a solution of the equations (5) and also a solution of
the initial problem (1), (2) and
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(6) g=z()=c— j wP(s)f(s, Q(s)3(s), R[h(s)]g[h(s)]) ds, teld,

§=20)=00)=c~ [ P()f(s, Q)g(s), RGN ds, 1eE,,

From (6) it follows that z(t)—c as t— . This completes the proof.
Let @ c @ denote the set of all initial functions ¢ € ® having bounded norm -l
on E,. Let Z = Z be a set of all solutions z € Z corresponding to ¢ € ®. It is evident

that if inf h(f)> — o, then d=d and Z=2Z.

Theorem 2. Suppose that
(i) . P1i(2), Ya(t) € C(J, [0, )

and

f wl(t) dt=K1<°°, I 'lpz(t) dt=K2<w, K1+K2<1,

(if) IP(OUf(t, Q(t)u, R[A()]v) = f(t, Q(1)az, R[A(1)]D)][|<
<yu(Ollu—all+y()]lv-5]| onD,

and (iv) of Theorem 1 hold.

Then for every @ € @ there exists a unique solution z € Z defined on J and for this
solution there exists a unique constant vector ¢ € R" such that (V) holds and,
conversely, for every constant vector c € R" there exists a unique solution z € Z on
J and a unique @ € ® such that (V) holds.

Proof. Let G equipeed with the norm || - ||- have the same meaning as in the
proof of Theorem 1. Denote 9(g:, g2) = ||g1— g2||- the metrics of G.

a) (The proof of this part is similar as in [9]). Let ¢ € ® be given. Define on G
an operator S by

™ (S9) ()=(0). teE,
(59) ()= @)+ [ P65, Q(5)g(s). RIAGNglh(s)) s, te,

where g[h(t)]=¢@[h(2)], for h(t)<to.
From the assumptions of the theorem and from (7), for teJ we get

I[P, Q@) RIKOIUHOD dll< [ w.() o)l de+

+ [0 gt de+ [ 1P, 0, 0V de<lg]l-Ki + [lg]Re+ K.
Hence the operator S is defined on G and SG < G.
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Let g1, g-€ G. Then we have

1S90 (= (S 011 = [ IPCOIfCE. Q). RO () -
=t Q)0 RINON: OV = | 4(0) (0= g0 i+
+ [ 00 g1 = bl de< lan() = (ol [ ity dr+

+ a1 =g IO [ vs(e) de=llgu— gl (Ko + Kol

From the last inequality we obtain
0(Sg1, Sg2) <[Ki+ Kalo(gs, g2).-

Thus the operator S is contractive. Using the Banach Fixed Point Theorem we
obtain the existence of a unique solution § € G such that

® D=3 =), teE,,
20=30= () + [ POIf(s Q636 RGN s, te.

The solution 7(t) is also the solution of initial problem (1), (2) on J, i.e. 7 € Z and
it is uniquely determined. From the equations (8) it follows that there is a unique
constant vector ¢ € R" such that Z(t)—c as t— . Therefore (V) holds.

b) Let c e R" be a constant vector. Define on G an operator T by equations (5)
of Theorem 1.

Similarly as in case a), from the assumptions of the theorem it follows that
TGc G and

I(Tg:) (1) = (Tgo) (|- <[Ki + K2) |g: = g2ll-, 91, 92€G.

Thus T is contractive on G and therefore there exists a unique element § € G such
that

0= (0= 0(0)=c= [ PO(s. QW)(s), RIS s, teE,

20=3(0)=c= [ PG5, Q0)(), RIKEIGAG) ds, e,

From the last equations it follows that (V) holds. This completes the proof.
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In this section, we will consider two systems

9) y'(O=A@)y()+f(t, y(1), y[h(D]),
and
(10) x'()=A()x(1),

where x, y are n — dimensional vectors and f is defined before. We assume hat
A(t)e C(J, R") is an n X n matix.
Let every solution y(¢) of (9) satisfy the initial conditions

(11) y(to) = @(to), y[h()]=q[h(1)], h(t)<t,, foreachged,

where @ is defined before.
Denote by Y the set of all solutions y(¢) of all initial problems (9), (11).
We will say that two systems (9) and (10) are asymptotically equivalent if for
each solution y e Y defined on J there exists a solution x(t) of (10) such that

(12) ly(t)=x()| -0 ast—,

and conversely, for each solution x(t) of (10) there exists a solution y € Y on J such
that (12) holds.

In particular, if the system (10) is of the form x'(t) =0 and (12) holds, we will say
that the system (9) has an asymptotical equilibrium (cf. [2]).

Let X(¢) be a fundamental matrix for system (10) such that X(t)=I, where I
denotes the identity matrix. Denote by X~ '(¢) the inverse matrix to X(t).

Denote:
Q(t)=X(t), P(t)=X"'(t), forteJand

_[(X(1), tel,
R(t)_{l, teE,.

Theorem 3. Assume that for the matrices P, Q, R and the function f from (9)
the hypotheses of Theorem 1 hold. Then every solution y € Y is defined on J and
for this solution there exists a constant vector c € R" such that

(13) y()=R(0)z(1), z(t)—c, >,

holds. Conversely, for every constant vector ¢ € R" there exists a solution y € Y on
J such that (13) holds.

Proof. By substitution ([3], pp. 96)
(14) y()=R(1)z(1),
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we can transform every initial problem (9), (11) to the initial problem (1), (2) with
the property: z(t) = R7'(to)p(to) = @(to) and z[h(t)] = Ig[h(1)] = @[h(1)], for
h(t)<t. Relationship between sets Y, Z is determined by (14).

From Theorem 1 and from (14) it follows that every solution y € Y is defined on

J and for this solution there exists a constant vector ¢ € R” such that (13) holds, and
conversely.

Theorem 4. Assume that for the matrices P, Q, R and the function f from (9)
the hypotheses of Theorem 2 hold. Then for every ¢ e ® there exists a unique
constant vector ¢ € R" and solution y € Y defined on J such that (14) holds and,
conversely, for every constant vector c € R" there exists a unique ¢ e @ and
a solution y € Y on J such that (14) holds.

- The proof follows from Theorem 2 similarly, as in Theorem 3.

Theorem 3 implies the following corollaries.

Corollary 1. Assume that the hypotheses of Theorem 3 are satisfied and let all
solutions of the system (10) be bounded on J. Then the systems (9) and (10) are
asymptotically equivalent.

Proof. Since all solution x(t) of (10) are bounded on J, then for the fundamen-
. tal matrix X_(t) of system (10) we have

IX(OHl|<M, tel,
where M is a suitable constant.
We know that if a is a constant vector then the vector valued function
x(t)=X(t)a is a solution of (10).
Let y e Y be a solution of (9) on J. Theorem 3 implies that for the solution y
there exists a constant vector c such that for ¢t € J (13) holds. Consider the solution
x(¢) of (10) in the form x(t)= X(t)c. Then we get

(15) ly(®) = x| =X (O z2(t) = XOcl| <[ XD [l2() -l <
<M||z(t)—c|]|>0 as t—x.
Conversely, for each solution x(t) of (10) there exists a constant vector ¢ such

that x(¢)= X(t)c t € J, and for c there exists y € Y such that (13) holds. Therefore
also (15) holds.

Corollary 2. Assume that the hypotheses of Theorem 3 are satisfied and,
furthermore, let the system (10) have an asymptotical equilibrium. Then the
system (9) has an asymptotical equilibrium.

Proof. Since the system (10) has an asymptotical equilibrium, we can find
a fundamental matrix X(t) such that X(¢t)— I as t— ». Then from (13) we obtain

y(t)-Ic=c, t—ox,
and consequently ||y(t) —c|| =0, t—=.
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Corollary 3. Assume that the hypotheses of Theorem 3 are satisfied and let the
solution x =0 of (10) be exponentially asymptotically stable. Then for every
solution y e Y we have

y(t)—>0 as t—>».

Proof. Since the solution x =0 of (10) is exponentially asymptotically stable
there exists .constants M >0, m >0 such that

X ()| <Me ™, (e
From (13) for teJ we get

Iy < IX(0l} l2()] < Me™ || z()]|

and it follows that y(t)—0 as t € .
Remark. If the solution x(t)=0 of (10) is asymptotically stable, then the
assertion of Corollary 3 is true.
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OB ACUMIMTOTUYECKOM MOBEOEHWU PEUIEHUN CUCTEMbI
JIMGOPEPEHUMAIILHBIX YPABHEHHUI C 3AMA3IOBIBAIOUIUM APTYMEHTOM

An dyTax

Pesome

B pu(')o'rc NPUBCAEHBI AOCTATOUHDBIE YCIIOBUA AN] TOIrO, YTOOb! KaX10¢ peuIeHue HAYaNnbHOU 3a/1a'm
(1 2 (=P()f(t, Q(1)z(1), R[h(N)]).
(2) ()=t 2[h(O)=qlh(D]). h(t)<tu,

CVILCCTROBATO HA J = [fo. %) # K 3TOMY PCUICHHIO CYLCCTBOBAT NOCTOSHHDBIA BEKTOP ¢ € R” Tako#, uto
2(t)— ¢ npn 1— =%, U HaoOOPOT.

Boace TOro, Ha OCHOBAHMM 3THX PC3YJILTATOB MOKA3aHb! YCIOBMS JUIS ACUMOTOTHUYCCKOH 3K-
BHBaJICHTHOCTH cuteM (9), (10).
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