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Math. Slovaca 41 , 1991. No 3.. 315-330 

MATCHING WITTS LOCALLY AND GLOBALLY 
KAZIMIERZ SZYMICZEK 

ABSTRACT . Reciprocity- equivalence of global fields is a set of local conditions 
implying the Witt equivalence of global fields, that is, the existence of an iso­
morphism of their Witt rings of symmetric bilinear forms. This paper proves the 
conjecture that Witt equivalence of global fields actually coincides with reciprocity 
equivalence. 

Introduction 

The Witt ring of non-degenerate symmetric bilinear forms over a field F is an 
important invariant of the field F. Thus it is natural to ask if two fields F and E 
are Witt equivalent, i.e., if their Witt rings are isomorphic. We will be interested 
in the classical situation when F and E are global fields (algebraic number 
and function fields). Although the theory of quadratic forms over global fields is 
well developed, with its central pillar the celebrated Hasse-Minkowski Principle, 
the question of Witt equivalence of global fields has been studied only for a few 
years. At the Chlebske 1983 conference we asked if there are Witt equivalent but 
non-isomorphic number fields ([12], p. 99). This question was answered in 1985 
by A. C z o g a l a , and independently by R. P e r 1 i s and the author. It turned 
out that there are examples of infinitely many distinct quadratic number fields 
with isomorphic Witt rings. An analysis of those examples led to the notion 
of reciprocity equivalence of global fields, which is a set of local conditions on 
two global fields implying their Witt equivalence. Reciprocity equivalence is a 
property of an independent interest and its ramifications ("tame" and "wild") 
attracted the attention of several authors (cf. [3], [4], [5], [10]). 

The present paper gives the proof that reciprocity equivalence and Witt 
equivalence actually coincide. We mention that, in the meantime, another proof 
has been found and will appear in [11]. It is based on an analysis of the 2-torsion 
in the Brauer group of a global field. 

Section 1 presents reciprocity equivalence and explains its relation to match­
ing Witts locally, that is, to matching Witt rings of completions of the two global 
fields. Sections 2 and 3 contain some preliminary material on valuations and rigid 

A M S S u b j e c t C l a s s i f i c a t i o n (1985): Primary 11E12, 11E81. Secondary 11S75 
K e y w o r d s : Witt equivalence, Reciprocity equivalence, Global field, Harrison map 
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and basic elements in general fields. We apply these results to construct in sec­
tion 4 an almost reciprocity equivalence of two Witt equivalent global fields. The 
construction in section 4 uses a valuation-theoretic result of R. W a r e [14] (see 
[1] for a more general version) relating some rigidity properties of the field — 
well preserved under Witt equivalence — to the existence of a valuation of the 
field. The arguments in sections 5 and 6 are due to R. P e r 1 i s . The concluding 
section 7 gives corollaries and mentions some other relevant results. 

Throughout the paper we consider only global fields of characteristic different 
from 2. Although our main question on Witt equivalence remains meaningful for 
function fields of characteristic 2, it has a simple and definitive answer: any two 
global function fields of characteristic 2 are Witt equivalent, and none of them 
is Witt equivalent to any global field of characteristic ^ 2 . This can be easily 
seen by combining [2], Prop. (2.10) and [8], Thm. (5.10), p. 82 (cf. [13], Thm. 
(1.1)). 

We use standard notation of the algebraic theory of quadratic forms (see [7]). 
For a quadratic form (f> over a field F, the set of elements of F represented by 
<f> is written Dp(</>). Here F is the multiplicative group of non-zero elements of 
F, and F2 will denote the subgroup of squares. We often use the same symbol 
to denote an element of F and the corresponding square class, i.e., an element 
of F/F2 . 

A c k n o w l e d g m e n t . I want to thank Robert P e r 1 i s who has kindly 
permitted me to incorporate his results in sections 5 and 6. 

1. Reciprocity equivalence 

The following definition is due to P. E. C o n n e r . Two global fields F and 
E are said to be reciprocity equivalent when there is a bijective map 

T: fi(F)->ft(£) (1.0.1) 

between the sets of all primes of F and E (including infinite primes, if any), 
and a group isomorphism 

t:F/F2 -+E/E2 (1.0.2) 

preserving Hilbert symbols: 

(a,b)P -(ta,tb)Tp 

for all P in Q(F) and all a, b in F/F2. 
The pair of maps ( t ,T) is said to be a reciprocity equivalence between F and 
E. The importance of reciprocity equivalence between global fields stems from 
the following fact: 

316 



Theorem (1.1) . Let F and E be global fields. Then F and E are Witt 
equivalent if and only if F and E are reciprocity equivalent. 

We will prove the sufficiency below (Prop. (1.3)) and the proof of necessity 
will occupy sections 2 through 6. The following result is well known and will be 
used several times to prove Witt equivalence of fields. 

Harrison's Criterion (1.2) . Let F and E be arbitrary fields. The follow­
ing statements are equivalent. 

(i) F and E are Witt equivalent (i.e., the Witt rings WF and WE are 
isomorphic). 

(ii) There is a ring isomorphism i: WF —• WE sending 1-dimensional 
forms over F onto 1-dimensional forms over E. 

(iii) There is a group isomorphism (1.0.2) such that t(—1) = —1 and 
1 G DF(O,&) if and only if I £ DE(ta,tb) for any a,b € F. 

(iv) There is a group isomorphism (1.0.2) such that £( — 1) = —1 and 
t(DF(ai,...,an)) = D£(*a i , . . . , *a n ) 

for any quadratic form (a\,... ,an) over F. 

P r o o f . H a r r i s o n [6], p.21 (see also [11]). Recall that in this paper "ar­
bitrary field" means "arbitrary field of characteristic ^ 2" . Harrison's Criterion 
is also valid for fields of characteristic 2; for this see [2], Thm. (2.4). 

In the sequel we call a map t satisfying (1.2)(iii), a Harrison map. Also, a ring 
isomorphism i satisfying (1.2)(ii) is said to be a strong Witt ring isomorphism. 

Propos i t i on (1 .3 ) . Let F and E be global fields. If F and E are reci­
procity equivalent, then F and E are Witt equivalent. 

P r o o f . Let (t,T) be a reciprocity equivalence between F and E. Then 
the computation 

(tx,t(-l))Tp = (x,-l)P = (x,x)P = (tx,tx)Tp = (tx,-l)Tp 

and non-degeneracy of the Hilbert symbol imply that t(—1) = — 1 . Also (a,b)p = 
(ta,tb)TP means that 1 G DFP(G>, b) iff 1 G DETP(ta,tb), where Fp and ETP 

are completions of F and E at P and TP, resp. By the Hasse Principle, 
1 G DE(a,6) iff 1 G DE(ta,tb). Thus t is a Harrison map and F and E are 
Witt equivalent, by (1.2). 

Proposit ion (1.4) . Let F and E be global fields and let t and T be a 
group isomorphism (1.0.2) and a bijective map (1.0.1), resp. The following are 
equivalent. 

(i) (t,T) is a reciprocity equivalence between F and E. 
(ii) For every prime P in £l(F), the group isomorphism t induces an 

isomorphism of local Witt rings WFp and WETP . 
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P r o o f . This is proved in [11]. We omit the proof since the result will not 
be needed in the proof of Theorem (1.1). We state (1.4) mainly to motivate our 
point of view that reciprocity equivalence means matching Witts locally. 

Proposit ion (1.5) . Let F and E be algebraic number fields of degrees n 
and m over the rational field Q , resp. If F and E are reciprocity equivalent, 
then n = m . 

P r o o f . If (t, T) is a reciprocity equivalence between F and E, then, by 
Prop. (1.4), T sends infinite real (complex) primes of F onto infinite real (com­
plex) primes of E. The result follows, since then 

n = r\(F) + 2r 2(F) = r\(E) + 2r2(F;) = m, 

where r\ and 2r2 are the numbers of real and complex primes of the field, 
respectively. 

2. Some valuation theory 

Let F be an arbitrary field of characteristic ^ 2. We assume that v is 
a discrete valuation on F, and A, M, F, Fv are the valuation ring of v, the 
maximal ideal of A, the residue class field A/M and the completion of F with 
respect to v, respectively. We write tv and 9V for the natural morphisms 

tv: F/F2 -* Fv/Fl and 0V: WF -> WFV. 

Lemma (2.1) . (1) tv and 8V are surjective maps. 
(2) Ker#v is generated as an ideal by the forms (1, —a), where a G FTlF"2 . 
(3) F f l F 2 = ( 1 + 4 M ) - F 2 . 
(4) [ F : ( 1 + 4 M ) . F 2 ] = [FV:F2]_L 

(5) [ F : ( l + M ) - F 2 ] = 2 iff F = F*. 

P r o o f . (1) Surjectivity of tv is a familiar consequence of the Local Square 
Theorem (cf. [7], p. 160). Since the Witt ring is generated by 1-dimensional 
forms, the surjectivity of 0V follows from that of tv . 
(2) Let <j> ^ 0 be an anisotropic form in Ker 6V . Then dim </> > 2 and we may 
assume that 1 E DF(<j>). Thus if (f> =* (1) 1_ 0 ' , then - 1 G DFv(<f>'). Choose 
a representation —1 = (j)'(X\,... ,Xk) with X{ in Fv and then pick up X{ in 
F close enough to X{. Then — a := <j)'(x\,... ,£*) is close to — 1, hence in the 
same square class, i.e., —a G —F2 H DF((f>'). It follows that <j) = (1, —a) ± <f>" , 
where a G F PI F 2 , and now induction completes the proof. 
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(3) Let Mv := {x G Fv: v(x) > 0} and Uv := {x G Fv: v(x) = 0 } . Then 
1 + AMV C U2 , by the Local Square Theorem, and 

(1 + 4M) - F 2 C F n (1 + 4MV) • F 2 C F n U2 • F2 = F n F 2 . 

,Now let x G F n F 2 . Then v(x) = 0 (mod 2) and, up to a square in F , we 
may assume that x is a unit. Now x = y2 with y G Uv. Pick up a G F such 
that y = a (mod 4 M ) . Then v(a) = 0 and x = y2 = a2 (mod 4 M ) . Hence, for 
some m G M , 

x = a2 + 4m = a 2 ( l + 4ma" 2 ) G (1 + 4M) • F 2 . 

(4) Using (3) and (4), we have 

[F: (1 + 4 M ) • F 2] = [F: F n F2] = [F • F 2 : F2] = [Fv : F2]. 

(5) Let U := {x G F : v(x) = 0} be the group of units in F . Observe that 
(1 + M ) - F 2 C U - F 2 and [F: U• F2] = [v~\Z): v"1(2Z)] = 2. Hence [F: (1 + 
M) • F2] = 2 iff (1 + M) • F 2 = U • F2 iff every unit in F becomes a square in 
the residue class field F iff F = F . 

R e m a r k (2.2). If v is non-dyadic (i.e., if char F ^ 2) , then 4M = M , and 
so F n F 2 = (1 + M) • F 2 in this case. 

L e m m a (2.3) . Let v and w be two discrete valuations of the field F. 
Let M and N be the maximal ideals of their valuation rings in F and let 
0V: WF —• WFV and 6W: WF —• WFW be the natural morphisms. 

(1) If.(I + 4M) • F 2 C (1 + 4iV) • F 2 , then v = w. 
(2) If Kev0v C Ker6w, then v = w. 

P r o o f . (1) Suppose v ^ w and let w(p) = 1 for some p G F . By the 
approximation theorem there exists x G F such that 

v(x-l)>2 + v(4), iv(x - p) > 2. 

Then x G 1 + 4 M , while iv(x) = w(x — p + p) = w(p) = 1. Hence x £ 
(1 + 4JV) • F 2 , since w((l + 4N) • F 2 ) C 2Z. 

(2) By Lemma (2.1)(2), Ker 6V C Kev6w implies F n F 2 C F n F 2 . Then Lemma 
(2.1)(3) and (2.3)(1) imply that v = w. 

319 



3. Rigid and basic elements 

In this section we study the behaviour of rigid elements under Witt equiva­
lence. Recall from [15] and [1] that, for a subgroup T of F, we say that x G F 
is T-rigid if T + xT C T U xT. And x is said to be T-birigid if both x and 
—x are T-rigid. If x is not T-birigid, it is T -basic, and BF(T) denotes the set 
of all T-basic elements in F. 

Lemma (3.1) . Let F and E be two Witt equivalent fields and let t be a 
corresponding Harrison map. Let T be a subgroup of F containing F2 and put 
S:=t(T). Then 

(1) x G F2 is T-rigid iff y := t(x) is S-rigid. 
(2) x G F2 is T-birigid iff y = t(x) is S-birigid. 
(3) t(BF(T)) = BE(S). 

P r o o f . (1) Let x be T-rigid. We want., 5 + yS C 5 U yS. So consider any 
si +VS2 - where s\,s2 G 5 . Let S\ = t(x\), S2 = t(x2), where x\,x2 G T . Then 

si +ys2 eDE{suys2) =t(DF(xuxx2))Ct(T + xT) C 

C f ( T U x T ) = 5 U y 5 . 

(2) By (1), x and —x are T-rigid iff t(x) and £(—x) = — t(x) are 5-rigid. 
(3) follows from (2). 

Lemma (3 .2) . Let F be a global field and let v be a valuation of F. Let 
T := (1 + M) - F2 , where M is the maximal ideal of the valuation ring of v . 

(1) BF(T) = ±T. 
(2) T is not additively closed 

P r o o f . (1) We have \ + M C T , hence u is T-compatible (cf. [1], Def. 1 7) 
and so, by [1], Prop. 1.9, BF(T) C U • T , where U is the group of units of the 
valuation ring of v. We have 

T C ± T C BF(T) C U • T. (3.2.1) 

Observe that U C T iff every element in the re idue class field F is a square in 
F iff v is dyadic. Thus T = U • T if u is dyadic and (1) follows from (3.2.1). If 
v is non-dyadic, then 

[U -T : T] = [U- UnT] - [U- (1 + Af)-U2] - 2 

Now, if —1 ^ T , the result follows imm diately from (3.2.1). 
It remains to con ider th case, where v i non-dyadic and — 1 G T . Observe 

320 



_l_2 _L.2 ___2 

that then - l G f and BF(F ) = F . Now according to [1], Prop 1.9(2), the 
isomorphism 

_i_ J-2 
U • T/T - • ғ/u n T = F/F 

_2 
maps BF(T)/T onto Bj(T)/T, where T : = U n T = F . It follows that 
BF(T) = T, as needed. 

(2) Contrary to (2), suppose that T + T C T . If char F = p ^ 0, then 0 = p• 1 G 
T , a contradiction. If charF1 = 0 and p is a prime number such that v(p) > 0 
and / G F satisfies v(f) = 1, then both p G T and p + / = ( p - l ) + ( l + / ) G T . 
Now, if v(p) > 1, then v(p + / ) = 1, so in either case T contains an element 
with odd value, a contradiction. This proves (2). 

4. Matching non-dyadic primes 

Propos i t ion (4,1) . Let F and E be Witt equivalent global fields. Suppose 
i: WF —» WE is a strong Witt ring isomorphism and let t be the corresponding 
Harrison map. 
(1) For every non-dyadic valuation v of F there exists a unique non-dyadic 
valuation w of E such that there is a commutative diagram 

WF —-—• WE 

WFV > WEW 

where the lower horizontal arrow is a ring isomorphism and the vertical arrows 
are the natural morphisms 0V and 6W. 
(2) The assignment v i—> w sets up a bijective map from the set of non-dyadic 
valuations F onto the set of non-dyadic valuations of E. 

P r o o f . Put T := (1 + M) • F2 , where M = {x£F: v(x) > 0} . By Lemma 
(2.1)(4) we have [F: T] = 4 . Now let S := t(T). Then 5 is a subgroup of index 4 
in E and S contains E2 . By (3.1)(3) and Lemma (3.2), we have BE(S) = ±S. 
It follows that [E: BE(S)] = 4 when - 1 G S, or [E: BE(S)] = 2 when - 1 £ 
5 . In the first case we apply [1], Theorem 2.16, with H := BE(S). It follows that 
there is a subgroup H* of E such that H C H* , [H*: H] < 2 and 0E(H*, S) 
is an 5-compatible valuation ring of E. Since H C H* C E, [E: H] = 4 and 
[H*: H] < 2 , we conclude that H* ^ E, and so 0E(H*,S) ^ E. Thus there 
is a non-trivial valuation w of E with the valuation ring 0E(H*,S). 
In the second case, i.e., when —1 ^ 5 , we observe that S is not additively 
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closed, since otherwise T would be additively closed, contrary to Lemma (3.2). 
Thus, even though BE(S) = ± S , we have not the exceptional case in the sense of 
Definition 2.15 in [1] and, as above, there exists an S-compatible valuation ring 
OE(H*,S) ^ E of E (here H* = H = BE(S)) and a non-trivial valuation 
w of E with the given valuation ring. We will show that, in either case, w 
satisfies the requirements of Proposition (4.1)(1). Let N := {x G E: w(x) > 0} . 
S-compatibility of w means 1 + N C S , hence we also have (1 + N) • E2 C S. 
Now 4 = [E2: S) < [E2: (1 + N) - E2], and so, by Lemma (2.1)(4)(5), we 
conclude that w is non-dyadic and (1 + N) • E2 = S. 

Now let 0V : WF —> WFV and 8W: WE —> WEW be the natural morphisms. 
Then t(T) = S and Lemma (2.1)(2)(3) imply that 

i(Ker<9v) = K e r ^ . 

Hence there exists a ring isomorphism WFV —> WEW such that the diagram 
in (4.1 )(1) commutes. If W\ is another valuation of E making the diagram in 
(4.1)(1) commutative, we get i(Kev9v) = K e r ^ . Hence Ker#u, = Kev9Wl , 
and by Lemma (2.3)(2), we have w = w\ . 
(2) The isomorphisms i""1 and t~l give rise to the inverse map. 

Proposit ion (4.2) . Let F and E be Witt equivalent algebraic number fields 
and let i be a strong Witt ring isomorphism. 
(1) For every ordering P of the field F (if there are any) there exists a unique 
ordering Q of the field E such that there is a commutative diagram 

WF —'—+ WE 

i i 
WFP > WEQ 

where Fp and EQ are real closures relative to P and Q, resp., the lower 
horizontal arrow is a ring isomorphism, and the vertical arrows are natural 
morphisms. 
(2) The assignment P »—> Q sets up a bijective map from the set Xp of all 
orderings of F onto the set XE of all orderings of E. 

P r o o f . It is known that .for any ordering P of F there is a minimal prime 
ideal p of WF such that P = {a G F: (a) = (1) (mod p)} (cf. [7], p. 246). 
Then q := i(p) is a minimal prime ideal in WE and Q: = {b G E: (b) = (1) 
(mod q)} is an ordering of E. The existence of a ring isomorphism WFp —+ 
WEQ and all the remaining claims can be proved with the arguments from the 
final part of proof of Proposition (4.1). 
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L e m m a ( 4 . 3 ) . Let F and E be Witt equivalent Slobal fields and let 

i: WF -> WE be a strong Witt ring isomorphism and t a corresponding Har­
rison map. Let P be a prime of F (finite or infinite) and Q be a prime of E. 
The following are equivalent. 
(1) There is a commutative diagram 

WF ——•> WE 

WFP > WEQ 

where the lower horizontal arrow is a ring isomorphism and the vertical arrows 
are natural morphisms. 
(2) (a ,6)p = (ta,tb)Q for every a, 6 £ F. 

P r o o f . (1)=>(2) . For a,6 £ F we have 

(a ,6 )p = l <=-> 6P((-a,-b)) = 0 <=> iP o 6P((-a, - 6 ) ) = 0 

0Qoi((-a,-b)) = 0 «=-> 0Q((-ta,-tb)) = 0 

(ta,tb)Q = 1. 

(2)=>(l). This follows from Harrison's Criterion (1.2). Here ip is induced by 

sending (a) into (ta). 

Now we are in a position to make a step toward proving Theorem (1.1). To 
summarize our results we introduce almost reciprocity equivalence. For a global 
field F we write fi,\(F) for the set consisting of all infinite real primes of F 
and of all finite non-dyadic primes of F. 

D e f i n i t i o n ( 4 . 4 ) . Two global fields F and E are said to be almost reci­
procity equivalent if there is a bijective map 

T: fti(F) -+ QX(E) 

and a group isomorphism 

t: F/F2 -> E/E2 

such that 

(a ,6 )p = ( * a , * 6 ) T p 

for all primes P in fl\(F) and all elements a, 6 in F/l?i 
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Theorem (4.5) . Let F and E be global fields. If F and E are Witt equiv­
alent, then F and E are almost reciprocity equivalent. More precisely, if t is a 
Harrison map between F and E, then there is a map T: Vt\(F) —> ili(E) such 
that (r, T) is an almost reciprocity equivalence between F and E. 

P r o o f . Combine Propositions (4.1), (4.2) and Lemma (4.3). 

Corollary (4 .6) . Let F and E be global function fields. Then F and E 
are Witt equivalent if and only if they are reciprocity equivalent. 

P r o o f . Function fields of characteristic ^ 2 have no dyadic primes, hence 
almost reciprocity equivalence is the same as reciprocity equivalence. 

It is easy to show that an almost reciprocity equivalence of two Witt equiv­
alent fields can be extended to a reciprocity equivalence when the fields have 
each a unique dyadic prime, or when the fields are quadratic number fields, This 
is also true in the general case but requires some extra work. We discuss the 
general case in the next two sections. 

5. An exact sequence 

Let F be an algebraic number field and let S be any finite, non-empty set of 
primes of F. In the application we have in mind S will be the set of all dyadic 
primes of F (see section 6). Given any a G F we define the following 3 objects: 

h(a) := the number of primes P £ S at which a £ Fp , 
G(a) := {b E F: (a, b)p = 1 for every prime P not in 5} , 
H(a):= [1 Fp/Np(a). 

pes 
Here Fp is the completion of F at P and Np(a) := Dpp(l,—a) is the 

norm group from Fp(y/a)/Fp . Similarly, we will write N(a) for Dp(l,—a) . 
Notice that 

0 < h(a)< \S\. (5.0.1) 

G(a)= P | NP(a)CiF. (5.0.2) 
p$s 

N(a) C G(a). (5.0.3) 

\H(a)\ =2h(a). (5.0.4) 

Here (5 0.2) follows from the fact that (a ,6) P = 1 iff 6 G NP(a) and (5.0.3) 
follows from (5.0.2) and from N(a) C Np(a). For (5.0.4), use the fact that 
Np(a) has in Fp the index 1 or 2 depending on whether a is, or is not a 
square in Fp . 
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Now we will consider the following sequence 

1 _ , N(a) -> G(a) -> JT(a) - ^ {±1} -+ 1 (5.0.5) 

Here N(a) —> G(a) is the inclusion map, G(a) —> -H(a) is the diagonal map 
sending 6 G G(a) onto the family (6 • Np(a)). Finally, /i is defined as follows: 
fi((bP • JVp(a)) = r i M P ) P . 

P6S 

Proposit ion (5 .1) . (i) If h(a) > 1, then the sequence (5.0.5) is exact. 
(ii) If h(a) = 0, then N(a) = G(a). 

P r o o f . N(a) C Ker(G(a) -> H(a)) follows from ./V(a) C NP(a). Con­
versely, if 6 G G(a) and 6 G Np(a) for every P £ S, then 6 G Np(a) for every 
prime P . Hence 6 G N(a) by the Hasse Norm Theorem ([9], 65:23). This proves 
the exactness at G(a). 

For any 6 G G(a), we have (a, 6)p = 1 for all P not in S, hence 

i = n (a> h ) p = n ^ h)p=^(6 • ^(«)))' 
PG5 

the first product running over all primes P . Thus Im G(a) C Ker \i. And if 
(6p • Np(a)) G Ker^ , i.e., if ]\ (a^p)p = 1? ^ n e n (a,bp)p = —1 for an even 

Pes 
number of P G S. Since a is not a square at the primes P , where (a, 6p)p = 
— 1, there exists a global element 6 G F such that 

(a,6)p = —1 whenever (a, 6p)p = — 1, and 
(a, 6)p = 1 for all remaining primes P of P ([9], 71:19a). 

Thus 6 G G(a) and, moreover, (a,6)p = (a ,6p)p for every P £ S. Hence 
6 G bp-Np(a) for P € S, i.e., (bp-Np(a)) G ImG(a). This proves the exactness 
at .H(a). Observe that the above proof is valid also when h(a) = 0, and then 
it proves (ii). 

Now assume that h(a) > 1, so that H(a) is a non-trivial group. We must 
prove the surjectivity of / i . If a £ FQ , where Q G S, pick up 6Q G F such 
that (a, 6Q)Q = —1 (non-degeneracy of the Hilbert symbol). Put 6p = 1 for 
Q ^ P G 5 . Then fi((bp • Np(a)) = (a, 6Q)Q = — 1 . Thus /i is surjective, as 
desired. 

We draw a corollary to be used in the next section. 

Corollary (5 .2) . If h(a) > 1, then the group G(a)/N(a) is finite of order 
2h(a)-l Hence N(aj _ Q(aj ^ and only ^ ft(fl) = o or 1. 
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6. Matching dyad ic primes 

In this section we conclude the proof of Theorem (1.1). So far, we have 
proved that Witt equivalence of F and E implies almost reciprocity equiva­
lence (Theorem (4.5)), hence reciprocity equivalence if F and E are function 
fields (Corollary (4.6)). It remains to investigate the possibility of extending an 
almost reciprocity equivalence onto dyadic primes in number fields in a Hilbert-
symbol-preserving way. The first thing is to prove that the numbers g2(F) and 
g2(E) of dyadic primes in F and E are equal. We will work in the following 
set-up. 

F and E are Witt equivalent number fields, (6.0.1) 

t is a Harrison map between F and E, (6.0.2) 

( t ,T) is an almost reciprocity equivalence between F and E. 
(6.0.3) 

We also use the notation of section 5. We will use the fact that, when (6.0.2) 
and (6.0.3) hold, then t" 1 is a Harrison map between E and F and ( r - 1 , T _ 1 ) 
is an almost reciprocity equivalence between E and F. 

Proposit ion (6.1) . For any a G F, we have h(a) = h(ta). 

P r o o f . Assume first that h(a) > 1. Since t preserves value sets of quadratic 
forms, it induces an isomorphism from G(a)/N(a) onto G(ta)/N(ta). Then 
2h(a)-i = 2Hta)-i ^ b y Corollary (5.2), hence h(a) = h(ta). Now assume that 
h(a) = 0. If h(ta) > 1, then by symmetry, h(a) == h(t~x(ta)) > 1, a contradic­
tion. Hence h(ta) = 0, as desired. 

Corollary (6.2) . g2(F) = g2(E). 

P r o o f . Choosing a to be a non-square at every dyadic prime in F we see 
that h(a) = g2(F). By Proposition (6.1), g2(F) < g2(E), and by symmetry, 
g2(F) = g2(E). 

Thus, so far, we have proved that Witt equivalence of F and E implies 
almost reciprocity equivalence and g2(F) = g2(E). Now we want more. Fix a 
dyadic prime P of F and choose a to be a non-square at P but to be a square 
at the other dyadic primes of F. So h(a) = 1, and thus h(ta) = 1 also. So 
there is a unique dyadic prime P' of E at which ta is a local non-square. We 
will map P t o F . 
First we show that P' does not depend on the element a we chose. So let a' be 
another non-square at P with h(a') = 1. Then ta' is a non-square at a unique 
dyadic prime P" of E. If P' ^ P" , then h(ta • ta') = 2 , so h(a • a') = 2, 
contradicting the fact that h(a • o!) < 1, since a and a' are local squares at 
every dyadic prime except P. Herice P = P . 
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Thus sending P to P' defines a map 

r: n2(F)-> n2(E) 

between the sets of dyadic primes of F and E. 

Claim 1. T' is infective. 

If P\ 7-- P2 in Sl2(F) and both of them are mapped to P' in Q2(E), then 
choose a\ and a2 to be local non-squares at Pi and at P2 , respectively, with 
h(a\) = h(a2) = 1. Then h(a\ • a2) = 2 , while h(ta\ • ta2) < 1, since ta\ and 
ta2 are each square at dyadic primes of E different from P'. This contradicts 
(6.1). 

Claim 2. T' is bijective. 

This follows from Claim 1 and (6.2). 

Claim 3 . If h(a) = n and if P\,...,Pn are the dyadic primes where a is 
a local non-square, then T'(P\) = P[,..., T'(Pn) = P'n are the dyadic primes of 
E, where ta is a non-square. 

This is obvious when n = 0 or 1. So fix n > 2 and suppose that h(a) = n = 
h(ta). By the approximation theorem choose a global element x sufficiently close 
to a at Pi to be in the same square class as a in Fpl , and simultaneously close 
to 1 at all dyadic primes P ^ P i , to be a square in each Fp, P ^ P\ . Then 
xa G Fpx and xa £ Fp. for i -= 2 , 3 , . . . , n , hence h(x) = 1 and h(xa) = n — 1. 
By induction, t(xa) is not a square at T'(P2),..., T'(Pn) and tx is not a square 
at T'(P\). Hence ta = t(xa) • tx is not a square at T'(P\),... ,T'(Pn) only, as 
desired. 

Claim 4. The pair (t,T') preserves Hilbert symbols. 

Fix global elements a, b in F and fix a dyadic prime P of F. We want to 
show 

(a,b)P = (ta,tb)P>, 

where P' = T'(P). We proceed by induction on h(a) = h(ta). 
If this is 0, then a and ta are local squares at P and P', so both symbols are 1. 
If h(a) = 1, then a is a non-square at exactly one Pi E ft2(F). If P ^ P\ , then 
(a, b)p = (ta,tb)p> = 1, and if P = Pi , then using almost reciprocity, symbols 
at non-dyadic primes are preserved, and so the Hilbert reciprocity shows that 
these symbols at P and P' agree. Proceeding inductively, we assume that for 
any dyadic P we have (c,b)p = (tc,tb)p» whenever h(c) < n. Pick an x as 
above, namely x lies in the square class of a locally at a given dyadic prime, 
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and x is a local square at the remaining dyadics. Then write a = ax • x and 
observe that h(ax) < n and h(x) < n. Thus 

(a, b)p = (ax, b)p • (x, b)p = (t(ax), tb)p> • (tx, tb)p> = (ta, tb)p> 

as required. 

P r o o f o f T h e o r e m ( l . l ) . Given a strong Witt ring isomorphism and 
the corresponding Harrison map t, we construct an almost reciprocity equiva­
lence (t,T) as in the proof of Theorem (4.5). Then we extend T onto dyadic 
primes using the map T' defined above. Call the extended map again T'. Now 
it remciins to match infinite complex primes in F and E. It will be sufficient to 
show that 2r2(F) = 2r2(E), i.e., the numbers of complex primes in F and E 
are equal, since Hilbert symbols at complex primes are trivial, hence preserved 
under arbitrary matching of complex primes. 

Let P be a dyadic prime of F and P' = T'(P), the corresponding dyadic 
prime of E. By Lemma (4.3), the dyadic completions have the same number of 
square classes (cf. Harrison's Criterion (1.2)). Thus 

2np+2 = r ^ p . ^2] = f£p , . ftp,] = 2
nP>+\ 

where np is the degree of Fp over the dyadic field Q2 , and np> is the degree 
of Ep> over Q2 (cf. [7], Cor. 2.23, p. 162). It follows that np = np> whenever 
P' = T'(P). Thus we have 

n := [F: Q] = Y^np = Ylnp' = ^E: ^ =: m 

P|2 P'|2 

and also 
2r2(F) = n- г j (F) = тn- Гl(E) = 2r2(E), 

as desired. 

Extending T' arbitrarily onto infinite complex primes we obtain a map 
T": £l(F) —+ il(E) such that (t,T") is a reciprocity equivalence. This finishes 
the proof of Theorem (1.1). 

7. Conclusion 

An important corollary to our main result is that the Witt equivalence of 
number fields preserves the degrees of number fields over the rational field Q 
(combine (1.1) and (1.5)). We do not know any direct proof of this, avoiding the 
use of reciprocity equivalence. Thus, for instance, Q and Q(\ /2) are not Witt 
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equivalent, but we do not know how to prove this without using our result on 
almost reciprocity equivalence (Theorem (4.5)). 

On the positive side, it follows that Q has a unique Witt ring in the class of 
all algebraic number fields. As to quadratic number fields, A. C z o g a 1 a [4], [5] 
classified them up to reciprocity equivalence. He showed that there are exactly 
7 classes of reciprocity equivalent quadratic number fields represented by 

Q( \ /S ) , w h e r e d = - l , ± 2 , ± 7 , ± 1 7 . 

Combined with Theorem (1.1), this implies that there are exactly 7 Witt equiv­
alence classes (i.e., 7 distinct Witt rings) for all quadratic fields, represented by 
the above 7 fields. 

Some further results in this direction are known. J. C a r p e n t e r [3], com­
bining her results with [11], proves that for any given n , there are only finitely 
many Witt equivalence classes of algebraic number fields of degree n. For cubic 
fields ( n = 3 ), a complete classification with respect to Witt equivalence is given 
in [13]. There are exactly 8 Witt equivalence classes for n = 3 and the 8 cubic 
fields generated by zeros of the following polynomials 

X3+pX + q, where ( p , « ) = ( l , l ) , (1,8), (1,4), ( -1 ,8 ) , 

( -3 ,1 ) , ( -7 ,2 ) , ( -4 ,1 ) , ( -17,8) 

are pairwise Witt inequivalent. 
Moreover, the number of Witt equivalence classes of number fields of an arbitrary 
degree n is determined in terms of some partition functions. 
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