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ABSTRACT. In this paper we continue some results of [KOSTYRKO, P.: Some 
properties of oscillation, Math. Slovaca 30 (1980), 157-162]. It is shown that 
given a nonnegative, upper semicontinuous (USC) function / : X -» R where X 
is a "massive" metric space, there is a function F: X —•> IR (which we call an 
a;-primitive for / ) whose oscillation equals / everywhere on X. Moreover, F 
could always be found in at most Baire class two. In particular, the a;-primitive 
could be written in a simple form whenever / is finite. Namely, F = /<p, where <p 
is the characteristic function of an Ta -set or that of a Q5 -set. Except "massive-
ness", no other assumptions concerning metric spaces are made. Our main tool 
is Teichmiiller-Tukey's lemma. 

Some definitions and preliminaries 

Let X = (X, p) be a metric space. Given a function F: X -
each x G X and S > 0 

M5(F,x) = suv{F(z) : z e B(xJ)} , 

m ^ F , x) = inf {F(z) : z G B(x, 5)} , 

where B(x, 8) := {z G X : p(z, x) < 5}, and we let 

M{F,x) = limM6{F,x), 
o—»0 

m(F, x) = lim ms(F, x). 

The oscillation of F at the point x is defined as 

co(F, x) = M(F, x) - m(F, x). 

we let for 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 26A15, 54C30, 54C99. 
K e y w o r d s : metric space, cr-discrete set, Teichmuller-Turkey Js lemma, oscillation, u;-primitive, 
Baire class. 
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It is well known from elementary courses in Real Analysis that the oscillation 

u(Fr): I - > E 

is an upper semicontinuous (USC) and nonnegative function. In the present 
paper the following problem is studied. 

Let / : X —r [0, +00] be an USC-function. The question is whether there 
exists a function F: X -» R such that 

(VxeX)(u(F,x) = f(x)). 

If such a function exists we call it an oscillatory primitive (or an u -primitive) 
for / . We also ask of which minimal Baire class an LO-primitive could be. Triv­
ial examples show that the a;-primitive might not exist if X contains isolated 
points. For this reason we consider only spaces dense in themselves in all state­
ments on CJ-primitives. 

In particular, we shall make use of the following notions and notations. Let 
IT be a nonempty subset of X. If E contains more than one point, we put 

AE:=\id{p(xl,x2): xx,x2 e E, xx ^ x2} ; (1) 

and if E is a singleton, we put 

AE:=+oo. (2) 

By Ed we mean the derived set, i.e. the set of all accumulation points of E. 
By E we denote the closure of E. To avoid ambiguities, we specify the definition 
of extreme limits: 

limsupF(t) := lim s u p F \ B ^ r ) \ {x} . (3) 

The lower limit is defined analogously. Our main tool in proofs will be the 
Teichmuller-Tukey's lemma. For convenience of the reader we remind its formu­
lation. 

Let P be a property related to subsets of a set S 7-= 0. We say that P is a 
property of finite character if the following holds: 

E has the property P <=> each finite set A C E has the property P. 

LEMMA 1. (Teichmiiller-Tukey [1], [3]) Let P be a property of finite character 
related to subsets of S. Then each subset E C S with the property P is contained 
in a maximal (with respect to the inclusion relation) subset Em of S which also 
has the property P. 

A maximal set Em will be called a P-maximal set. We remind that a 
P -maximal set need not be unique. 
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In what follows, given any metric space X , we define for each real a > 0 the 
property P(a) related to subsets E of X as follows: 

E has the property P(a) <=> AE > a , (4) 

where AE was defined in (1), (2). Clearly P(a) is the property of finite character 
(cf. [1; Vol. 2]). We shall also abbreviate 

Pn:=P(l/n) for n G N. (5) 

DEFINIT IONS . 
1) A metric space X is called a-discrete at the point x G X if there exists 

£ > 0 such that the ball B(x,e) is cr-discrete, i.e 
oo 

B(x,e)= \jAn, 
n=l 

where each An is a discrete subset of X (empty set is discrete by definition). 
2) A metric space is said to be locally a-discrete if it is cr-discrete at each 

of its points. 
3) A metric space will be called massive if it is not a-discrete at each of its 

points. 

Our main result will be stated in Theorem 2, but first we shall show the 
existence of u -primitives of type ftp where cp is the characteristic function of 
an JF^-set (or that of a f^-set) whenever / is finite. 

The following auxiliary assertion is valid in any metric space. 

LEMMA 2. Each a-discrete subset A of a metric space X can be represented 
in the form 

A= (J ci> (6) 
iGICN 

where Ci are disjoint and AC{ > 0 for each i G I C N. So in particular we 
have that A is an TG-set. 

P r o o f . It is easy to see that it suffices to consider the case A is discrete 
and A A — 0. We may write 

-4= IK' 
n = l 

where 
An := {x G A : dist(x, A\{x}) > 1/n} . 

Clearly AAn > 1/n and An C ^4 n + 1 • Now it remains to write 

-4=IK. 
П = l 

where Cx := Ax, Cn := An \ An_x if n > 1, and we are done. • 
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THEOREM 1. Let X = (X, p) be a massive metric space and f: X —•> [0, oo) be 
a USC-function. Then there exists an u -primitive F: X —> [0, oo) for f which 
can be represented in the form F = ftp where ip is the characteristic function 
of an Ta-set. 

P r o o f . Let G(f) be the graph of / , which will be considered as a subspace 
of the metric space X x R equipped with the metric 

d{(x,OAy,ri))'.= p(x,y) + \Z-v\- (?) 

Denote by 7r: X x R. —•> X the natural projection. Now in the space G(f) we 
consider the property P(a) (cf. (4)). We may assume, without loss of generality, 
that d iamX > 1, so that we have d iamG(/ ) > 1 too. Using Lemma 1 we 
conclude that there exists a Px-maximal set Yx in G(f) (cf. notation (5)). We 
claim that ^(Y^ is a discrete subset of X . Indeed, if we assume the contrary, 

there will exist xQ 6 (^(YJ) fl7r(y i) and a sequence (xn), xn G 7T(YX), such 
that 

xn^xm f o r n ^ m , and p ( x n , x 0 ) - > 0 . (8) 

Then from the Px -property of Y1 we obtain: 

(Vn)(Vm)(n -* m = > p(xn,xj + \f(xn) - f(xj\ > l) . (9) 

Since / is USC and / > 0, we have that / is locally bounded. Hence there 
exist a ball H(x0,r), r < 1/5, and a natural N so that s u p / | ^ / x x < oo 

and xn e B(xQ,r), n> N. Therefore by (9) we get 

(Vn > N)(Vm >N)(n^m => \f(xn) - f(xj\ > 1/2) , 

which contradicts the boundedness of f\^(x r\ • Thus ir(Xx) is discrete whence 

X \ 7r(yj) is massive since such is X. This implies that diam(X \ ^(Yx)) = 
d iamX > 1 and therefore diam(G(/) \ Y j > 1. So we may again apply 
Lemma 1 to G(f) \ Yx and find a P2-maximal set Y2 C G(f) \YX. In the 
same way as for ^ ( Y J , we prove that ir(Y2) is a discrete subset of X , hence 
d i a m ( X \ ( 7 r ( Y 1 ) U 7 r ( Y 2 ) ) ) > l . 

On repeating inductively this procedure, we obtain a sequence (Yn) with the 
following properties: 

(i) Yx is a Pj-maximal subset of G(f)\ 
(ii) Yn is a Pn-maximal subset of G(f) \ (Y1 U • • • U Yn_x), n > 1; 

(iii) /!T(Yn) is a discrete subset of X. 

We claim that the set 
oo 

E := (J Yn (10) 
n=1 
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is dense in G(f). Indeed, suppose that this is not the case. Then there is a ball 
B(a,r) C G(f), disjoint from E. Then for each n > 2/r we have 

mf{d(z,a) : zeYj >r>l/n. 

But since AYn > 1/n and a e G(f) \ (Yx U • • • U Yn_x), we obtain that for 
n > 2/r the set 

y n u{a}cG( / ) \ (y 1 u- . -uy„_ 1 ) 
has the Fn-property, contrary to the fact that Yn is already a Pn-maximal subset 
of G(f) \(Y1 U • • • U y n - 1 ) . We have thus proved that E is dense in G(f). It 
follows from property (iii) of the sequence (Yn) that 

oo 

n(E) = U <Yn) 
n=l 

is a a-discrete and dense subset of X. The space X being massive, we conclude 
that X \ir(E) is also dense in X. 

Now define the function 
F = ff, (11) 

where </? is the characteristic function of ir(E). Since 7r(i?) is an J^-set (cf. 
Lemma 2) and / is USC, we conclude that F is at most in the Baire class two. 
It remains to check that F is an a;-primitive for / . 

First we observe that since X \ ir(E) is dense in X , we have 

(VxeX)(m(F,x) = 0). (12) 

(I) Let x0 e TT(E). Since / is USC, we get immediately from (11), (12) that 

u>(F,x0) = M(F,x0) = M ( / , x 0 ) = f(x0). 

(II) Let x0 e X \ TT(E) . Then we have 

limsup/(.T) = f(x0). (13) 
X—>Xo 

Indeed, if this were not the case we would get 

l imsup / (x ) < f(x0). 

Then it would follow that (x0,f(x0)) is an isolated point of G(f). But as 
E is dense in G(f), we infer immediately that (x0,f(x0)) e E, which yields 
x0 e 7r(l?), contrary to the assumption of p. (II). Thus (13) holds whence it 
follows that there is a sequence (xn), xn e X , xn ^ x 0 , such that 

l i m / ( x n ) = / ( x 0 ) . (14) 
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Moreover, since E is dense in G(/), there exists a sequence (z n), zn e TT(E), 

so that 
(Vn){p(xn,zn) < 1/n A \f(xn) - f(zn)\ < 1/n) . 

This implies by (11), (14) and by / is USC that 

f(x0) = l i m / ( z j = l i m F O J < M(F,x0) < M(f,x0) = f(x0) 

whence, in view of (12), we get u(F,x0) = f(x0). This completes the proof of 
Theorem 1. D 

Remark. It is shown in [2; Corollary 1.2(c)] that each dense in itself metrizable 
Baire space is massive. On the other hand, there are massive spaces (metrizable 
or not) which are not Baire ([2; Examples 1.2, 1.3]). Thus our Theorem 1 extends 
the result of P. K o s t y r k o [4] obtained for metric Baire spaces. 

Theorem 1 gives rise to our main result which follows. This time / will be 
allowed to take on the value +co. 

THEOREM 2. Let X = (X,p) be a massive metric space and / : X —•> [0,+oo] 
a USC-function. Then there exists an u -primitive F: X —» [0,-Foo) for f, 
which is at most in the Baire class two. 

We precede the proof by a simple auxiliary proposition. 

LEMMA 3. Given any massive metric space Z, there exists m G N and a 
sequence (Wn)n

<Lm of mutually disjoint subsets of Z such that 

(i) Wm is Pm-maximal in Z, and for n > m each Wn is Pn-maximal in 
Z\(WmU-..UWn_l); 

oo 

(ii) the sets W := |J Wn and Z\W are both dense in Z. 
n=m 

P r o o f . The main tool in the proof (same as in that of Theorem 1) is 
Lemma 1. With no loss of generality we may assume that diamZ > 1 (and 
therefore we shall have in that case m = 1). By Lemma 1 we may find a 
Px -maximal set Wt C Z. This set being discrete, the set Z \W1 is again 
massive. Therefore by Lemma 1 we can find a P2-maximal set W2 in Z \ Wx 

and so on. On the nth step we find a Pn-maximal set Wn in 

Z\(W1li---UWn_1) 

(to note that this difference remains massive for each n > 1). Continuing this 
procedure, we obtain the required sequence (Wn). Indeed, write 

W := Q W, 
П 

n=1 
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Since AW n > 1/n, n G N, the set W is rj-discrete. We claim that W is dense 
in Z. But this can be shown in the same way as we proceeded to prove, in 
Theorem 1, that the set E (10) is dense in G(f). So we omit the repetition of 
the argument. Finally, since Z is massive whereas W is cr-discrete, we conclude 
that Z \ W is also dense in Z. Lemma 3 is thus proved. • 

As an immediate corollary, we easily obtain the following analog of Theorem 1 
involving Gs-sets. 

THEOREM 1 \ Let X = (X, p) be a massive metric space and f: X —•> [0,oo) 
a USC-function. Then there exists an u-primitive F: X —> [0, oo) for f which 
can be represented in the form F = fcp, where <p is the characteristic function 
of a Q6-set. 

P r o o f . Let Ed G(f) be the set already defined by (10). Since X \ ir(E) 
is a massive subspace of X we may apply Lemma 3 according to which there 
exists a sequence (Wn), Wn C X\ir(E), with properties (i), (ii). It follows that 
W and X\W are both dense in J\T, the set W obviously being of type Ta . Now 
as the set E is dense in G(f), TT(E) fl W = 0 and / is USC, we easily conclude 
that F = fcp, where <p is the characteristic function of the f^-set X \ W, is the 
UJ -primitive for / , and we are done. • 

It remains to prove our main result. 

P r o o f of T h e o r e m 2 . We remind that by our definition an a;-primitive 
takes on only finite values. Suppose that the set 

E00:={xeX: f(x) = +00} 
(evidently closed) is nonempty for otherwise there, of course, would be nothing 
to prove. With no loss of generality, we may also assume that 

Y:=X\E00*Q, 
z ^ I n t / ^ 0 . 

We have thus the disjoint union 

x ^ r u z u ( E o o \ z ) . (15) 
The space Y and the function f\y obviously satisfy the assumptions of The­
orem 1, hence there is an u-primitive F' : Y —> [0, +00) for / l y , which is at 
most in the Baire class two. Next we are going to find an a;-primitive for f\%. 
Since the open set Z C X is a massive space, there exists a sequence (Wn) hav­
ing properties (i), (ii) stated in Lemma 3. It is therefore clear that the function 
Fz: Z -> R defined by 

n for x G Wn 

0 for x G Z \ W 
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is an u>-primitive for f\% • 

Now let T{x) := (dist(x, E^)) 
F: X ^ [0,oo) denned by 

(Fy{x) + T{x) ifxeY 

F{x) = I 

x G Y. We claim that the function 

0 
if x e z, 
if x G B \Z 

is an a;-primitive for / . Indeed, since T: Y —r [0, +00) is continuous and 
the "partial" ^-primitives F' F , are already defined on disjoint open sets 
F, Z C X , it is clear that the equality 

u>{F,x) = f{x) 
needs to be checked only at points of E^ \ Z. 

Let x0 G F^ \ Z . If x0 G Z , then in view of the definition of F , we have 
(̂ (F1, x0) = +00 since F(x0) = 0 and each neighborhood of x0 intersects Wn for 
all sufficiently large n. On the other hand, if x0 £ Z then each neighborhood of 
x0 intersects Y. Since F might be bounded, just the addition of the function 
Y 3 x i-> T(x) which goes to +00 as x —> x0 , guarantees that u{F, x0) = +00. 
We have thus shown that the function F defined above is an a;-primitive for / . 
Finally, since Fy, Fz are at most in the Baire class two, we conclude that F is 
so too, thereby completing the proof of Theorem 2. D 

R e m a r k . Instead of Theorem 1, we could use, of course, Theorem 1' in the 
proof of Theorem 2. 
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