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A NOTE ON NORMAL BASES OF IDEALS

STANISLAV JAKUBEC®*) -— JURAJ KOSTRA**1)

ABSTRACT. Let K/Q be a cyclic tamely ramified extension of prime degree [,
then any ambiguous ideal of K has a normal basis if and only if for any prime p
dividing the conductor of K there is an integer v of cyclotomic field Q(¢;) such

that Ngc¢)se(Y) =p-

Introduction

Let K/Q be a Galois extension of the rationals. The following necessary
and sufficient condition for an Abelian extension,of the rationals Q to have a
normal integral basis consisting of all conjugates of an integer of ' was given by

H.W.Leopoldt [2]:

The field K should be contained in a cyclotomic field Q((,n) generated by
an m-th primitive root of unity with square-free m. This can be equivalently
reformulated that K/Q is a tamely ramified extension.

S. Ullom [3] reduced the question of existence of normal bases of am-
biguous ideals in a tamely ramified Abelian extension of the rationals @ to the
corresponding question for ambiguous ideals of the cyclotomic fields over Q. He
gave a sufficient condition for all the ambiguous ideals in cyclic extension of Q
of a prime degree [ to have a normal basis: Let I'/Q be a cyclic extension of
a prime degree [ in which the prime [ is unramified. Suppose the class number
of the cyclotomic field Q((;) is one. Then every ambiguous ideal of I has a
normal basis.

In the present paper we shall give a necessary and sufficient condition for
the existence of a normal basis for all ambiguous ideals in a tamely ramified
cyclic extension A'/Q of a prime degree [. This result is a consequence of the
following:
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Let

QCI\'CQ(CP), [I\'Z(I)]:l7 CP:Czﬂi/h,
G(Q(¢)/Q) = {o1,09,...,01-1} and 7= Noce,y/x(1=Gp).

For f € K and 0 € G = G(IY/Q) we denote by of the action of o on . If
there is an integer 7' € Q(¢1) with Ngc,)/0 (7') = p, then there is an integer
v € Q(¢r) with Ngc,y/g(v) = p such that each of oy for + =1,2,...,1 -1,
uniquely determines a circulant matrix which transforms a normal basis of the
ideal (7') to a normal basis of the ideal (7**').

First we recall some general properties of ambiguous ideals according to
Ullom [3]. Let I/F be a Galois extension of algebraic number field F with
Galois group G, Zy (resp. Zr ) the ring of integers of I (resp. F).

DEFINITION. Anideal U (possibly fractional) of ¥ 13 G -ambiguous or simply
ambiguous iof U 13 invariant under the action of the Galois group G .

Let P be a prime ideal of ' whose decomposition into prime ideals in I is

PZy = (p1-p2-...-pg)°.

Let W(PB) =p1-p2-... pg. It is known that
(1) ¥(P) 1s ambiguous and the set of the all ¥(P) with P prime in F

is a free basis for the group of ambiguous ideals of I\,
(11) An ambiguous ideal U of I may be written in the form Up-T where
T is an ideal of F' and

L/Y():\IJ(‘BI)(” ._'.‘\I}(m{)‘h’ O<aiS(.1»

where ¢; > 1 is the ramification index of a prime ideal of ' dividing B, . The
ideal U determines Up and T uniquely. The ambiguous ideal Ug 1is called a
primitive ambiguous ideal. By [3, Remark 1.7] for K//Q the problem of showing
that an ambiguous ideal of i has a normal basis is reduced to the corresponding
problem for primitive ambiguous ideals.

Ullom (3, Corollary 1.2] has shown that Tr,p(U) = UNF for K/F
tamely ramified. Consequently. if F is a Galois extension of Q and the ideal
U of I has a normal basis over rational integers Z, then U N F has a normal
basis over Z.

We shall prove the following theorem:

678



A NOTE ON NORMAL BASES OF IDEALS

THEOREM 1. Let K/Q be a cyclic extension of prime degree | in which the
prime | 18 unramified. Let m be the conductor of K. Every ambiguous ideal of
K has a normal basis if and only if for any prime p, p|m there is an integer

v € Q(C1) such that |Ngcc,)0(7)| = p-

Remark. If A(Q({;)) = 1, then for any p, p|m there is an integer
¥ € Q(¢1) such that Ngc,)/e(v) = p and so Theorem 1 is an extension of
Theorem 1.10 of (3].

In the following example we show that in the casc class number h(Q((;)) # 1
it is possible that an ambiguous ideal in a tamely ramified cyclic extension I'/Q
of a prime degree [ has not a normal basis.

Example 1. Let Q C ¥ C Q((47) and [K : Q] =23. Let
NQ((“)/[\'(I - C47) = (1 - C47)(1 - 44_7])

The element 1 — (47 generates a normal basis of the ideal (1 — (47) and so

B =Tro(eery/n (1= Car) = 2= (Car + (i7')
generates a normal basis {1, 82,..., 23} of theideal (7) = Trgc,,)/n(1=C(a7).
To see that the ambiguous ideal (%) has not a normal basis consider ideals as
Z -moduls. We then get that the index [(1r) : (7r2)] = 47. If there would exist

a normal basis {aj,az,...,as3} of (72), then there exist ay,ay,...,ay5 € Z

such that a; = a181 + aP82 + - + a3 323 .

We have
Tr wyo((m)) = Tr k(7)) = (p)
and so
23
Y ai=+1.
i=1
Then

[(”) : (7"2)] =47 = | det circoz(ay, aq, . .., az3)]
= 1N@(C23)/Q(al +azCe3 + -+ (123(223”

and this contradicts the well known fact that an integer element v with
[NQ(¢es5)/0(7)] = 47 does not exist in Q((23). m]

Now let Q € K C Q(¢), [K : Q] = [, where [, p are primes with
p =1 (mod [). The primitive ambiguous ideals of ' are

(m), (72), ..., (%Y, where ™ = N, ) n(1=Cp).
Considering ideals (7') as Z-moduls, we have that index [(7'): (x**!)] = p.
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LEMMA 1. Each of the ideals (n'), + = 1,2,...,1 has a normal basis if and
only if there is an integer v € Q((;), such that |Nocc,y0(v)| =p.

Proof. Similarly as in Example 1, the existence of an integer v € Q({i),
|Ng(¢y7o(7)] = p is a necessary condition for the existence of a normal basis for

ideals (7'). Let v be such a element. Then

y=catel+- ol

and _
Y=ea+ec2+--+ca-1 (mod1-¢).

Clearly, there is a unit € € Q((;), such that
ey=1 (mod1l-¢().
Th(;n there is k € Z that
ey +k(L+ G+ 4+ =br+ b4+ b
and by + by + -+ b = £1.
Let a be a positive integer such that the automorphism
o: (pr—

restricted to the field K is nontrivial. Let 7' = o7 and &; be such a unit of K
that ©' = e;m. Then

e ™ TNk = (p)
L=

T No,/n(1=G)

= Noyn(L+ G+ +¢71)

and so

€ = ot (mod 1—¢p).
Denote ¢ =-a®™ . Then ¢! =1 (mod p). Consider all conjugates of
ey = b+ b2+ + 0T € QG-

We have |Ng¢y/0(e7)| = p and ¢' = 1 (mod p) and so there exists for each

1 =1,2,...,1 =1 a unique conjugate ry + r2(; + --- + r,(,l_l of ev, where
(ri,7r9,...,7r1) 1s a permutation of (by,by,...,b;), such that

rAragt o+ ri(g) T =0 (mod p).
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Now we prove that if the ideal (7*) has a normal basis, then the circulant matrix

circ(rl,rg,...,r,)T

transforms a normal basis of the ideal (') to a normal basis of the ideal (7**+1).

Here it follows from previous ideas and the fact that the ideal () has
a normal basis generated by Trq,) k(1 — () that each of the ideals (x'),
t=1,2,...,1, has a normal basis. Let r; + (i +--- + r,(,'_l be such a conju-
gate of ey that ry +rog' +--- 4 r(¢')'™! =0 (mod p).

Let the ideal (7') have a normal basis 1,82, .., i, where Bi+1 = of3;. We
show that o = r1f; + r2f2 + --- + rif; generates a normal basis of the ideal
(w**1). To prove this it is sufficient to show that

Index[(7*) : Zg(k/gle]] = p
and 7't |a. We have

Index[(w‘) : ZG(K/Q)[(I]] = |det circ(ry,7r2,...,711)]
=|(ri + 712+ -+ 1) Noysa(ri +r2li+---+n¢ ™) =p.

Let

/Bl = Tf!T] )

i
- b
By =¢'m'ry

Bi=(erez... 1)1,
where ¢j4+1 = 0¢; and Tj4+1 = o7;. We have
a =7 (rim +reim - +rierez.. .51_1)‘r,) .
We have to show that
m|rim + 7'25;Tz + -+ ri(eres. ..61_1)iT( =T.

It is sufficient to show that
(1-¢)IT.
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From the fact that (, =1 (mod 1 —(;) we have
MEn=-=1=t (mo(ll—cp)

and

E1=€e2=-=¢g-1 =g (modl-¢(,).

Now it is sufficient to show that

ri+rag g =0 (mod 1 —(,).

But
rtrgt gt =0 (mod p)
and so
ritrag' 4+ + gD =0 (mod 1 - ¢p)
and Lemma 1 is proved. 0

Now we shall illustrate Lemma 1 for p = 23 and [ = 11.

Example 2. Let Q C K C Q((23) and [ : Q] =11. As in the proof of
Lemma 1 let m = Ng(¢,q)/i(1—C23). Theideal (1) has a normal basis generated
by Tr () /(1 —C23). Let o be the automorphism that o: (23 — (3. Then

om

£ = =2 (mod 23).

us

If v =144 +¢, then v € Q(¢) and Nocinyyo(y) = 23. The unit
e=1+Cn +CH + ¢, satisties ey =1 (mod 1 — ().

The element v can be expressed in such a form that the sum of coefficients
is equal to one:

ey =1+ +C+G)A+HG+G) —(I+Cu++ ) =1+ - ¢

Let f(¢11) be such a conjugate of 1+ ¢y — ¢§, that f(2') = 0 (mod 23).
Then f((y1) determines the circulant matrix A;, which transforms a normal
basis of the ideal (7') to a normal basis of the ideal (7'*!). In such a way we
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get:

1+ Gy —C8o— A4y = cire(1.1,0,0.0,0,0,0,-1,0,0)"

|

1— ¢ 4 ¢8 — Ay = cire(1,0,0,0,-1,0,1,0,0,0,0)"
14 ¢H = ¢V — Ay = ¢ire(1,0,0,0,1,0,0,0,0,0,-1)"
1+ ¢ 4 ¢ — Ay = cire(1,0,-1,1,0,0,0,0,0,0,0)"
cire(1,0,0,0,0,0,—1,0.0,1,0)"
cire(1,0,1,0,0,-1,0,0,0,0,0)"

f

1 - ;;1 + C;)] — As

I

1+Q|2| _Cir)l | — Al}

148 = ¢ — A7 = ¢ire(1,0,0,0,0,0,0,0,1,-1,0)"

1— (4, — Ag = cire(1,-1,0,0,0,0,0,1,0,0,0)"

il

14¢0 = ¢, — Ay = ¢ire(1,0,0,0,0,1,0,-1,0,0,0)"

~10

1— ¢+ ¢ Ay = ¢ire(1,0,0,-1,0,0,0,0,0,0,1)7.

Proof of Theorem 1. Now consider the general situation.

Let [N :Q] =1, K C Q((n), where m is the smallest number for which
K C Q(Cn). Let m = pypaps ... ps be the factorization of m into the product
of distinct primes. Each p, is totally ramified m I\:

mZy =P
By (3, Theorem 1.9] the ideals P, ¢ = 1,2...,s have a normal basis. If for some
i and for all integers v € Q(¢r) we have [Ny, (7)) # pi, then by the same

reason as in Example 1 the ambiguous ideal P? has not a normal basis.

To prove the converse statement we need the following Lemima.

LEMMA 2. Let QC L,, C Q(¢p,). [Ly, - Q] =1.for it =1,2....5. Then
LK C \/ L, .
1=1

Proof. We have
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with .
H.‘C(Z/p,‘Z) for 1 =1,2,...,s

and the index

(Z/piz) : Hi] =1.

Clearly H = [(Z/mZ)"]l. Let G = G(Q*({m)/K) . It is sufficient to show that

H C G. Let z € (Z/mZ) . The order of the group (Z/mZ) /G equals [ and
so ' € G. We have H C G. O

Suppose now that for any p;, ¢ = 1,2,...,s, there is an integer v; € Q({;)
such that Ngc)/(7i) = pi.- By Lemma 1 any ambiguous ideal of L,,,
i = 1,2...,s, has a normal basis. By [3, Proposition 1.8] any ambiguous ideal

s
of \/ L,; has a normal basis and so by [3, Corollary 1.2] any ambiguous ideal

1=1

of K has a normal basis. This proves Theorem 1.
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