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A NOTE ON NORMAL BASES OF IDEALS 

STANISLAV JAKUBEC* ' — JURAJ KOSTRA •*>>> 

ABSTRACT. Let K/Q be a cyclic tamely ramified extension of prime degree / , 
then any ambiguous ideal of K has a normal basis if and only if for any prime /; 
dividing the conductor of K there is an integer 7 of cyclotomic field (J(C/) such 
that N<Q«,)/Qv7) = P • 

I n t r o d u c t i o n 

Let K/Q be a Galois extension of the rationals. The following necessary 
and sufficient condition for an Abelian extension ,of the rationals Q to have a 
normal integral basis consisting of all conjugates of an integer of A" was given by 
H . W . L e o p o l d t [2]: 

T h e field K should be contained in a cyclotomic field Q((m) generated by 
an ra-th primit ive root of unity with square-free m. This can be equivalently 
reformulated tha t A"/Q is a tamely ramified extension. 

S . U 11 o m [3] reduced the question of existence of normal bases of am­
biguous ideals in a tamely ramified Abelian extension of the rationals Q to the 
corresponding question for ambiguous ideals of the cyclotomic fields over Q . He 
gave a sufficient condition for all the ambiguous ideals in cyclic extension of Q 
of a pr ime degree / to have a normal basis: Let K/Q be a cyclic extension of 
a pr ime degree / in which the pr ime / is unramified. Suppose the class number 
of the cyclotomic field Q(C/) - s o n e - Then every ambiguous ideal of A' has a 
normal basis. 

In the present paper we shall give a necessary and sufficient condition for 
the existence of a normal basis for all ambiguous ideals in a tamely ramified 
cyclic extension K/Q of a prime degree / . This result is a consequence of the 
following: 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 11R33. 
K e y w o r d s : Galois extension, Normal bases, Ambiguous ideal. 
l) Research supported by Slovak Academy of Sciences. Grant 363. 
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Let 

Q C A C Q ( O ) , [ A : Q ] = / , Cp = e2 w ," / P , 

G(Q(C/ ) /Q) - { c r i , ^ , . . . , ^ , } and n = N0iCp)/K(l-CP)-

For ft E K and a E G = G(K/Q) we denote by a/? the action of a on ft. If 

there is an integer 7 ' E Q(G) W l t n ^Q(0)/Q (V) = P' ^hen there is an integer 

7 C Q(C/) with -VQ(O)/Q (7) = P such tha t each of atj for ?! = 1, 2 , . . . , / - 1, 

uniquely determines a circulant matr ix which transforms a normal basis of the 

ideal (nl) to a normal basis of the ideal ( 7 r l + 1 ) . 

First we recall some general properties of ambiguous ideals according to 
U 1 1 o m [3]. Let K/F be a Galois extension of algebraic number field F wi th 
Galois group G , Z/v (resp. 7LF) the ring of integers of A" (resp. F). 

D E F I N I T I O N . An ideal U (possibly fractional) of K is G -ambiguous or simply 
ambiguous if U is invariant under the action of the Galois group G . 

Let ^3 be a pr ime ideal of F whose decomposition into pr ime ideals in A" is 

¥Zh = ( p 1 . p 2 - . . . . p , ) e . 

Let #(<$) = pi • p2 • • • • • Pg • It is known that 

(i) vp(^3) is ambiguous and the set of the all ^(^3) with ty pr ime in F 
is a free basis for the group of ambiguous ideals of A". 

(ii) An ambiguous ideal U of A' may be wri t ten in the form Uo T where 
T is an ideal of F and 

Uo = *OPi)01 • . . .•¥(«£.) '", 0 < « , < r , , 

where c, > 1 is the ramification index of a prime ideal of A" dividing ^3, . The 
ideal U determines Uo and T uniquely. The ambiguous ideal Uo is called a 
primit ive ambiguous ideal. By [3, Remark 1.7] for A ' /Q the problem of showing 
tha t an ambiguous ideal of A' has a normal basis is reduced to the corresponding 
problem for primitive ambiguous ideals . 

U l l o m [3, Corollary 1.2] has shown that Tr ,</F(U) = U HF for K/F 

tamely ramified. Consequently, if F is a Galois extension of Q and the ideal 
U of Â  has a normal basis over rational integers Z , then U H F has a normal 
basis over Z . 

We shall prove the following theorem: 
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T H E O R E M 1. Let A"/Q be a cyclic extension of prime degree I in which the 
prime I is unramified. Let m be the conductor of K . Every ambiguous ideal of 
I\ has a normal basis if and only if for any prime p, p\m there is an integer 

7 e Q(0) such that \N®(o)/®h)\ = p-

R e m a r k . If b(Q(C/)) = 1? then for any p, p\m there is an integer 

7 £ Q(C/) such tha t - V Q ( C / ) / Q ( 7 ) — p and so Theorem 1 is an extension of 

Theorem 1.10 of [3]. 

In the following example we show that in the case class number b(Q(C/)) / 1 
it is possible tha t an ambiguous ideal in a tamely ramified cyclic extension A' /Q 
of a pr ime degree / has not a normal basis. 

E x a m p l e 1. Let Q c A ' C Q(C4?) and [A" : Q] = 2 3 . Let 

^Q(C47)/K(1 - C47) = (1 - C47)(l - C4V) • 

T h e element 1 — C47 generates a normal basis of the ideal (1 — C47) and so 

A = Tr Q ( C 4 7 ) / A - ( l _ (47) = 2 - ((47 + C4V) 

generates a normal basis {/3\, / 3 2 , . . . , foz} of the ideal (IT) = ^Q((;47)/h(1 — C47) • 

To see tha t the ambiguous ideal (7r2) has not a normal basis consider ideals as 

Z-modu l s . We then get tha t the index [(7r) : (TT2)] = 4 7 . If there would exist 

a normal basis {ori, a 2 , . . . , a 2 3 } of (TT 2 ) , then there exist ay, a 2 , . . . , a23 £ Z 

such tha t a\ = a\(3\ + a2/32 + • • • + a2 3 /32 3 . 

We have 
Tr/v/Q((rr)) = Tr A-/Q((TT2)) = (p) 

n d 
23 

Then 

2 > = ±i. 
1=1 

[(w) : (TT2)] = 47 = | d e t c i r c 2 3 ( a i , a 2 , . . . , a 2 3 ; 

= |^Q(C23)/Q(al + «2C23 + ' • ' + «23C|.?)| 

and this contradicts the well known fact that an integer element 7 with 

lArQ(C23)/Q(7)l = 47 does not exist in Q((23)- • 

Now let Q C A' C Q(C/>), [A' : Q] = / , where I, p are primes with 
p = 1 (mod / ) . The primitive ambiguous ideals of A" are 

(n),(n2),...,(7rl), where TT = jVQ(Cp)/A-(l - (p). 

Considering ideals (7r2) as Z-moduls , we have that index [(7rz) : (7r I+1)j =p. 
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LEMMA 1. Each of the ideals (nl), i = 1 ,2 , . . . , / has a normal basis if and 
only if there is an integer 7 E Q((/) , such that \Nq^lyq(j)\ — p. 

P r o o f . Similarly as in Example 1, the existence of an integer 7 E Q((/) , 
\NQ(Q)/Q(J)\ — P is a necessary condition for the existence of a normal basis for 
ideals (7rl). Let 7 be such a element. Then 

7 = ci + c2(/ + • • • + c/_i(/~2 

and 
7 = ci + c2 H h c/_i (mod 1 - ( / ) . 

Clearly, there is a unit e G Q((/) , such that 

£7 = 1 (mod 1 — (/) . 

Then there is k E Z that 

ej + *(1 + (/ + • • • + C/-1) - &1 + b2(/ + ..- + &, C/"1 

and 61 +62 + ••• + &/ = ± 1 . 
Let a be a positive integer such that the automorphism 

restricted to the field A" is nontrivial. Let n' = an and e\ be such a unit of K 
that 7r' — e ^ . Then 

n ^Q(CP)/f<\1 ~ ( p ) 

and so 
£1 = a ' (mod 1 — (p). 

Denote g —'a 7 . Then g = 1 (mod p) . Consider all conjugates of 

57 = 6, + 620 H — +- 6/C/_1 eQ(C/ ) . 

We have [ A ^ x o ) / ^ ^ ) ! = /> and gl ~ \ (mod p) and so there exists for each 
i — 1, 2 , . . . , / — 1 a unique conjugate Ti + /*2G + *' * + r /C/ _ 1 °-* ^7 i where 
(r , , r 2 , . . . , r\) is a permutation of (b\, 6 2 , . . . , b\), such that 

r, + r2ff' + • • • + n ( ^ , ) / - 1 = 0 (mod p). 
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Now we prove tha t if the ideal (7T*) has a normal basis, then the circulant matr ix 

c i r c ( r ! , r 2 , . . . , r i ) T 

t ransforms a normal basis of the ideal (7rl) to a normal basis of the ideal (7 r , + 1 ) . 

Here it follows from previous ideas and the fact that the ideal (71-) has 

a normal basis generated by T r ^ ) / A ' ( 1 — C) that each of the ideals (7r l), 

i = 1, 2 , . . . , / , has a normal basis. Let r\ + r2C/ + • • • + n C / _ 1 he such a conju­

gate of 67 tha t r i + r2g
l + • • • + ri(g1)1"1 = 0 (mod p). 

Let the ideal (7r*) have a normal basis (3\, / 3 2 , . . . , fit, where (3j+\ = ofi, . We 
show tha t a — r\fl\ + r 2 /3 2 + • • • + r//3/ generates a normal basis of the ideal 
(7T,+ 1 ) . To prove this it is sufficient to show that 

Index [(TT*) : ZG(K/Q)[a]] = p 

and 7r ,+1 I a . We have 

Index [(7T1) : ZG(tf/Q)[a]] = | det c i r c ^ , r 2 , . . . , r / ) | 

= | ( n + r2 + • • • + r/) /VQ ( C / ) / Q(r i + r2C/ + • • • + r /C/"1 )| = p. 

Let 

Pi = *V, , 

ft = - V r 2 , 

/3/ = ( £ i £ 2 . . . 6 / _ i ) l 7 r l r / , 

where 6j+\ = crej and rj+i = OTJ . We have 

a = 7r l(riri + r 2 £ i r 2 -\ \-rl(e\62 ...!5/_i)lr/) . 

We have to show tha t 

7 r |nT i +r2e\r2 + ••• + r /(£i£2 ... £ / - i )V/ = T . 

It is sufficient to show tha t 

( i -<, ) l .r. 
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From the fact tha t (P = 1 (mod I - (P) we have 

TT = r2 = • • • = r/ = * (mod 1 - (p) 

and 

£i = e2 = • • • = £/-i -= g (mod 1 - CP). 

Now it is sufficient to show tha t 

r i + r2g
l + • • • + rig

l{l~1^ = 0 (mod 1 - CP) • 

But 

r i + r2g
l + • • • + r ^ ' " 1 ) = 0 (mod p) 

and so 

r i + r2g
l + • - • + r / ^ ' " 1 ) = 0 (mod 1 - CP) 

and L e m m a 1 is proved. • 

Now we shall i l lustrate Lemma 1 for p — 23 and / — 1 1 . 

E x a m p l e 2. Let Q c A ' C Q(C23) and [ Jv : Q] = 1 1 . As in the proof of 

L e m m a 1 let n = NQ^23y^(l — C23) • The ideal (n) has a normal basis generated 

by TrQ(^2 3)/A-(l — C'23)- Let a be the automorphism tha t a: (23 \—> C23 • Then 

e, = — = 2 (mod 23) . 
7T 

If 7 = 1 + CiS + CiV then 7 G Q(Cn) and - V Q ( C l l ) / Q ( 7 ) - 2 3 . The unit 

£ = 1 + C11 + C?i + C?i satisfies 57 = 1 (mod 1 - C11) • 

T h e element £7 can be expressed in such a form that the sum of coefficients 
is equal to one: 

^ T = ( 1 - h C n +Cf i + C ? i ) ( H - C f i + C ? i ) - (1 + C11 + - - - + C11,0) = 1 + C11 -Ci 8 , -

Let /(C11) be such a conjugate of 1 + Cn - Cu tha t f(2l) = 0 (mod 23) . 
T h e n /(C11) determines the circulant mat r ix Ax;, which t ransforms a normal 
basis of the ideal (nl) to a normal basis of the ideal (nl+!). In such a way we 
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get: 

1 + C n - C ? i •—> -4, = c i r c ( 1,1,0,0, 0 , 0 , 0 , 0 , - 1 , 0 , 0 ) r 

1 - Ci4i + Cl\ '—> M = c i r c ( l , 0 , 0 , 0 , - 1 , 0 , 1 , 0 , 0 , 0 , 0 ) 7 ' 

1 + Ci*i - CM '—y A'i = c i r c ( 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , - 1 ) ' ' 

1 + Ci2, + C n '—> M = c i r c ( l , 0 , - 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) ' ' 

1 -Cf , + CM '—• M = c i r c ( l , 0,0, 0 , 0 , 0 , - 1 , 0 . 0 , 1 , 0 ) ' ' ' 

1 + C?i - C f i '—• A6 = c i r c ( l , 0 , 1 , 0 , 0 , - 1 , 0 , 0 , 0 , 0 , 0 ) ' ' 

1 + Cf. ~ Cn '—> Ai = c i r c ( l , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , - 1 , 0 ) ' ' ' 

1 — Ci l + C n ^ ^ 8 = c i r c ( 1 , - 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 ) ' ' 

1 + d i - C M '—• A'J = c i r c ( l , 0 , 0 , 0 , 0 , 1 , 0 , - 1 , 0 , 0 , 0 ) ' ' 

1 - C ? i + C M • — • ^ I O = c i r c ( l , 0 , 0 , - 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ) ' ' ' . 

D 

P r o o f o f T h e o r e m 1. Now consider the general s i tuat ion. 

Lot [A' : Q] = / , A' C Q(Cm), whore ??) is the smallest number for which 
A' C Q(Cm)- Let ?)? = p\])2p3 • • -Pa he the factorization of ??) into the product 
of distinct primes. Each p, is totally ramified in A': 

PXZK = P;. 

By [3, Theorem 1.9] the ideals Px , i = 1, 2 . . . , .s have a normal basis. If for some1 

i and for all integers -) £ Q( ( / ) we have \NQ^t)/Q(j)\ / px;, then by the same 

reason as in Example 1 the ambiguous ideal Pf has not a normal basis. 

To prove the converse s tatement we need the following Lemma. 

L E M M A 2 . Let Q C LPi C Q ( ( P t ) , [LPi : Q] = / , for i = l , 2 , . . . . s . Then 

9 

A' C V LP. • 
1=1 

P r o o f . We have 

9 K 

x ••• x / / , = H G(Q(C,„)/ V- ' / • • • ) - I I i XII2 
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with 

and the index 

я,c for i = 1,2,. 

[(Z/p.Z)* :Hi]=l. 

, S 

Clearly H = [(Z/mZ)*] ' . Let G = G(Q*(Cm)/K) . It is sufficient to show that 

BCG.Let x £ (Z /mZ) ' . The order of the group ( Z / m Z ) ' / G equals / and 

s o i ' G G . W e have H CG. D 

Suppose now that for any p j , i = 1,2,. . . , s, there is an integer 7, £ Q((/) 
such that 1VQ(£.)/Q(7i) — pi . By Lemma 1 any ambiguous ideal of LPi , 
i = 1,2. . . , s, has a normal basis. By [3, Proposition 1.8] any ambiguous ideal 

s 

of \J LPi has a normal basis and so by [3, Corollary 1.2] any ambiguous ideal 
1 = 1 

of K has a normal basis. This proves Theorem 1. 
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