Mathematica Slovaca

Ivan Korec

A density estimate for the $3 x+1$ problem

Mathematica Slovaca, Vol. 44 (1994), No. 1, 85--89

Persistent URL: http://dml.cz/dmlcz/133225

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1994

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

A DENSITY ESTIMATE FOR THE $3 x+1$ PROBLEM

IVAN KOREC ${ }^{1}$
(Communicated by Štefan Porubský)

Abstract

The set of those initial values y for which a value less than $y^{0.7925}$ is eventually reached after several steps of the algorithm from the $3 x+1$ problem (called also Syracuse problem, Collatz-Kakutani problem, etc.) has asymptotic density 1.

Let \mathbb{N} denote the set of nonnegative integers, and define for $y \in \mathbb{N}$

$$
T(y)=\frac{3 y+1}{2} \quad \text { if } y \text { is odd, } \quad T(y)=\frac{y}{2} \quad \text { if } y \text { is even. }
$$

Further, denote $T^{0}(y)=y$ and $T^{n+1}(y)=T\left(T^{n}(y)\right)$ for every $n, y \in \mathbb{N}$. By a well-known hypothesis, for every positive integer y there is n such that $T^{n}(y)=1$; for references see e.g. [5]. This hypothesis is equivalent to the statement that for every positive integer y there is n such that $T^{n}(y)<y$. C. J. Everett [3] and R.Terras [6] proved that the asymptotic density of

$$
\begin{equation*}
\left\{y \in \mathbb{N} \mid(\exists n)\left(T^{n}(y)<y\right)\right\} \tag{1}
\end{equation*}
$$

is equal to 1 . Remember that the asymptotic density of a set $M \subseteq \mathbb{N}$ is defined as $\lim _{x \rightarrow \infty} \frac{\operatorname{card}\{y \in M \mid y<x\}}{x}$. In the present paper, there will be proved a similar result in which $T^{n}(y)<y$ will be replaced by a stronger inequality $T^{\prime \prime}(y)<y^{0.7925}$. More precisely, it will be proved:

THEOREM 1. For every real $c>\log _{4} 3(=0.79248125 \ldots)$ the set

$$
\begin{equation*}
M_{c}=\left\{y \in \mathbb{N} \mid(\exists n)\left(T^{n}(y)<y^{c}\right)\right\} \tag{2}
\end{equation*}
$$

has asymptotic density 1.

AMS Subject Classification (1991): Primary 11B83. Secondary 11B37.
Ker words: Syracuse problem.
${ }^{1}$ This work was supported by Crrant 363 of Slovak Academy of Sciences.

Notice that n in (2) is not bounded (as we shall see from the proof. it could be bounded by $\log _{2} y$, but it could not be bounded independently of y). As a referee informed me, a similar result is contained also as a special case in [1]. with however a larger bound $\frac{3}{2}-\log _{3} 2=0.86907 \ldots$ for $($ A similar result (more general, but without explicitly given constants) is obtained also in [1]. A strengthening of [3] is contained in [2], where the inequality $T^{i}(y)<y$ is requested for k consecutive values of i. A further related result was obtained in R . Terras [6], [7]: let $D(k)$ denote the asymptotic density of the set $\left\{y \in \mathbb{N} \mid(\exists n \leq k)\left(T^{n}(y)<y\right)\right\} ;$ then $\lim _{k \rightarrow \infty} D(k)=1$.

In the proof of Theorem 1, we shall need some notation and results from $[6]$. For $k, m, y \in \mathbb{N}$ and a real d we define:

$$
\begin{aligned}
X_{k}(y) & = \begin{cases}1 & \text { if } T^{k}(y) \text { is odd }, \\
0 & \text { if } T^{k}(y) \text { is even },\end{cases} \\
E_{k}(y) & =\left(X_{0}(y), X_{1}(y), \ldots, X_{k:-1}(y)\right), \\
S_{k}(y) & =X_{0}(y)+X_{1}(y)+\cdots+X_{k-1}(y), \\
U(m, d) & =\operatorname{card}\left\{y \in \mathbb{N} \mid 0 \leq y<2^{m} \text { and } S_{m}(y) \leq m d\right\} .
\end{aligned}
$$

Lemma 1. For every $x, y, m \in \mathbb{N}$

$$
E_{m}(x)=E_{m}(y) \quad \text { if and only if } \quad x \equiv y \quad\left(\bmod 2^{\prime \prime \prime}\right)
$$

This is the Periodicity theorem 2.1 from [6] (contained also in [3] in a more general form). It shows that $y \mapsto E_{m}(y)$ is a bijection between any set of $2^{\prime \prime}$ consecutive nonnegative integers and the set $\{0,1\}^{m}$. Further, it implies

$$
\operatorname{card}\left\{y \in \mathbb{N} \mid \quad b \leq y<b+2^{m} \text { and } S_{m}(y) \leq m d\right\}=U(m, d)=\sum_{k=0}^{\lfloor m d\rfloor}\binom{m}{k_{i}}
$$

in particular, this cardinality does not depend on b. We shall also need the following easy consequence of the central limit theorem:

LEMMA 2. For any real $d>\frac{1}{2}$ there holds $\lim _{m \rightarrow \infty} \frac{U(m, d)}{2^{\prime \prime}}=1$.

A DENSITY ESTIMATE FOR THE $3 x+1$ PROBLEM

Proof of Theorem 1. Let $\varepsilon>0$ and $c>\log _{4} 3$ be given. Without loss of generality, $\varepsilon<1$ and $c<1$ can be assumed.

Since obviously card $\left\{y \in M_{c} \mid y<a\right\} \leq a$, it suffices to prove

$$
\operatorname{card}\left\{y \in M_{c} \mid y<a\right\} \geq(1-\varepsilon) \cdot a
$$

for every sufficiently large a (i.e. for every integer $a \geq a_{0}$, where $a_{0}=a_{0}(c, \varepsilon)$ will be fixed later). Consider such a and find the least positive integer m such that $a \leq m^{2} \cdot 2^{m}$. Now let us consider arbitrary y satisfying

$$
\begin{equation*}
m \cdot 2^{m} \leq y<a \tag{3}
\end{equation*}
$$

and let us look for a simple condition which implies $y \in M_{c}$.
Set $d=\frac{1}{2} \cdot\left(\frac{c}{\log _{4} 3}+\frac{1}{2}\right)$. Since $c>\log _{4} 3$, we have $\frac{1}{2}<d<\frac{c}{\log _{2} 3}$.
CLAIM. There is $n_{1}=n_{1}(c)$ such that, if $m \geq n_{1}$, then the inequalities (3) and $S_{m}(y)<m d$ imply $y \in M_{c}$.

Clearly, it suffices to prove $T^{m}(y)<y^{c}$. Let us denote $k=S_{m}(y)$ the number of ones in the sequence $E_{m}(y)$, i.e. the number of odd integers among

$$
T^{0}(y), T^{1}(y), \ldots, T^{m-1}(y)
$$

Since $T^{p}(y) \geq \frac{y}{2^{p}}>\frac{m \cdot 2^{m}}{2^{m}}=m$ for every $p<m$, we have

$$
\begin{aligned}
T^{m}(y) & =y \cdot \frac{T^{1}(y)}{T^{0}(y)} \cdot \frac{T^{2}(y)}{T^{1}(y)} \cdots \cdots \frac{T^{m}(y)}{T^{m-1}(y)}<y \cdot\left(\frac{3 m+1}{2 m}\right)^{k} \cdot\left(\frac{1}{2}\right)^{m-k} \\
& =y \cdot \frac{1}{2^{m}} \cdot 3^{k} \cdot\left(1+\frac{1}{3 m}\right)^{k} \leq y \cdot \frac{3^{k}}{2^{m}} \cdot\left(1+\frac{1}{3 m}\right)^{m}<y \cdot \frac{3^{k}}{2^{m-1}}
\end{aligned}
$$

Therefore $y \in M_{c}$ whenever $y \cdot \frac{3^{k}}{2^{m-1}} \leq y^{c}$, i.e. $y^{1-c} \cdot 3^{k} \leq 2^{m-1}$, and this holds whenever

$$
\left(m^{2} \cdot 2^{m}\right)^{1-c} \cdot 3^{k} \leq 2^{m-1}
$$

The last inequality is equivalent to

$$
\begin{equation*}
\frac{k}{m} \leq \frac{c}{\log _{2} 3}-\frac{1+2(1-c) \log _{2} m}{m} \tag{4}
\end{equation*}
$$

Since $\lim _{m \rightarrow \infty} \frac{1+2(1-c) \log _{2} m}{m}=0$, there is $n_{1}=n_{1}(c)$ such that for every $m \geq n_{1}$ the inequality $\frac{k}{m}<d$ implies (4), and hence also $T^{m}(y)<y^{c}$. So the claim is proved.

Let us divide the integers (3) into $L(a)$ pairwise disjoint sets each of which consists of 2^{m} consecutive integers (and, maybe, one smaller set). Since $a>(m-1)^{2} \cdot 2^{m-1}$, the number of such sets is

$$
\begin{aligned}
L(a) & =\left\lfloor\frac{a-m \cdot 2^{m}}{2^{m}}\right\rfloor \geq \frac{a}{2^{m}}-1-m=\left(1-\frac{(m+1) \cdot 2^{m}}{a}\right) \cdot \frac{a}{2^{m}} \\
& \geq\left(1-\frac{(m+1) \cdot 2^{m}}{(m-1)^{2} \cdot 2^{m-1}}\right) \cdot \frac{a}{2^{m}}=\left(1-\frac{2 m+2}{(m-1)^{2}}\right) \cdot \frac{a}{2^{m}}>\left(1-\frac{\varepsilon}{2}\right) \cdot \frac{a}{2^{m}}
\end{aligned}
$$

whenever $m \geq n_{2}$ for some $n_{2}=n_{2}(\varepsilon)$.
We have $d>\frac{1}{2}$, and therefore, by Lemma 2, there is $n_{3}=n_{3}(c, \varepsilon)$ such that for all $m \geq n_{3}$

$$
U(m, d) \geq\left(1-\frac{\varepsilon}{2}\right) \cdot 2^{m}
$$

Now we are able to choose a_{0} : let $n=\max \left(n_{1}, n_{2}, n_{3}\right)$ and $a_{0}=n^{2} \cdot 2^{n}$. For arbitrary integer $a \geq a_{0}$ we have $m \geq n$, and hence
$\operatorname{card}\left\{y \in M_{c} \mid y<a\right\} \geq L(a) \cdot U(m, d) \geq\left(1-\frac{\varepsilon}{2}\right) \cdot \frac{a}{2^{m}} \cdot\left(1-\frac{\varepsilon}{2}\right) \cdot 2^{m}>(1-\varepsilon) \cdot a$.
which completes the proof.

The following examples show that Theorem 1 cannot be immediately derived from $\lim _{k \rightarrow \infty} D(k)=1$, and that diminishing the bound for c in Theorem 1 could be nontrivial.

Example 1. Let the function $t: \mathbb{N} \rightarrow \mathbb{N}$ be defined by

$$
t(y)= \begin{cases}y & \text { if } y \text { is a square } \\ y-1 & \text { otherwise }\end{cases}
$$

A DENSITY ESTIMATE FOR THE $3 x+1$ PROBLEM

Let the iterations t^{i} of the function t be defined in the usual way (i.e. like T^{i} above). Then for every $k \geq 1$ the set

$$
\left\{y \in \mathbb{N} \mid(\exists n \leq k)\left(t^{n}(y)<y\right)\right\}
$$

has asymptotic density 1 . However, for every $c<1$ the set

$$
\left\{y \in \mathbb{N} \mid(\exists n)\left(t^{n}(y)<y^{c}\right)\right\}
$$

is finite, and hence its asymptotic density is 0 .
Example 2. Let $0<d<1$, and let the function $t: \mathbb{N} \rightarrow \mathbb{N}$ be defined by

$$
t(y)= \begin{cases}y & \text { if } y=0 \text { or } y \text { is a power of } 2, \\ 2^{\left\lfloor d \cdot \log _{2} y\right\rfloor} & \text { otherwise. }\end{cases}
$$

Then the set $\left\{y \in \mathbb{N} \mid(\exists n)\left(t^{n}(y)<y^{c}\right)\right\}$ has asymptotic density 1 if $c>d$ and asymptotic density 0 if $c<d$.

REFERENCES

[1] ALLOUCHE, J.-P.: Sur la conjecture de 'Syracuse-Kakutani-Collatz'. In: Seminar de Théorie des Nombres. Exp. No. 9, CNRS Talence, 1978-1979.
[2] DOLAN, J. M.-GILMAN, A. F.-MANICKAM, S. : A generalization of Everett's result on the Collatz $3 x+1$ problem, Adv. in Appl. Math. 8 (1987), 405-409.
[3] EVERETT, C. J.: Iteration of the number theoretic function $f(2 n)=n, f(2 n+1)=3 n+2$, Adv. Math. 25 (1977), 42-45.
[4] HEPPNER, E.: Eine Bemerkung zum Hasse-Syracuse-Algorithmus, Arch. Math. (Basel) 31 (1978), 317-320.
[5] LAGARIAS, J. C.: The $3 x+1$ problem and its generalizations, Amer. Math. Monthly 92 (1985), 3-23.
[6] TERRAS, R.: A stopping time on the positive integers, Acta Arith. XXX (1976), 241-252.
[7] TERRAS, R.: On the existence of a density, Acta Arith. XXXV (1979), 101-102.

Received April 30, 1992
Revised January 27, 1993

Mathematical Institute
Slovak Academy of Sciences
Štefánikova 49
SK-814 73 Bratislava
Slovakia

