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A DENSITY ESTIMATE FOR THE 3x + 1 PROBLÉM 

lVAN K O R E C 1 

(Communicated by Stefan Porubský) 

ABSTRACT. The set of those initial values y for which a value less than y°-7925 

is eventually reached after several steps of the algorithm from the 3x -j- 1 
problem (called also Syracuse problem, Co l latz-Kakutani problem, etc.) has 
asymptotic density 1 . 

Let N denote the set of nonnegative integers, and define for y G N 

T(y) = — « — i f y i s o d d ' T ^ ~ 2 i f y i s e v e n * 

Further, denote T°(y) = y and Tn+1(y) = T(Tn(y)) for every n,y G N. 
By a well-known hypothesis, for every positive integer y there is n such that 
Tn(y) = 1; for references see e.g. [5]. This hypothesis is equivalent to the 
statement that for every positive integer y there is n such that Tn(y) < y. 
C . J . E v e r e t t [3] and R . T e r r a s [6] proved that the asymptotic den
sity of 

{y€N\ (Bn)(Tn(y)<y)}; (1) 

is equal to 1. Remember that the asymptotic density of a set M C N is defined 
.. cardjH G M I y < x\ 

as Inn !: . In the present paper, there will be proved a 
x—>oc X 

similar result in which Tn(y) < y will be replaced by a stronger inequality 
T" (y) < y0-7925 . More precisely, it will be proved: 

THEOREM 1. For every real c > log4 3 ( = 0.79248125 . . . ) the set 

Mc = {yeN\ (3n)(Tn(y)<yc)} (2) 

has asymptotic density 1 . 

A MS S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 11B83. Secondary 11B37. 
K e y w o r d s : Syracuse problem. 
1 This work was supported by Grant 363 of Slovak Academy of Sciences . 
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Notice t h a t n in (2) is not bounded (as we shall see from the proof, it could 

be bounded by log2 y, but it could not be bounded independent ly of y). As a 

referee informed me, a similar result is contained also as a special case in flj. 

with however a larger bound | — log3 2 == 0 .86907 . . . for c. A similar result 

(more general, bu t wi thout explicitly given constants) is obta ined also in [ll. 

A s t rengthening of [3] is contained in [2], where the inequali ty T'(y) < y is 

requested for k consecutive values of i. A further rela ted result was obta ined 

in R . T e r r a s [6], [7]: let D(k) denote the asympto t ic density of the set 

{y e N | (3n < k)(Tn(y) < y)}>- then lim D(k) = 1. 

In the proof of Theorem 1, we shall need some nota t ion and results from [6j. 
For A', m, y £ N and a real d we define: 

/ 1 if Tk(y) is odd, 
Xk(y) = < 

[ 0 if T (H) is even, 

Ek(y) = (X0(y),X1(y),...,Xk-i(y)), 

Sk(y) = X0(y) +X1(y) + -- + X^y), 

U(m, d) = card{i/ £ N | 0 < y < 2 m and Sm(y) < md } . 

LEMMA 1. For every x,y,m £ N 

Em(x) = Eni(y) if and only if x = y (mod 2"?) . 

This is the Periodicity theorem 2.1 from [6] (contained also in [3] in a more 
general form). It shows t ha t y H-» E7n(y) is a bijection between any set of 2'" 
consecutive nonnegat ive integers and the set {(), l } m . Fur ther , it implies 

l»><!\ , 

card{H G N | b < y < b + 2 m and Srn(y) <md}= U(m, d) = ^ ( "* 

A- = () ^ 

in par t icular , this cardinali ty does not depend on b. We shall also need the 
following easy consequence of the central limit theorem: 

LEMMA 2 . For any real d > — there holds lim —^ = 1 . 
2 m—>oc 2 
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P r o o f of T h e o r e m 1. Let e > 0 and c > log4 3 be given. Without 
loss of generality, e < 1 and c < 1 can be assumed. 

Since obviously card{^ G Mc \ y < a} < a, it suffices to prove 

card{H G Mc \ y < a} > (1 — e) • a 

for every sufficiently large a (i.e. for every integer a > a0 , where a0 = a(J(c, e) 
will be fixed later). Consider such a and find the least positive integer m such 
that a < m2 - 2m . Now let us consider arbitrary y satisfying 

m • 2 m < y < a (3) 

and let us look for a simple condition which implies y G Mc . 

Set d = -i- • ( T—^y + 4-) • Since c > log4 3 , we have — < d < 
log43 2)' &4 ' 2 ^ log23 * 

CLAIM. There is ri\ = n\(c) such that, if m > n\ . lben lbe inequalities (3) 
and Srn(y) < md imply y G Aic . 

Clearly, it suffices to prove Trn(y) < yc. Let us denote k = Sm(y) the 
number of ones in the sequence Em(y), i.e. the number of odd integers among 

T°(y),T1(y),---,Tm-1(y). 

V m 2 m 

Since Tp(y) > -^ > ' — m for every p < m, we have 

r»(v) = v 1^-) --± ...-_^<v.(^±l\k.(Vm~k 

[y) y r\y) T\y) T--i(y) V 2m ) \2, 

Therefore y G Mc whenever H • m_1 < yc , i.e. H1_f: • 3fc < 2 m _ 1 , and this 

holds whenever 
(m2 - 2m)1~c - 3k < 2 m ~ 1 . 

rFhe last inequality is equivalent to 

k_ K _ c l + 2 ( l - c ) l o g 2 m 

m ~ log2 3 rn 
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C ; _ к™ l + 2 ( l - c ) l o g 2 m 
Since lim - — = 0, there is n\ = ni(c) such that for every 

m—»oo 
k m > n\ the inequality — < d implies (4), and hence also Trn(y) < yc . So the 

claim is proved. 

Let us divide the integers (3) into L(a) pairwise disjoint sets each of which 
consists of 2 m consecutive integers (and, maybe, one smaller set). Since 
a > (m — l ) 2 • 2 m _ 1 , the number of such sets is 

Цa) 
a — m • 2r 

2 m 

a { (m + l ) - 2 m \ a 
> l - m = 1 - ^——-+ 
_ 2 m V a 2m 

(m + l ) - 2 m \ a _ f 2m + 2 \ __ f e\ __ 

~ l ( m - l ) 2 - 2 m - V 2 m V ( m - l ) 2 y 2 m V 2 ) 2m 

whenever m > n2 for some n2 = n2(e) 

We have d > ^ 

that for all m > n% 

We have d > — , and therefore, by Lemma 2, there is n3 = n3(c,e) such 

U(m,d)> ( l - | j . 2 m . 

Now we are able to choose a 0 : let n = max(ni, n 2 , n 3 ) and a 0 = n 2 • 2n . For 
cirbitrary integer a > a 0 we have m > n, and hence 

c a r d f r G M d y < a} > L(a)-U(m,d) > (l- 0 — • ( l - | ) -2"' > (1 -e)-a . 

which completes the proof. • 

The following examples show that Theorem 1 cannot be immediately derived 
from lim D(k) = 1, and that diminishing the bound for c in Theorem 1 could 

be nontrivial. 

E x a m p l e 1. Let the function t: N —> N be defined by 

y if y is a square, 
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t(y) , 
y — 1 otherwise. 
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Let the iterations tl of the function t be defined in the usual way (i.e. like Tl 

above). Then for every k > 1 the set 

{yeN\ (3n<k)(tn(y)<y)} 

has asymptotic density 1. However, for every c < 1 the set 

{yeN\ (3n)(tn(y)<yc)} 

is finite, and hence its asymptotic density is 0. 

E x a m p l e 2. Let 0 < d < 1, and let the function t: N —> N be defined 
by 

( y if y = 0 or y is a power of 2, 

W) ~ \ 2[>-og2vJ otherwise. 

Then the set {y G N | (3n) (tn(y) < yc)} has asymptotic density 1 if c > d 
and asymptotic density 0 if c < d. 
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