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TWO REMARKS ON DUALLY RESIDUATED 
LATTICE ORDERED SEMIGROUPS 

T O M A S KOVAR 

(Communicated by Tibor Katrifidk ) 

ABSTRACT. It is proved tha t in a system of axioms of a dually residuated 
lattice ordered semigroup, the identity x — x > 0 is implied by the remaining 
axioms. Further, S w a r a y ' s problem of whether certain autometrics in a dually 
residuated lattice ordered semigroup are identical is solved. 

Dually residuated lattice ordered semigroups are certain ordered algebraic 
structures that generalize simultaneously abelian lattice ordered groups and 
Brouwerian algebras. They were introduced in the mid-60's b y K . L . N . S w a m y 

[2]-
An algebra A = (A; 0; +; - ; A; V) of type (0; 2; 2; 2; 2) is a Dually Residuated 

Lattice Ordered Semigroup (abbreviated as a DRi-semigroup) if the following 
holds: 

(i) (A] 0; +; A; V) is a commutative lattice ordered monoid, that is: 

(a) (A\ 0; + ) is a commutative monoid, 
(b) (A; A; V) is a lattice (the induced order is denoted by < ) , 
(c) (x A y) + z = (x + z) A (y + z) for all x, y, z G A, 
(d) (xVy) + z = (x + z) V (y + z) for all x,y,ze A, 

(ii) (x — y) + y > x, and if z + y > x, then z > x — y for all x,y,z G A, 
(iii) (x-y)V0 + y<xVy for all x, y G A, 
(iv) x — x > 0 for each x G A . 

1. LEMMA, (cf. also [2; Lemma 2]) Let A = (A; 0; +; —; A; V) be an algebra of 
type (0; 2; 2; 2; 2) satisfying the conditions (i), (ii) and (iii). / / x G A and x < 0. 
then ( 0 - x ) V 0 + x = 0. 

P r o o f . From (iii) it follows that ( 0 - x ) V 0 + x < x V 0 = 0 and (i) yields 
( 0 - x ) V 0 + x = [ ( 0 - x ) + x ] V x > 0 V x - = 0 . • 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 06F05. 
K e y w o r d s : autometric , Brouwerian algebra, lattice ordered group, lattice ordered monoid. 
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2. THEOREM. In an algebra A = (A; 0; +; - ; A; V) of type (0;2;2;2;2) satis
fying the conditions (i) ; (ii) and (iii). the following identity holds: 

x — x = 0. 

P r o o f . From 0 + x > x it follows 0 > x — x and [(x — x) + (x — x)]+x = 
(x — x) + [(x — x) + x] > (x — x) + x > x yields (x — x) + (x — x) > x — x. 
By Lemma 1 we conclude x — x = {[0 — (x — x)] V 0 + (x — x)} + (x — x) = 
[0-(x-x)]v0+ [(x - x) + (x - x)] > [0 - (x - x)] V 0 + (x - x) = 0. Hence 
x - x = 0. D 

3. COROLLARY. The axiom (iv) is not independent. 

In a DRi -semigroup, the following autometrics were introduced by S w a m y , 
[2] and [3]: 

x * y = (x — y) V (y — x) and x-ky = (x — y)V 0 + (y — x) \/ 0 . 

The following theorem offers a solution of S w a m y ' s problem ([3]), whether 
these autometrics are identical. 

4. THEOREM. In any DR£-semigroup, the following identity holds: 

(x - y) V 0 + (y - x) V 0 = (x - y) V (y - x). 

P r o o f . [2; Lemmas 1, 4, 5, 11 and 15] yield (x-y)V0+(y-x)V0 = (x-y)V 
(y-y) + (y-x)V(y-y) = (xVy-y) + (y-xAy) = (xVy-xAy) = (x-y)y(y-x). 

D 

5. COROLLARY. Swamy's autometrics are identical. 
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