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GENERALIZED STRONGLY (V, A)-SUMMABLE 
SEQUENCES DEFINED BY ORLICZ FUNCTIONS 

M l K A I L E T — QlGDEM A . B E K T A § 

(Communicated by L'ubica Hold) 

A B S T R A C T . The idea of difference sequence spaces was introduced in [KIZ-
MAZ, H.: On certain sequence spaces, Canad. Math . Bull. 24 (1981), 169-176] 
and this concept was generalized in [ET, M.—QOLAK, R.: On some gener­
alized difference sequence spaces, Soochow J. Math. 2 1 (1995), 377-386]. In 
this paper we introduce concepts of Am-s tat is t ical convergence and strongly 
(V, A) (A m ) - summable sequence with respect to an Orlicz function and give some 
relations related to these sequence spaces. 

1. Introduction 

Let ^ , c and c0 be the linear spaces of bounded, convergent and null 
sequences x = (xk) with complex terms, respectively, normed by 

IMIOO = S U P K I 

ken 

where N = { 1 , 2 , . . . } , the set of positive integers. 
Throughout the paper u denotes the set of all sequences of complex numbers 

and m an arbitrary positive integer. 
K i z m a z [9] defined the sequence spaces 

X(A) = {xeu: AxeX} 

for X = i^, c or c0 , where Ax = (Axk) = (xk — xk+1). 
The operators A m , H m : CJ -> UJ are defined by 

k-l 

(A1x)k = A1xk=xk-xk+1, {^1x)k = J2x
j (fc = l , 2 , . . . ) , 

j = i 

Am = A 1 o A™"1 , S m = S 1 o S™-1 ( m > 2 ) , 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 40C05, 46A45. 
K e y w o r d s : statistical convergence, (V, A)-summability, difference sequence, Orlicz function. 
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MIKAIL ET — gČDEM A. BEKTA? 

where m G N, A°x = (x f c), Amx = (Amxk) = ( A ™ " 1 ^ - A ™ " 1 ; ^ ) and so 
that 

/ \ 

Then E t and Q o 1 a k [3] generalized the above sequence spaces 

X(Am) = {x G u : A m x G . K } 

for X = t^, c and c 0 . 
The generalized de la Vallee-Pousin mean is defined by 

tn(X) = J~ YlXk' 
n kein 

where A = (An) is a non-decreasing sequence of positive numbers such that 
A n + 1 < An -f 1, X1 = 1, 

An -> co as n —> oo and In = [n—An-fl,n]. 
A sequence x = (xk) is said to be (V, X)-summable to a number L ([H]) if 

tn(x) -> L as n ~ > o o . 

("V, A)-summability reduces to (C, l)-summability when Xn = n for all n. 
We write 

[C,l] = \x = (xn) e OJ : lim ^ V Ix, — L\ = 0 for some L \ 
I n->-oo k = 1 J 

and 

IV, AI = < x = íx„) € CJ : lim -7- V Ix. — LI = 0 for some L f 
t "^°° An fci/„ J 

for the sets of the sequences x = (xk) which are strongly Cesaro summable and 
strongly (V, A)-summable to L, i.e., xk -> L[C, 1] and xk -> L[V, X] respectively. 

The idea of statistical convergence was introduced by F a s t [5] and studied 
by various authors ([2], [4], [7], [8], [10], [13], [15]). 

Recently, A-statistical convergence were introduced by M u r s a l e e n [13] as 
below: 

A sequence x = (xn) is said to be X-statistical convergent or Sx-convergent 
to L if for every e > 0 

r£&J.H<*€/» : \xk-L\>*}\=°-
In this case we write Sx- limx = L or xk —> L(SX), and 

Sx — \x G CJ : SA-limx = L for some F} , 
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STRONGLY (V, A)-SUMMABLE SEQUENCES DEFINED BY ORLICZ FUNCTIONS 

An Orlicz function is a function M: [0,oo) -> [0, oo) which is continuous, 
non-decreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and M(x) -> oo 
as x —r oo. 

L i n d e n s t r a u s s and T z a f r i r i [12] used the idea of Orlicz function and 
they defined the sequence space lM as follows: 

lM = { x G u : £ M{^) < oo for some p > o} . 

The space lM is a Banach space with the norm 

||*|| = inf{p>0: E M ( ^ ) < l } 
k k=i y J 

and this space is called an Orlicz sequence space. They proved that every Orlicz 
sequence space lM contains a subspace isomorphic to / for some p > 1 . For 
M(x) = xp , 1 < p < oo, the space lM coincides with the classical sequence 
space lp. 

An Orlicz function M is said to satisfy A2-condition for all values of u, 
if there exists a constant K > 0 such that M(2u) < KM(u), u > 0. The 
A2-condition is equivalent to the inequality M(lu) < KlM(u) for all values of 
u and for / > 1 being satisfied. 

It is well known that if M is a convex function and M(0) = 0, then M(Ax) < 
AM(x) for all A with 0 < A < 1. 

Let x G u and X, Y C UJ . Then we shall write 

M(X, Y) = p | x'1 * Y = {a G u : ax e Y for all x G X} . 
xex 

The set Xa = M(X, lx) is called Kothe-Toeplitz dual space or a-dual of X. 

Let X be a sequence space. Then X is called: 

i) Solid (or normal) if (o^rr^) G X whenever (a^) G X, for all sequences 
(ak), scalars with \ak\ < 1. 

ii) Monotone provided X contains the canonical preimages of all its 
stepspaces. 

iii) Perfect if X = Xaa. 

It is well known that X is perfect = > X is normal =-> X is monotone. 

In the present paper we introduce the concepts of Am-statistical convergence 
and strongly (V, A)(Am)-summability with respect to an Orlicz function and 
examine some properties of these sequence spaces. 
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2. Am-s ta t is t ical convergence 

Before giving some inclusion relations we will give a new definition. 

DEFINITION 2.1. A sequence x = (xn) is said to be Am-statistically conver­
gent or SXrn-convergent to L if for every e > 0 

I i m - ? - | { * € / B : | A m x f c - L | > £ } | = 0 . 
n 

In this case we write SXrn-limx = L or xk -» L(5A(Am)), and 

Sx(A
m) = {x e u : SXrn-limx = L for some L} . 

Now we will find the relationship of 5A(Am) with [V,A](Am) and (C, l ) (Am) , 
which are the generalizations of well-known sequence spaces of [V, A] -summable 
and (C, 1) -summable sequences, respectively. We define the sequence spaces 
(C,l)(Am) , [C,l](Am), (V,X)(Am) and [V,A](Am) as below: 

(C, l)(Am) = {x G u : lim £ £ (Amxk - L) = 0 for some L) , 
I n—>-oo £ = i J 

[C, l](Am) = {xeu: lim i £ \Amxk - L\ = 0 for some L ) , 
n—>-oo .v=l 

(V, A)(Am) = (a; € w : lim J - £ (Amx. - L) = 0 for some L \ , 
I n-+oo A " keIn ) 

[V, A](Am) = (x € w : lim -*- £ lA"1^ - L\ = 0 for some Z,} . 

It is trivial that [C,l](Am) C (C,l)(Am) , [V,A](Am) c (V,A)(Am) and 
X(Am-x) C X(Am) for X = (C, 1), [C, 1], (V, A) or [V, A]. 

THEOREM 2.2. The space (C, l)(Am) is a BK-space with the norm 

m n 

î iiA = Ei x i i+ s u pk 1 E A m a 

i=i n e N ' *=i 

and the space [C, l](Am) is a BK-space with the norm 

INlA' = E K I + s u p( n _ 1 El A r o ^ l ) -

P r o o f . Proof follows from [4; Theorem 2.2]. • 
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THEOREM 2.3. Let A = (An) be the same as above, then 

(i) xk -> L[V, A](Am) = > xk -> LSA(Am) and 
tte inclusion [V, A](Am) C 5A(Am) is proper. 

(ii) I/x G -^(A™) and 2^ -> LSA(Am)7 tfien xfc -> L[V, A](Am) and hence 
xk -> L(C, l)(Am) provided x = (xA) zs no£ eventually constant. 

(iii) 5A(A-) n 0 - - m ) = [Y, A](Am) n UA™) • 
P r o o f . 
(i) Let e > 0 and xk ->• LW,A](Am). We have 

^ | A " » x f c - L | > £ | A ™ x f c - L | > £ | { f c e / n : |A«X - L\ > e}\. 
kein kein 

\Amxk-L\>e 

Therefore xk -> L[V, A](Am) = * zfc -> LSA(Am). 
To show that the inclusion is strict, define x = (xk) such that 

Г k . .- for k = n 2 n = 1, 2,... , 
Am :r. = <! _ , . 

otherwise. 

Then x $ O A m ) , ^ -• 05A(Am) a n d x i [V, A](Am). 
(ii) Suppose that xk -> LSA(Am) and x G £0O(Am) and set |A m x^ -L | < K 

for all k. Given e > 0, we have 

i- £ |Am*, - L| ̂ E I-™** -*l + f E l A ^ " ̂ 1 
n *€/„ n /cEIn n keln 

|Amz f c-L |>£ |Amz fc-L |<£ 

<^|{fcG/n: | A ^ - L | > e } | + £ . 
A, 

Hence xk -> i[V, A](Am). 
Since 

n—Л 

1 V > - * f c _ £) = I g"(A-xfc - L) + i ]T (A™*, - L) 
fc=l / e = l kEln 

n—\. 

< f gn|A-xfc-L| + ̂ E|A^fe-L| 
*» 

fc=i n fcє/„ 

< r E | A ^ f c _ j L | 
2_ 

r 
n *e/« 

we obtain xk -> L(C, l ) (A m ) . • 
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DEFINITION 2.4. ([4]) The sequence x is said to be Am -statistically conver­
gent if there is a complex number L such that 

lim n-x\{k<n: \Amxk - L\ > e}\ = 0 

for every e > 0. In this case we write xk —> LS(Am). The set of Am -statistically 
convergent sequences will be denoted by S(Am). 

It is easy to see that 5A(Am) C S(Am) for all A, since ^- is bounded. 

THEOREM 2.5. S(Am) C Sx(A
m) if and only if 

liminf-^ > 0 . (1) 
n-voo n 

P r o o f . For given e > 0 we have 

{k < n : \Amxk -L\>e}D{keIn : \Amxk - L\ > e} . 

Therefore 

± | { * < n : \Amxk-L\>s}\>U{keIn: \Amxk-L\>e}\ 
lb lb 

71 An 

Taking the limit as n - ^ o o and using (1), we get 

xk->LS(Am) ==> xk->LSx(A
m). 

Conversely suppose that liminf----- = 0. As in [6; p. 5101 we can choose a 
ra_»oo n 

subsequence (n(j)) such that -^jj~ < \. Define x = (x{) such that 

A m ^ = M i f < € / n W ) > i = l , 2 , . . . , 
1 I 0 otherwise. 

Then x e [C, l](Am), and by [4; Theorem 4.2], x G S(Am). But on the other 
hand, x £ [V, X](Am) and Theorem 2.3(ii) implies that x <£ Sx(A

m). Hence (1) 
is necessary. • 

3. Some sequence spaces defined by Orlicz functions 

In this section we introduce and examine some topological properties of three 
sequence spaces defined by using an Orlicz function M. It is also shown that if 
a sequence is strongly (V, A)(Am)-summable with respect to an Orlicz function, 
then it is 5Am -statistically convergent. 
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DEFINITION 3.1. Let M be an Orlicz function, m be a positive integer and 
p = (pk) be any sequence of strictly positive real numbers. We define the follow­
ing sequence sets. 

IT,\,M,p](A™) = {x = (xk) : ton £ £ [M(^f^)]Vk = 0 

for some L , and p > 0 \, 

[V,\,M,p]0(A
m) = {x = (xk): Vm±Z [ M ( 1 ^ ) P = 0 

k>Ç.J-n 

for some p > 0 \, 

W,A,M,pUA-) = {x = (a:fe): sup -L £ [ i k d ^ ) ] * " < oo 

for some p > 0 >. 

We denote [V, A,M,p](Am), [V, A,M,p]0(Am) and [V, A,M,p]00(Am) as 
[V,A,M](Am), [V,A,M]0(Am) and [V, A,M]00(Am) when pk = 1 for all fc, 
respectively. 

If x e [V, A,M](Am), we say that x is strongly (V, A)(Am) -summable with 
respect to the Orlicz function M. 

THEOREM 3.2. Let m be a positive integer. For any Orlicz function M and 
a bounded sequence p = (pk) of strictly positive real numbers, [V, A, M,p](Am), 
[V, A,M,p]0(Am) and [V, A,M,p]0O(Am) are linear spaces over the field C of 
complex numbers. 

P r o o f . Let x,y G [V, A,M,p]0(Am) and a,/? G C. Then there exist posi­
tive numbers px and p2 such that 

, _ f0° Xn t í L V l>2 / 

Pk 

= 0 

and 
Pfc 

n—юo „ 
kЄІn 

= 0. 

Define p 3 = max{2|a|/91,2|/3|p2}. Since A m is linear and M is non-decreasing 
and convex, 

417 



MIKAIL ET — gČDEM A. BEKTA§ 

71 kein L v 

-ЃE 

•\Am(axk+/3yk) Pk 

kein L 

M 

Pz 

(\aAmxk+/3Amyk\ 

V Pг 

\Pk 

<-±Z 
kEln 

м[ | a Д m Ж f c l i \ßAmУ^1Pk 

Pз Pz 

|Amž/ fcl 
Pí 

Pk 

<±Ei\M(\*^A)+M( 
-Kkirjp>l v Pl ) V 
<±r\M(\^A)+M(\^)} 
~xnáfA \ Pl J v P2 ) \ ' |Amž/ f c l 

l>2 

i P * 

-ю 

where C = m a x l l ^ - 1 } , H = supp^; so that ax + /3y e [V, A,M,p]0(A*M 

This proves that [V, A, M,P]0(Am) is a linear space. The rest can be proved by 
the same way as above. • 

THEOREM 3.3. Let m be a positive integer. For any Orlicz function M and 
a bounded sequence p = (pk) of strictly positive real numbers, [V, A, M,P]0(Am) 
is a paranormed space (not necessarily totally paranormed) with 

9(x) = inf{P^»: (j-Z\M(^^)]Pk)1/H<l, n = l,2.3,...} 
k€zln 

where H = max«| 1, supP^ \ . 
^ keN } 

P r o o f . Clearly g(x) = g(—x). The subadditivity of g follows from the 
proof of Theorem 3.2, taking a = 1, 0 = 1, It is trivial that Amx = 0 for 
x = 0. Since M(0) = 0, we get mi{p^lH} = 0 for x = 0. 

Finally, we prove that scalar multiplication is continuous. Let r be any com­
plex number. From the linearity of Am 

g(rx) = ы{^ң: ( ^ Ľ [ м ( l í ^ l l ) ] Л ) 1 , Л < l l - = 1,2,3....} 

-tař{^/»: ( £ E K ^ ) ] " ) " " Ž ' . n = l,2,3,...}. 
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Then 
l p f c \ 1 / H 

^ ) = inf{(M5)^: ( ^ E [ M ( ^ ) ] P f c ; T < l , n = l,2,3,...} 

where s = p/\r\. Since \r\Pn < max{l , | r | s u p P n } , we have 

,(rx)<(max{l,|rrP-})1/H.inf{S-/^: ( A ^ E [ M ( ^ ) ] " ) 1 / H < 1, 

, 2 , 3 , . . . } , n = 1, 

which converges to zero as g(x) converges to zero in [V, A, M,p]0(A
m). 

Now suppose that r{ —r 0 as i —•> oo. Let x be a fixed sequence in 
[V, A, M,P ] 0 (A m ) . For arbitrary e > 0, let N be a positive integer such that 

^£ 
kein L 

for some p > 0 and all n > N. This implies that 

\rnr I 
M l ^1 

Pk 

< ( e / 2 ) Я 

\ kЄІn 

for some p > 0 and all n > ІV 

A m r I 

м ' ^ x*i 
Pfc 

i /я 

<є/2 

Let 0 < \r\ < 1, using convexity of M , for n > jV, we get 

VE M 

fee/n L 

| r A m x A 
Pfe 

< ̂ 1 £ 
fcє/n 

| r | M ' ' - ' " - * ' 
пPfc 

< ( є / 2 ) Я 

Since M is continuous everywhere in [0, oo), then for n < TV, 

/(-) = ̂ 1 £ 
fcє/„ 

M 
Pfc 

.я is continuous at 0. So there is 1 > 5 > 0 such that | / ( t ) | < ( f) for 0 <t < 5. 
Let K be such that \r{\ < 5 for i > K, then for z > i f and n < N, 

i / H 

A ^ £ 
*€/„ 

M 
jг iД™ж J bpT'* 

< є / 2 . 

Thus 

\ kein

 L 
м 

ro,- | \ 1 W KA^Xfcl 
1/Я 

< є 

for i > K and all n, so that g(rx) -» 0 ( r -» 0). D 
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THEOREM 3.4. Let X stand for [V,\,M], [V,A,M]0 or [ViAjM]^ and 
m > 1. Then the inclusion X(Am~1) C X ( A m ) is strict. In general 
X(Al) C X(Arn) for all i = 1, 2 , . . . , m — 1, and the inclusion is strict. 

P r o o f . We give the proof for X = [V, A, M ] ^ only. It can be proved in a 
similar way for X = [V, A,M] or [V, A , M ] 0 . Let x E [V A , M ] 0 0 ( A m " 1 ) . Then 
we have 

sup 
nЄN Л 

L £ 
kЄІn 

M |Aта-^fcl < 00 , (2) 

for some p > 0. Since M is non-decreasing and convex function, we have 

_L E \м(\ЩЩ 
n kЄІn

 L 

-ŕs 
< 

A. 

n kein 

X. 
kein 

M 

2p 

| Д m - l 

ч-& 
m—lr ьk+l 

2p •)] 

-м 
vm—lґ 

+ Ѓ E 
kЄU н |A m — 1 ґ ьk+l 

< OO b У ( 2 ) . 

Thus [ F , A , M ] o c ( A m - 1 ) C [ y , A , M ] o c ( A m ) . Proceeding in this way one will 
have [\/,A,M]00(A i) C [V, A , M ] o c ( A m ) for i = l , 2 , . . . , m - l . The inclusion is 
strict; the sequence x = ( k m ) , for example, belongs to [V, A, M ] 0 C ( A m ) , but 
does not belong to [V, A , M ] 0 0 ( A m _ 1 ) for M(x) = x, pk = 1 for all k E N and 
An = n for all n E N. (If a; = ( k m ) , then A m x f c = ( - l ) m m ! and A m—1 Яь = 

( - l ) m + 1 m ! ( k + (m - l)/2) for all k E N.) D 

THEOREM 3.5. F/ie sequence spaces [V, A, M,p] 0 and [V, A, M j p ] ^ are so/zd. 

P r o o f . We give the proof for [V, A, M , p ] 0 . Let (xk) E [V, A, M, p] 0 and a f c 

be any sequence of scalars such that \ak\ < 1 for all k E N. Then we have 

A ^ E 
fee/„ 

M 
\OtuX k^k\ 

Pk 

<кlY, 
kЄU 

м 
Pk 

0 (n -> oo). 

Hence (o^x^.) E [V, A,M,p] 0 for all sequences of scalars (ak) with |a f e | < 1 for 

all k E N, whenever (xfc) E [V, A,M,p] 0 . D 

R e m a r k . In general it is difficult to predict about the solidity of 
[V,A,M,p] 0(Am) and [V, A,M,p ] 0 0 (A m ) when m > 0. For this, consider the 
following example. 

EXAMPLE. Let m = 1, pk = 1 for all k and M(x) = x. Then (xk) = (k) E 
[V,A,M,p]0(A2) but (akxk) g [V, A,M,p] 0 (A 2 ) when ak = (-l)k for all k E N. 
Hence [V, A,M,p] 0 (A 2 ) is not solid. 

From Theorem 3.5 we may give the following results: 
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C O R O L L A R Y 3.6. 

(i) The sequence spaces [V, A, M,p]0 and [V, A, Mjp]^ are monotone. 
(ii) The sequence spaces [V, A,M,P]0(Am) and [V, A,M,p]QO(Am) are not 

perfect. 

LEMMA 3.7. ([1]) Let M be an Orlicz function which satisfies A2-condition 
and let 0 < 8 < 1. Then for each x > 5 we have M(x) < Kx5~1M(2) for some 
constant K > 0. 

THEOREM 3.8. For any Orlicz function M which satisfies A2-condition, we 
have [V,A](Am) C [V, A,M](Am). 

P r o o f. Let x € [V, A](Am) so that 

An-Y~^2 \-^mxk — -̂ 1 —̂  0, n -> oo , for some L . 
n keu 

Let e > 0 and choose 5 with 0 < 5 < 1 such that M(t) < e for 0 < t < S. We 
can write 

-J- J2 M(|A™xfc - X|) = A;1 £ ^(|Am* f c - L\) + J2 M(\Amxk ~ M) 
n kein keu kein 

|Am<rfc-L|<<5 \Amxk-L\>8 
<\n

1(\ne) + K5-1M(2)An 

by Lemma 3.7, letting n -» oo, it follows that z <E [V, A, M ] ( A m ) . • 

THEOREM 3.9. Let m be a positive integer. For any Orlicz function M , 
[ V - , A , M ] ( A - ) c S A ( A m ) . 

P r o o f. Let x G [V, A, M] (A m ) and e > 0 be given. Then 

*.- E k F ^ ) l **.- E k (^^) 
tcr L \ r / J hal L \ r / fcGIn kЄIn 

|A m Xfc-L |>Є 

>A; 1 M( e / / 3 ) | { f c€ / n : | A m r r f c - L | > £ ] 

Hence x G SA(Am). 
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