Mathematica Slovaca

Milan Pastéka
Covering densities

Mathematica Slovaca, Vol. 42 (1992), No. 5, 593--614

Persistent URL: http://dml.cz/dmlcz/133254

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1992

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/133254
http://project.dml.cz

Mathematica
Slovaca

©1992
Mathematical Institute

Math. Slovaca, 42 (1992), No. 5, 593-614 Slovak Academy of Sciences

COVERING DENSITIES

MILAN PASTEKA

ABSTRACT. In this paper a modification of Buck’s measure density is investi-
gated. Some properties of this set function are proved.

Introduction

The notion of measure density was introduced in 1946 by R. C. Buck [3].
The purpose of this paper is to introduce a more general concept of density,
the covering density, and to describe some properties of this set function. The
measure density of Buck will be a special case of the covering density. In the
first two parts we recall the well known notion of a strong submeasure and
introduce the notion of covering density. In the third part we shall prove a
formula for evaluation of the covering density and show some of its applications.
The algebra of measurable sets will be the object of investigation in the next
part. Especially, we establish the Darboux property of the covering density on the
algebra of measurable sets. The fifth part is devoted to the uniform distribution
of sequences, in the sense of 1. Niven and its connection with covering density.
n1976 T. Estrada and R.Canvall [9] proved that an infinite series
with nonnegative elements converges if and only if this series converges on every
set of indexes, with asymptotic density 0. A generalization of this result 1s in
[22]: An infinite series with nonnegative elements converges if and only if this
series converges on every set of indexes which belongs to the zero system of a
compact submeasure (the system of all sets with submeasure 0). The definition
of compact submeasure is also in [22]. The upper asymptotic density and also the
Buck’s measure density are examples of compact submeasure. It is interesting
that the zero system of measure density is much smaller as the system of all
sets with asymptotic density 0. In the last part we exhibit also some examples
of covering densities with zero system smaller than the zero system of measure
density.

AMS Subject Classification (1991): Primary 11K38.

Key words: Covering density, Sequences, Arithmetic progression, Uniform distribution.

') Research supported by Slovak Academy of Sciences Grant 363.

593



MILAN PASTEKA

1. Strong submeasure

Let X be an arbitrary set. Denote by P(X) the system of all subsets of the
set X .

The set function
m*: P(X) — [0,1]
will be called a strong submeasure if it has the following properties:
(i) AcB = m*(A) <m*(B) ,
(ii) m*(AUB)+m*(ANB) <m*(A) +m*(B) ,
(11) m*@)=0, m*(X)=1,
for every A,B € P(X).
The set A € P(X) will be called measurable if
m*(A) +m* (X \A)=1. (1)

Let us denote the system of all the measurable sets by D, . From the prop-
erties (1) —(ii1) it follows that D,, is an algebra of sets, and the function

m=m*| D,

is a finitely additive probability measure on D,, . In what follows we give a lot of
examples of strong submeasures m* such that D,, is not o-algebra and m is
not o -additive. But a certain modified form of o -additivity still remains valid:

THEOREM 1. Let A,, n = 1,2,... be a disjoint system of sets such that
A, € D,,. Let
lim m*( U Ak) =0. (2)
k=n

Then the set A = |J Ay belongs to D, and
k=1

m(A) =Y m(An). (3)

n=1

Proof. Clearly
1< m*(A4) +m*(X \ 4). (4)

For every n =1,2,... it holds that

o0
AjUAU---UA, CA=A4,UAU---UA4, U U Ax .
k=n+1
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COVERING DENSITIES

Therefore
Z m(Ax) <m*(A) <Y m(Ax) + m'( U Ak).
k=1 k=1 k=n+1
For n — oo we obtain
Zm(Ak) =m*(A). (5)
k=1
In the following for n = 1,2,... we have

X\ACX\(41UAU...A,),

thus
n

m'(X\A4)<1- Z m(A4;).
j=1
For n — oo we have, according to (5)
m* (X \A)<1-m*(A4).
From (4) it follows that
m*(A)+m* (X \A)=1.
The proof is complete.

COROLLARY. Let A,, n = 1,2,... be a disjoint system of scts from D,, .
Let B € D,, be a set for which A;,C B, 1=1,2..... If

Z A;)=m(B),
=1

then the set A = U A; belongs to D,, and

=1

171,(.4) =m(B).
Proof. For n=1,2,... it holds that
lJ AcB\(41u4u---U4,),

1=n+1

therefore

lim m'( U A,~> =

t=n+1
Thus, according to Theorem 1 we have A € D,, and m(4d) = Z m(A;)
= m(B).
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2. Covering densities

Let N be the set of all positive integers. Let the symbol a + (d), for d € N
and a a nonnegative integer denote the arithmetic progression {a + nd;
n = 0,1,2...}. Instead of 0+ (d) we simply write (d). The greatest com-
mon divisor and the least common multiple of the numbers a,b € N will be
denoted by (a,b) and [a,b], respectively.

The set A C N will be called closed with respect to divisibility if it satisfies
the following conditions:

(iv) For a€ A, be N, we have bla = b€ A, and

(v) for ay,a; € A we have [a),ay] € A.
A trivial example of the set closed with respect to divisibility is the set N. For
p prime, also the set {p™; n =0,1,...} is closed according to divisibility. A lot
of examples of such sets will be constructed in the Section 6.

In what follows we shall assume that A is an infinite set closed with respect
to divisibility. Denote by the symbol S4 the system of all the arithmetic pro-
gressions a+ (d), where d € A. For an arithmetic progression H = a+(d) € S4
put

A(H) =

1
7
Let H denote also the set of clements of H .
Let S € N. Then the value

k k
14(8) = inf{ Y A(H); Sc|JHiAHi € 5,,}
=1 i=1
will be called the covering density of the set S according to A (or, briefly
covering density of S).
If we denote by p*(S) the measure density of the set S, as introduced in
(3], then clearly for every S C N it holds that ;*(S) = y(S). Therefore the
notion of the covering density according to A is a generalization of p*.

It follows trivially from the definition that for every set S it holds
HH(S) < pi(S). (6)

For a set function m let Z(in) be the zero system of m, ie. the system of

all sets S C N for which m(4) = 0. The relation (6) implies
Z(1y) C Z(p*). (7)

In the following we give many examples when the equality in (7) does not
hold. These cases are interesting in connection with the Theorem proved in [22]
(see Introduction).
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3. The limit formula

In this part we shall prove one formula for evaluation of the covering density
1% (S) . This formula is a generalization of Theorem 1 from (23]. Using it we shall
establish some properties of y% .

The sequence {B,} of positive integers will be called complete in A if

(vi) B,€ A,for n=1,2,..., and
(vil) for every d € A there exists an index ny such that for n > ny we
have d| B, .

We have assumed that A is an infinite set. Let A = {A; < A, <...}. Then

according to (v) the sequence

{[A1,..., 4.} (8)

forms an example of a sequence which is complete in A. Let {m,} be an in-
creasing subsequence, of (8). Then {m,,} is also a sequence which is complete in
A, moreover m; < m;4 and m; |m;yy, t = 1,2,... . From this we immediately
obtain the inequality

m; > 271 i=1,2,.... (9)

For a,b € N denote by ¢ mod b the remainder obtained by dividing a by
b. Foraset SCN and b€ N put

S modb={s modb; se€S}.

This set will be called the system of representatives of the set S modulo b. Let
R(S,b) be the number of clements of the set S mod b. Clearly R(S,b) <b.

THEOREM 2. Let {B,} be a sequence which 1s complete in A. Then for every
S CN we have

104 (S) = lim M

n—nc l3n

Proof. Let {a1 N } be the system of representatives of the S mod-
ulo B,, n=1,2,.... Then

k(n) = R(S, B,)

and
k(n)

Sc U a, + (By).
=1
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According to (vi) B, € A, n = 1,2,..., thus from the definition of % it
follows that
R(S, B,)

pa(S) < B, n=12,.... (10)
Let ¢ > 0. Then according to the definition of p%(S) there exists a disjoint

system of arithmetic progressions a; + (dy),...,ar + (dx) € Sa such that

k
ScC U a; + (d;) (11)
=1
and
<) te (12)
d, dir — Ha )

By (v), [di,...,dx] € A. Therefore according to (vii) there exists ng such
that for n > ng, d;|B,, 1 = 1,2,..., k. This divisibility relation implies that
the arithmetic progression a; + (d;), i = 1,2,...,k can be represented as a
disjoint union of arithmetic progressions of the form

I3
ai+ (di) = | J ai+rdi + (B,),
r=0
where kf"’ = ~—B(7l -1, i =12,....k, n>ng. Consequently
‘1

k Ra
U a; + (d;) = U b + (Bn), n>ng,
=1 1=1

where bY,...,b% € N, n > ng. In addition,
n

R, 1

B, " +;--+(—i:, n>ng. (13)

The system of representatives of the set S has R(S, B,,) elements. Two integers

contained in the same arithmetic progression b + (B,,) are congruent modulo
B,, . Therefore according to (11) we have

R(S.B,) <R,, n>ng.
Thus, by (10), (12) and (13) we have for n > ng

p(s) < T L)

<=5 < pH(S) +¢.
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The proof is complete.

Let {m,} be an increasing sequence, selected from the sequence (8). Accord-
ing to Theorem 2 for every S C N we have

(14)

For a € N and S CN put
aS ={as; s€ S}.

From (14) we have immediately:

COROLLARY. If (a,d) = 1, for every d € A, then for every set S C N 1t
holds that

wh(aS) = u3(S).

Let M = {my,ma,...} be the set of elements of the sequence {mn}. Then
according to (14) and (9) we have

n+1

py(M) < lim =0.

Consider the set

Gu={n+my,; n=12...}.

It is easy to see that for every j = 1,2,... the numbers k + my; k = 7,
..,J +mj —1 are incongruent modulo m;. Therefore it follows from (14) that

pa(Gy) =1.

But by (9) the asymptotic density of the set Gy is equal to zero.
Choose a € N such that (a,d) =1 for every d € A. Consider the set

M={na+m,, n=12...}.

In a similar way we can prove

a

pa(Gy)=1.
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All elements from G%, are relatively prime to a. Thus from the definition of
Buck’s measure density we have

u*(G3,) < pla) _ 1,
a

where ¢ is the known Euler function. From (9) it is also easily seen that the
asymptotic density of G4, is zero.

It is clear that for Sy, S C N and n =1,2,... it holds that
R(Sy,my) + R(Sg,mn) > R(Sy U Sy,my) + R(S1 NSy,my)
S] C 52 = R(S,,m,,) S R(S2,Tlln).

Therefore according to (14) the set function g% is a strong submeasure in the
sense of chapter 1.

4. Measurable sets

The algebra of measurable sets according to g% will be denoted by D4 . (in-
stead of D, , ). Only in the case A = N we shall use the symbol D, , according
to Buck’s notation in [3]. On the algebra D4 we have the finitely-additive
probability measure

*
pa=palDa.

If S€ Da, then from (6) it follows that
1< ut(S)+ (N S) < () + p(N\ S) = 1. (15)

Thus p*(S) + p*(N\ S) = 1. Consequently Dy C D, . According to (15) it
follows that for every S € D4 it holds that

(S) = pa(S).

Therefore by virtue of Theorem 2 from [23] every set from D,y has asymptotic
density equal to the covering density of this set according to A . In what follows
we shall show that Dg = D, if and only if A = N.

For an arbitrary d € N let

h(d) = sup{k = 0,1,...; d* € A}.
For every positive integer m with representation as a product of primes
g

— 1 .
Mm=pyocac Py
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we can define a positive integer

galm) =pi' o pk
where
ri = min{a,, i(p;)}, 1=1,2.... k.

Clearly p* € A, 1 =1,2,... .k and so ga(mn) € A according to (v), for every
m € N. From this we sce that for every m € N there exists jo such that

ga(m)|m;; J2Jo-
Therefore for every m; and a € N, § C N there holds
R(a+ S,m;) = R(S,m;).

Now, (14) and the above imply:

LEMMA 1. For a € N and S CN 1t holds

phla+ S) = p3(S).

LEMMA 2. For every positive integer m and d € A it holds that

galm)|d = (m,d) = ga(in).

Proof. It is trivial that g.4(m)|m. Therefore from the condition

galm)|d
we have ga(m)|(d,m).

Let p be a prime, such that p has in the representation of i as a product
of primes the exponent a. Let p? | (m.d), then 3 < a and 3 < h(p). Thus

p" [ga(m).

Considering all primes from the representation of (. d) we have (mod) | ga(m).
The proof is complete.
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THEOREM 3. For every m € N and a nonnegative integer we have

1
galm)”

i (a+ (m)) =

Proof. According to Lemma 1 it is sufficient to prove that

1
galm)’

wa(m)) =

The value R((m), mi), k = 1,2,... denotes the number of such
J € {0,...,my — 1}, for which the congruence

am =3  (mod myg)

has a solution. There are exactly the j’s which are divisible by (m,my). The

number of such 7 is exactly
mi

(m,my)

From (14) it follows that

15 ((n)) = lim

k—oc (mymy)

According to the condition (vii) we see that there exists kg, such that for & > kg
it holds that g (m) | . From Lemma 2 we have for & > k)

(momyg) = galm).

The proof is complete.

COROLLARY 1. If H=a+(d) € S4, then

i (H) = A(H).

COROLLARY 2. If m 13 a posttwe anteger such that (m,d) = 1 for cvery
de A, then for cvery nonnegative inteqer a we have

/If‘((l + (m)) =1.
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LEMMA 3. Let Sy, S2 C N. If there exists a+(d) € S4 such that S; C a+(d)
and S Na+(d) =0, then

pa(S1U S2) = pi(S1) + 14(S2).

Proof. There exists ko such that for k¥ > ko we have d|my. Therefore
for k > kg
R(S1 U S2,mi) = R(S1,mi) + R(Sy,my).

According to Theorem 2 we have the assertion. The proof is complete.

According to Corollary 1 and Lemma 3 for the disjoint system H,, H,,
..., Hr € S4 it holds that

pi(HyU---UHg) = A(H) + -+ A(Hy).

Immediately from these facts we have S4 C Dj4.

Assume that A # N. Then there exists a prime p such that h(p) < co. Let

k+l>

h(p) = k. Consider the arithmetic progression (p . According to Theorem 3

we have that .
,u:‘((pk’H)) — ;E > lt*((])H—l)) )

Thus (p¥*!) does not belong to D4. It is trivial that (p**') € D, , there-
fore Dy # D, . In this case the algebra D4 does not contain all arithmetic
progressions.

COROLLARY 3. Let S C N. Then ;% (S) =1 if and only if for every H € Sy
we have SNH #£0.

In Buck’s paper [3] it is proved that
{n(S); SeD,}=(0,1).

Using an analogous method we prove a more general result that the measure p»
has the Darboux property on the algebra D 4 :

THEOREM 4. Let S € Dy. Then for every a € <0,,u,4(5)> there ezists a set
S$1 C S such that S1 € Dy and pa(S)) =a.

Proof. If pa(S) = a, the assertion is trivial. Let o < a(S). Then there
exists € > 0 such that

a<pa(S)—e.
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From the condition S € D4 it follows that there exists a disjoint system of
arithmetic progressions a; + (d),...,ax + (d) € Sa such that

Yait+dcs

=1

and L
E>p,4(5)——520. (16)
Put do=d. Let {d;}32, be sucha sequence of positive integers that dp...d;€ 4,
for + = 1,2,.... (An example of such sequence is dy = my, d; = %,
0
dy = %—2— ,-...) We can express the number a by Cantor’s series
1
a'_Z%do...dj’ 0<c¢i<dj, 3=0,1,....
]:

According to (16) we have ¢o < k. Put

H0:00i+(d)-

=1

Then HoNax + (d) =0 and pa(Hy) = (Ci_o‘ Let us denote for n =1,2,...
0
Hy=|Jar+jdo...dpy+(do...dy).

j=1
The union on the right-hand side is disjoint and therefore

Cn

dy...dy~

#A(Hn) =

Assume that for m < n it holds

H,NH,#0.
Then there exist numbers j, j;, h, hy € N, suchthat 0 < j <¢,,, 0< j; < ¢,
and

j]d0-~-dn—1 +h]d0...d" ‘—‘jdo...d,n_] + ’ldo...(l,,, .
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Therefore dy ...d, | jdo .. .dm-1 — a contradiction. It is obvious that for n > m

| Hn Cax+(do...dun).

k=n

lim ;t:1< U Hk) =0.

k=n

Therefore

According to Theorem 1 we now see that the set

S] = G Hn
n=0

belongs to D4 and pa(S)) = «. It is trivial that S; C S. The proof is complete.
COROLLARY 1. We have
{ra(8); S€Da}=(0,1).

COROLLARY 2. We have
{n4(S); SCGum}=1(0,1).

Proof. Let a € (0,1). Then there exists S € D4 such that pa(S) = a.
Let
S={(l1 < ap <}

Put
H={a,+mg,; n=12,...}.

It is trivial that H C Gps. The sequence {m,,} is complete in A. For every k
we have
an +m,, =a, (modmg,); n-k.

Therefore

R(H,m,, ) = R(S,ma, )+ O(k).
This equation according to (9) and (14) implies
1y =a.
The proof is complete.

Denote by S° the system of sets S C N, having the asymptotic density zero.
Then immediately from Corollary 2 we have

{(13(S); S€ S} =(0.1).
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5. Uniform Distribution

In 1961 1. Niven in [18], introduced the notion of a sequence uniformly
distributed modulo m, where m € N in the following way: The sequence of
positive integers {z,} is uniformly distributed modulo m if and only if for
every j € N it holds that

1 1
NZl—»n—l for N — 0.

n<N
zpn =) (modm)

Let H C N. We say that the sequence of positive integers {z,} is uniformly
distributed in H if it is uniformly distributed modulo m for every m € H .

The following theorem shows a natural connection between the uniform dis-
tribution by A and p%.

THEOREM 5. Let S C N. Then p%(S) =1 if and only if S can be arranged
in form of a sequence {x,} which is uniformly distributed in A.

For the proof we will use the following lemma:

LEMMA 4. Let {z,} be a sequence of positive integers satisfying the condition
ry =k (mod my), k=1,2,....

Then {zn} is uniformly distributed in A.

Proof. Let m € A. Then there exists ng such that m|m, for n > ng.
Thus for n > ng
Tp =n (mod m).

Then for N > np and j € N, 0 <j < m we have

1 1 1
NZ1:N21+N§:1

n<N n<ng ng<n<N
zpn =) (modm) rpn=j(modm) rpn=j(modm)
1 1 1
= — E 1+()(—)—»— as N — oo,
N N m
n<N

n=j (modm)

and the lemma follows.

Proof of Theorem 5. If S = {z1,22,...} is a uniformly distributed
sequence in A, then by virtue of Corollary 3 of Theorem 3 we have p%(S) =1.
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If p%(S) =1, then S has a non-empty intersection with every arithmetic
sequence from S 4. Therefore for every n € N there exists y,, € S such that

yn =n  (mod m,).

Then the lemma implies that {y,} is uniformly distributed in A. We can assume
that the sequence {yn} is increasing. If the set S\ {y,; n =1,2,...} is finite,
then the proof is complete.

Suppose therefore that the set

S\{yn; n=1,2,... ={ys; k=1,2,...}
is infinite. Define
Yn, forn # k2
Tp=4{ Yz, forn=(2k)? for n=1,2,....
Yy, forn=(2k+1)%
Clearly {zn; n=1,2,...} =S.Let j €N and m € A. Then for N — oo

1 1 ) 1
N2 l=§ 2 1row) -

n<N n<N
zn=j(modm) yn=j(modm)

Thus the sequence {z,} is uniformly distributed in A. The proof of Theorem 5
1s complete.

COROLLARY. Let S C N. Then p*(S) =1 if and only if S can be arranged
in form of a sequence {z,} which is uniformly distributed in N.

Let a be a positive integer such that (a,m) =1 for every m € A. Consider

the set
Y ={an+my; n=12...}.

Then according to the results of the third section G4, can be arranged in a
sequence uniformly distributed in A, but not in a sequence which is uniformly
distributed in N. The arithmetic prbgression (a) has also a similarly property.

We shall finish this part by pointing out one more analogy between the uni-
form distribution by A and the uniform distribution mod 1.

Let {z,} be a sequence of positive integers. Given S € P(N) and k € N let

QS {za} k) = 3 1.

n<k
T, €S

The concept of the uniform distribution by A gives us a further possibility to
characterize the algebra D4 . Using a simple estimation directly from definitions
we can prove:
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THEOREM 6. The sequence {r,} of positive integers is uniformly distributed
in A if and only if for every set S € Dy

i Q(S, {z.}, k)
im ——————"

k— o0 k

= pa(S)-

In the proof of the next theorem the following notion will be used: Let
S € P(N) and n € N. The set S’ C S will be called a remainder system
of the set S modulo n if

(viii) for every a € S there exists an a' € S’ such that ¢ = a' (mod n),

(ix) for every a',a" € §' d =d" (modn) = a' =a".

It is obvious that two remainder systems of the set S modulo n have the same
number of elements and that this number is equal to the number of elements of
the system of representatives of the set S modulo n.

THEOREM 7. Let S C N. If for every sequence {x,} uniformly distributed in

A we have
. Q(S,{za},N .
Jim YOI _ )
then S€ Dy4.
Proof. Let S¢ Dy4. Then
1= p3(N\S) < pu(S). (17)

Suppose that the sequence {B,} is complete in A. Suppose that this sequence
also satisfies the condition

Bnan+1, Tl=1,2,....

Let S} be a remainder system of the set S modulo B, , for n =1,2,.... Put
S1 = S] and

Sn=8,_1U{y€S,; VT € Say1, #y (mod B,)} for n=2,3,....
In this way an increasing sequence of sets S,
S1CS C---CSaC...

of remainder systems of the set § modulo B, can be constructed.
Similarly, there exists a sequence

S$icSc---cS,...
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such that S,, is a remainder system of the set N\S modulo B, for n =1,2,....

Construct the sequence {C(Bn)} of sets as follows: The set C(B,,) is the

complete remainder system modulo B, (n = 1,2....) which consists of the
elements of S, and B, — R(N\ S, B,,) elements of S,,.
Clearly

C(B))CC(By)C---CC(By)C....
Put D, = By . Let us rearrange the set C'(D;) into a (finite) sequence
C'(Dy) = {zo,...,xp, 1}
in such a way that «; =j (mod D,), for j =0,...,D; — 1. Let
Dy =min{B,; ry < By,...,ap,-1 < B,}.
Rearrange the set C(Dz) into the (finite) sequence
C'(D2) = {0, 2D, 127D,

where z = j (mod D3), Dy < j < D,. In this way we can construct a sequence
{D,}, which is complete in A, and the system of finite sequences

C'(Dy) = {zo,.

"'711)2—1}’

s TDy 1 =15sTD, gy uIDn—l}

in which z; =3 (mod D), Dn_1 <j < Dy
Consider the sequence

{zn} = U CI(DN)»

n=1

in which the elements are written in such a way that we begin with elements of
the sequence C'(D;) , then there follow the remaining elements of the sequence

C'(D3), etc.. For d € A there exists ng such that d| Dy, . Thereforefor j > Dn,
we have

r;=j (modd).

This implies that the sequence {z,} is uniformly distributed in A.
If n=1,2,..., then

Q(S,{z;}, Dx) = Dy — R(N\ S, Dy).
Because of (17) and Theorem 2 we have

S,{z;},D, .
tim AL ).

The proof is complete.
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6. Special cases of system A

Put for £ =1,2,...
Py = {nt; n=12..}.

In the paper by Buck [3] it was proved that pu*(P,) =0.
Let p be an odd prime. In [3] it was proved that for every n =1,2,...

pn+l
R(Py; p") = 0O(1). 20
(P25 p") 2p+2+() (20)
Consider the set A = {1,p,p*,...} and the sequence {m,} in the form

m, =p", n=12....
According to (14) a (20) we have in this case
R 4
T 2p 42
Thus Z(p%) 1s a nontrivial subset of Z(u*).
Let H C N. Denote by the symbol A(H) the set which is closed according to
divisibility generated by H in the following sense: The set A closed according
to divisibility is generated by H if and only if
(x) HC A, and
(xi) if A is closed according to divisibility and H C A; then A C A,.
It is easy to see that if p; # p, are primes and K = {p1,p2}, then A(H) =
{1,p1,p2,p1P2} -
Let us remark that for every set A closed according to divisibility we have
A= A(H), where

H= | {»"}uv (G{P"}), p - prime.

pEA pPEA n=1
h(p)<oo h(p)=o0

>0.

#:\(P2)

It is also easy to see that if H = {py,p2,...}, where p;, 1 = 1,2,... are
primes, then A(H) is the set of all numbers in the form

oo
6
i=1

where a; € {0,1} and only for a finite number of i we have a; # 0.

As a sequence {m,} we can in this case consider the sequence
Mp =pP1...Pn, n=12,....

In what follows we shall use the following lemma:
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LEMMA 5. If (a.b) =1, then for k =1,2,... we have

R(Py,ab) = R(Px,a) - R(Py,b).

Proof. Clearlyif c € Px mod ab then ¢ mod a € P mod a, ¢ mod b €
P mod b.

Thus we can define a mapping

F: P, mod (Ll; = (Pr mod a) x (P mod b)

F(¢) = (¢ mod a,c mod bd).

It 1s sufficient to prove that F is a bijection. From the condition (a,d) =1 it

follows that F' is an injection.
Let ¢; € P mod a, ¢; € P, mod b. From the Chinese remainder theorem
we have that there exists such a ¢ € {0,...,ab — 1} that ¢ = ¢; (mod a)

and ¢ = ¢, (mod b). Therefore there exists dy,d, such that ¢ = d¥ (mod a)

i

dé (mod b). Again according to the Chinese Remainder Theorem we
obtain that there exists d such that d = d; (mod a) and d = d; (mod b).

a ¢C

Therefore ¢ = d* (mod a) and ¢ = d* (mod b). Thus ¢ = d* (mod ab), and so
¢ € Pr mod ab. Clearly, F(c) = (¢1,c2), therefore F is a bijection. The proof
is complete.

Using the Dirichlet theorem on primes in the arithmetic progression (see [10])
we have immediately

LEMMA 7. If k 1s an odd positive integer, then therc exzists an infinite system
of primes p satisfying the condition

(k,p=1)=1. (21)
LEMMA 8. For every k = 1,2,... there erists an infinite system of primes p

satisfying the condition
kElp-1. (22)

THEOREM 8. Let k be odd and H = {py,p2....}, where p,, 1 =1,2,... are
primes satisfying (21). Let A = A(H). Then

(Pe)=1.
Proof. Put m; =p;-...-p;. j =1,2,... . We show that for every ; there
holds

R(Pr,mj)=m,.
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According to Lemma 6 it is sufficient to prove
R(Py,p:) = pi. 1 =1,2,.... (23)

Assume that for r,y € N

k= v (mod p;). (24)
If r =0 (modp;), then y = 0 (mod p,). Let & # 0 (mod p,) and y # 0
(mod p;). Let ¢; be a primitive root modulo p,. Then there exist r, 1 such that

r=g¢; (modp,), y=g! (modp,).

From (24) we have

gf =g (modp,).

Therefore
(l=r)k=0 (modp;—1),

thus according to (21) ! = r (mod p; — 1), which implies =y (mod p;). We
have proved (23) and so according to Lemma 6 and Theorem 2 the proof is
complete.

In contrast to Theorem 8 we prove the following assertion:

THEOREM 9. Let k > 1 and H = {p1,p2,...}, where p;, 1 = 1,2,... are
primes satisfying (22). Put A = A(H). Then

1a(Pr) =0.
Proof. Putagain m, =p,-...-p;. Let g; be a primitive root modulo p; .
Denote
p; -1
hy=g,*

Then h; #1 (mod p;), thus 1 and h; are two different roots of the congruence

¥ =1 (mod p;). Then for every a € N, (a,p;) = 1, we have

a #ah; (mod p;),

but
at = (ahj)k (mod pj), 1=1,2,....
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From this it follows for 7 = 1,2,... that
p,—1 P, +1
R(kapj)g ]‘) +1:‘]2—.
From Lemma 6 we have
Mgl(ul)...(Hi). (25)
m; 2 P P

But

() (o)< )

From this according to (14) and (25) we obtain

a(Px) =0.

The proof is complete.

According to (6) we obtain

COROLLARY. For every k > 1 we have

(7

(8]

u*(Px) =0.
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