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MULTIPLICATIVE FUNCTIONS SATISFYING 
THE EQUATION f(m2 + n2) = f(m2) + f(n2) 

P H A M VAN CHUNG 

(Communicated by Stanislav Jakubec ) 

ABSTRACT. In the present paper, we characterize multiplicative and completely 
mul t ip l ica t ive functions / which satisfy the equa t ion / ( r a 2 + n 2 ) = / ( m 2 ) + / ( n 2 ) 
for all positive integers m and n . 

1. Results 

A multiplicative function is a function / defined on the set of positive integers 
such that f(mn) — f(m)f(n) whenever the greatest common divisor of m and 
n is 1. 

The function is called completely multiplicative if the condition f(mn) — 
f(m)f(n) holds for all m and n . 

C l a u d i a A. S p i r o [2] proved that if a multiplicative function / satisfies 
the condition f(p + q) = f(p) + f(q) for all primes p , q and f(pQ) ^ 0 for at 
least one prime p01 then f(n) = n for each positive integer n . 

Replacing the set of primes by the set of squares, we investigate the multi­
plicative functions satisfying the equation f(m2 + n2) = f(m2) + f(n2) for all 
positive integers m, n. We prove the following result. 

THEOREM. Let f ^ 0 be a multiplicative function. Then f fulfills the condi­
tion 

(E) / ( m 2 + n2) = / ( m 2 ) + / ( n 2 ) 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 11A25. 
K e y w o r d s : multiplicative function, charac teriza t ion. 
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for all positive integers m and n if and only if either 

(E-l) f(2k) = 2k for all integers k>0, 
(E-2) f(pk) = pk for all primes p = 1 (mod 4) and all integers k > 1. 

(E-3) f(q2k) = q2k for all primes q = 3 (mod 4) and all integers k>\, 

or 

(E'-l) / (2) = 2 and f(2k) = 0 for all integers k>2, 
(E'-2) f(pk) = 1 for all primes p = 1 (mod 4) and all positive integers k, 
(E'-3) f(q2k) = 1 for all primes q = 3 (mod 4) and all integers k > 1. 

COROLLARY. Let / ^ 0 be a completely multiplicative function. Then f sat­
isfies the condition f(m2 + n2) = f(m2) + f(n2) for all positive integers m and 
n if and only if f(2) = 2. f(p) = p for all primes p—\ (mod 4) and f(q) = q 
or f(q) — ~q for att primes q = 3 (mod 4) . 

P r o o f . By the theorem, if a function / is completely multiplicative and 
(E) holds, then we have / (2) -= / (1) + / (1) = 2. So the complete multiplicativity 
of / gives f(2k) = (/(2)) = 2k for all positive integers k. In this case, the 
completely multiplicative function / satisfies (E) if and only if the conditions 
(E-l), (E-2) and (E-3) hold. By (E-l) and (E-2), we have / (2) = 2 and f(p) = p 
for all primes p = 1 (mod 4). By (E-3) and the complete multiplicativity of / , 
f(q2) = (f(q)) = q2 follows for all primes q = 3 (mod 4). These prove the 
corollary. • 

For the proof of the theorem we need some auxiliary results. 

2. Lemmas 

In the following, / denotes a multiplicative function for which there exists a 
positive integer m 0 with f(mQ) / 0 and 

/ ( m 2 + n2) = / ( m 2 ) + / ( n 2 ) (1) 

holds for all positive integers m and n. 

LEMMA 1. If f satisfies (1), then / (2) = 2, / (9) = 2/(4) + 1 and /(25) = 
6 / ( 4 ) + 1. 

P r o o f . Since / ^ 0 is multiplicative, we have / ( l ) = 1. Therefore, (1) 
implies that / (2 ) = / ( l 2 + l2) = / ( l ) + / ( l ) = 1 + 1 = 2. Moreover, by (1) and 
/(2) = 2 and the multiplicativity o f / , we have / (9) = / ( 1 0 ) - / ( 1 ) = 2 / ( 5 ) - l = 
2(/(4) + / ( l ) ) - 1 = 2/(4) + 1, which implies that /(25) = /(26) - / ( l ) = 
2/(13) - 1 = 2( / (9) + / (4) ) - 1 = 6/(4) + 1. 

So the lemma is proved. • 
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LEMMA 2. If f satisfies (1). then 

f(q2k) = f(q2k~2)f(q2) (2) 

for all positive integers q and k. 

P r o o f . By (1), we have 

f(q2k) + f(q2k~2) = f(q2k+q2k-2) = f(q2k~2)f(q2 + l) = /(flr2*"2) [/(?2) + / ( - ) ] 

from which the lemma f(q2h) — f (q2k~2)f (q2) follows for all positive integers 
q and k. So, the proof of Lemma 2 is completed, and, moreover, by induction, 
it gives 

f(q2k) = (f(q2))k- (3) 
• 

LEMMA 3 . / satisfies (1), then / (4) = 4 or / (4) = 0. 

P r o o f . By using (3), we have /(16) = ( / (4 ) ) 2 . On the other hand, by (1), 
we obtain /(16) = /(25) - / ( 9 ) . From Lemma 1, it follows that /(16) = 4 / (4 ) . 
Thus we have ( / (4) ) 2 = 4 / (4 ) , from which / (4) = 4 or / (4) = 0. 

So Lemma 3 is proved. • 

LEMMA 4 . If f satisfies (I), then 

f[2k) = 2 f c"2 / (22) (4) 

for all integers k > 2. 

P r o o f . We argue by induction on k. When k = 2 or 3, equality (4) is 
obvious. 

Assume that n is an integer with n > 3 , and that f(2k) = 2k~2f(22) for 
all integers fc, 2 < k < n. We will show that / ( 2 n + 1 ) = 2 n " 1 / ( 2 2 ) . If n + 1 is 
even, then n + 1 = 2fc, where 2k — 2 < n and k > 2. By (2) and the induction 
hypothesis, we have 

/ ( 2 " + 1 ) = / (2 2 f c - 2 ) / (2 2 ) = 2 2 f c - 4 / (2 2 ) / (2 2 ) = 2 2 f c - 4 ( / (2 2 ) ) 2 . 

Equality ( / (2 2 ) ) 2 = 4/(2 2 ) implies that / ( 2 n + 1 ) = 22k'2f(22) = 2 " - 1 / ( 2 2 ) . 
It remains to show that / ( 2 n + 1 ) = 2 n - 1 / ( 2 2 ) when n + 1 is odd. If n + 1 is 
odd, then n + 1 = 2k + 1, and so 2k = n. Thus (1) gives that 

f(2n+1) = /(22 f c + 22fc) = /(22fc) + /(22fc) = 2/(22fc) = 2 • 2 2 f c - 2 / ( 2 2 ) . 

So / ( 2 " + 1 ) = 2 n " 1 / ( 2 2 ) , which proves the lemma. • 
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LEMMA 5 . If f satisfies (1) and /(4) = 4, then 

f(m2) = m 2 

for all positive integers m. 

(5) 

P r o o f . We shall prove the lemma by induction on m. The lemma is clear 
for the cases m = 1,2,3. Assume that M is an integer with M > 3, and that 
/ ( m 2 ) = m 2 forall m<M. We will show / [ ( M + l)2] = (M + l ) 2 . If M + l is 
even, then M + 1 = 2fcra, where m < M and m is odd. By the multiplicativity 
of / , Lemma 4, / (4) = 4, and the induction hypothesis, we have 

/ [ ( M + l)2] = f(22km2) = f(22k)f(m2) = 22 / c~2 / (22)m2 = (M + l ) 2 . 

If M + 1 = q is odd, then we can write 

q2 + 1 = 2 mMvr 
where —-— are integers. 

9 ± 1 Since ^ — < M and (2, Q j ~ ) = 1, we obtain that 

/(<72) + l = / ( 2 ) / (fí^PгП-KmV/fPг) 
m+íV)' r + i, 

from which /(r/2) = r/2, i.e., / ( ( M + l ) 2 ) = (M + l ) 2 follows, which completes 
the proof of the lemma. D 

LEMMA 6. / / / satisfies (1) and / (4 ) = 4, then 

/ ( / ) - / (6) 

for all primes p = 1 (mod 4) and all positive integers k. 

P r o o f . Since p = 1 (mod 4), there exist positive integers x and y such 
that 

p 
2 , 2 

aг + зГ 
(see [1; p. 298]). So, from Lemma 5, we get 

f(pk) = /Or2 + y2) = f(x2) + f(y2) = x2 + y2=pk 

D 
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LEMMA 7. If (1) holds and / (4) = 0, then 

f(m2) = 1 (7) 

for all odd positive integers m. 

P r o o f . First we note that, using Lemma 4, / (4) = 0 implies f(2k) = 0 
for all k > 2, which, with the multiplicativity of / , implies that f(x2) = 0 if x 
is even. 

Equality (7) is true for m = 1. Let m be an odd integer m > 3. Assume 
that f(n2) = 1 for all odd integers n , 1 < n < m. We have 

f(m2) = 2 

and so 

- 1 , where w j : 1 < m , 

' 2f((^±^)2)-l if m = l (mod4) , 

2 / ( ( î ? ^ ) 2 ) - l i f m = 3 ( m o d 4 ) . 

/ (m 2 ) 

Using the induction hypothesis, one easily completes the proof of Lemma 7. • 

LEMMA 8. If (1) holds and f(4) = 0, then 

f(pk) = 1 (8) 

for all primes p = 1 (mod 4) and for all positive integers k. 

P r o o f . Since p = 1 (mod 4), there exist positive integers x and y such 
that pk = x2 + y2, where x is even and y is odd, from which by (1) 

f(pk) = f(x2) + f(y2) 

follows. By (7), we have f(y2) = 1. On the other hand, we have shown in the 
proof of Lemma 7 that f(x2) = 0. 

So f(pk) = 1 and Lemma 8 is proved. • 

3. Proof of the Theorem 

First, we verify the necessity of the conditions. 
If / fulfills the conditions of Theorem, then, by Lemma 3, / (4) may take 

only the values 4 or 0. If / (4 ) = 4, then, by Lemmas 4, 6 and 5, the conditions 
(E-l) , (E-2) and (E-3) are satisfied. If / (4) = 0, then, in Lemmas 1, 4, 7 and 8, 
we have proved the conditions (E'- l) , (E'-2) and (E'-3). So we have proved the 
necessity of the conditions. 
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Conversely, suppose that either the conditions (E-l) , (E-2), (E-3) or (E'- l ) , 
(E'-2), (E'-3) are satisfied for a multiplicative function / . 

It is well known that, if M = m 2 + n2, then we can write 

M = 2kp^...p«lql^ ...q2/*, (9) 

where p{ and q• are primes, pi = 1 (mod 4) and q- = 3 (mod 4) for i = 
1,2, . . . , / and j = 1, 2 , . . . , s and k > 0. Suppose that (E-l) , (E-2) and (E-3) 
are fulfilled. Then, by the multiplicativity of / , we have 

f(m2 + n2) = f(2k)f(p^)... f(p?)f (<£*)... f{iff') 

= m2 + n2 = f(m2) + f(n2). 

So we have shown that / satisfies (E). 

Finally, suppose that (E'- l) , (E'-2) and (E'-3) hold for the multiplicative 
function / . Now we consider the values of f(m2 + n2). 

By (9), the multiplicativity of / , and (E'-2), (E'-3), we have 

/ ( m 2 + n2) = / (2 f c ) . 

If k = 0, then exactly one of the two integers m and n is odd. We may 
assume m is even and n is odd. So, as above f(m2) = 0, and, by (E'-3), we get 
f(n2) = l. 

Thus f(m2 + n2) = f(m?) + f(n2) = 1. 

If k = 1, then both m and n are odd. By (E'-3), f(m2) = f(n2) = 1, from 
which we obtain 

f(m2 + n2) = f(m2) + f(n2) = 2. 

If k > 2, then both m and n are even. (E'-l) and the multiplicativity of / 
imply f(m2) = f(n2) = 0, which gives the equality 

/ ( m 2 + n 2) = / ( m 2 ) + / ( n 2 ) = 0 . 

This completes the proof of the theorem. 
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