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ABSTRACT. The conjecture of linear arboricity requires to decompose any
n -regular graph into [9—‘;—11 linear forests. Here, a new approach to this con-

jecture is developed. We bound the degrees in forests by [—'L;Llj .

Introduction

In this note, a graph will always mean a finite undirected graph without loops
and multiple edges. A graph T' is n-regular if the degree of each vertex in IT' is
n. We emphasize that the letter n will always be used only in this meaning.

A letter T' will indicate a forest. A linear forest is a forest with all vertex
degrees less than or equal to 2. For any graph I' the arboricity Y(T') of T' (the
linear arboricity Z(T") of T') is the minimum number of edge disjoint forests
(linear forests) whose union is IT".

Symbols V(I') and E(I') denote the vertex set and the edge set of a graph
I', respectively. An edge joining two vertices z and y we denote by zy.

The degree of vertex z in a graph I' (a forest T') is denoted as degp(z)
(degp(x)). The greatest degree in a graph T' is denoted as A(T).

For a real number v, |v]| denotes the lower integer part of v and
o] = - -v).

In 1961, C.St. J.A.Nash-Williams [9)and W.T. Tutte [12] have
determined the arboricity of arbitrary graph. In particular,

for an n-regular graph I'.
The following conjecture on linear arboricity is due to J. Akiyama,
GG.Exoo and F.Harrary [3].
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CONJECTURE 1. For an arbitrary n-regular graph T’

() = {%—1} .

The inequality Z(I") > [%H] follows from Z(I') > Y(I'). The converse is
not known. However, the conjecture has been proved in some special cases.

For n = 3,4 it was proved by J. Akiyama, G. Exoo and
F. Harrary in[3] and [4]. For n = 5,6,8 it was proved by H. Enomoto
and B.Peroche in[6],for n=6 by P.Tomasta in [11], and for n = 10
by F.Guldan in [7].

In general, as we mentioned above, the linear arboricity is at least (
Already in 1981 it was shown in [4] that Z(T') < [3 [%2]] for any n-regular graph
I'. In 1987 N. Alon [5] proved by probabilistic methods that for arbitrary
e > 0 and n sufficiently large the linear arboricity of an n-regular graph is less
than (% + e)-n.

The problem of linear arboricity in multigraphs was studied by
H. Ait-Djafer [1], [2].

In this note, we attempt to look at the problem from another point of view. As
we mentioned above, we have Y(I') = [%1 for an arbitrary n-regular graph

n+11
5=

I'. Let A,[R] denote the maximum degree of vertices over all components in
decomposition R of an n-regular graph to {%11 forests. Hence, A,[R] < n
is the best possible inequality which can be derived from [9] and [12] because
the authors admit vertices of arbitrary degree. However, Conjecture 1 requires
to find a decomposition R satisfying A,[R] = 2.

Up to date, no better bounds are known in general. In this note. we show
that A,[R] < [%J . A short proof of Conjecture 1 for n = 3 using techniques
similar to those used in the proof of Theorem 1 can be found in [8].

Main result

The proof of Theorem 1 is constructive. We decompose a graph [ into
forests T;, 1 =1,2,...,h.

We use elementary operation of inserting 7-admissible edge ry into forest
T;,i=1,2,..., h.Let k beaconstant to which we decrease the value of N, /R .
An edge zy ¢ E(T;) is i-admissible if and only if:

(i) T;Uwxy is a forest,
(11) deg(T,-u;r,y)(‘T) < k7
(111) deg(’]’,ulry) (y> <k.
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NOTE ON LINEAR ARBORICITY
We note that insertion of an 7-admissible edge into a forest T; cannot increase
the number of vertices of degree greater than k in forests 7, j = 1,2,... h.

We set h = {%] . The following identity will often be used:

n—+1 —-n—1 n—+1
—h+1=n+1—|—| = 1 = .
O i el e b N

THEOREM 1. Let I' be an n-reqular graph, n > 3. Then there are
h = [”;1 edge disjoint forests Ty,To,...,Th covering T' such that
AT < M), i=1,2,... k.

Proof. Assume that there is a graph I' which cannot be decomposed into
forests, where A(T;) < P—:r—lj ,1=1,2,...,h.

By C.St.J. A. Nash-Williams [9] and [10], there is a decomposition
of I' into h forests. We can assume that the decomposition is chosen so that
the number of vertices z € V(I') with degy, (z) > | 24| for any ¢ is minimum.

Let x be a vertex with degr (z) > [%J =n —h+ 1. Without loss of
generality, let 4 = 1. In the following, we modify our decomposition of I' to a
new one with degy (z) =n —h+2, and then we determine the degrees of some

vertices in 75 .

Since 2(n — h +2) > n + 2, the only forest T; with degy (z) > |24 is
Ty . Let degy (z) = | 24| 4. Since n — (n—h+1+4j) = h—j — 1, there are
J forests. say, T, T5,...,Tj41 with degy (z) = 0 for all i € {2,3,...,5 + 1}.
Since n —h+2 > 2 if n > 3, there are at least two vertices y with zy &
E(Ty). Let y be such that ay € E(T1). Since 1 4+2(n —h+1) >n+1, we
have degp (y) < n— h+ 1 for some i € {2,3,...,7 + 1} if j > 2. Assume
degp , (y) <n—h+1. Then zy is (j + 1) -admissible, and we can insert zy
into 741 . We decreased degp, (x) by one.

Now we have j — 1 forests T3, T3,...,T; with degy (x) = 0 for all i €
{2.3,..., j}. Let y besuch that zy € E(Ty). If j —1>2, xy is i-admissible
for some 7 € {2,3,...,5}, and we can insert zy into T;.

Thus, j — 1 neighbours of x in T} we can insert into T;,
i€ {2,3,....5+ 1}. Then degp, () = n —h + 2, and there is a forest, say,
1 with degp, (z) = 0. But degg,(y) = n—h+1 for all y with 2y € E(T))
since otherwise we get a contradiction with the original choice of T}, Ts,. .., Tk

m 1.
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n—h+2

Figure 1.

The edge zy is 7-admissible if z and y are in distinct components of T; .
1 > 2, because of (n—h+2)+(n—h+1)>n+1 (see Fig. 1). Thus,

degp(z)=n—h+2 and degp(z)=1, 1=3,4,...,h,
degr,(y) =n—h+1 and degp(y)=1 1,3,4,...,h

y 2

for all y with zy € E(Ty) because I' is n-regular (see Fig. 1).

Let y be a fixed vertex of I' with zy € E(Ty). Then z and y are joined
by a path in T3 . Let us denote y = ag,ay,...,a, = & the vertices of this path
(see Fig. 2).

We claim degr, (1) > n—h+ 1. Otherwise we can insert ajao into 7} and
ry into T3. We get again forests because zy is 3-admissible if ajay ¢ E(T3).
and ajag is l-admissible if zy ¢ E(Ty). But then degp (z) =n —h + 1, that
1s a contradiction with the original choice of Ty,T,,... T} in I'.

Vertices a9 and a; must be in the same component of T;.
i = 4,5,...,h. Otherwise, we can insert ajao into T;, and ry into T3 be-
cause ayag is t-admissible. Thus, degrp.(a)) > 1. 1> 3.

We have the following identities: .
degp,(ay) =2, degr, (a1) =n—h+1, degp(ar)=1, >3

because n = degp(a;) > 24+ n—-h+1)+h-3=n.

Analogously, we have degyp,(¢2) =2 n— I +1 because otherwise we can insert
aray into Ty, and xy into Ty . Similarly, a; and a; must be in the same
component of T; for each 7 > 3 because, otherwise, we can insert ayay into T,
and vy into T3 (sce Fig. 2). It means that:

degy,(az2) =2, degyp,(ay) =0 —h+1, degy(ay) = 1. >3,
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NOTE ON LINEAR ARBORICITY

We can repeat this construction till a,, is reached. Finally, we obtain:

degp,(z) =1,  degp(z)=n—h+2, degp(z)=1, i>3.

Figure 2.

Hence degp, () = degp,(y) = 1 and degp(a;) =2, 7 = 1,2,...,m — 1.
But as we mentioned above, there exists ¥ # y with yz € E(Ty). We obtain
existence of a path in Ty with vertices ¥ = bo,b1,...,bm = ¢ by an analogous
process. Here degp, (y) = degr,(¢) =1 and degp (bi) =2, ¢ =1,2,...,m— 1.
It means that =, y and ¥ are three distinct vertices of degree 1 in linear tree,
that is a contradiction.

This concludes the proof of Theorem 1. O

We have proved that every n-regular graph for which n > 3 can be decom-

[ I n+1
posed into [ 2

used to establish three forests which yield the path ag,ay,...,a;, in the proof.

-’ forests with maximum degree ["THJ . Assumption n > 3 was

Since | 2| =2 if n =4, we proved the Conjecture 1 for n = 4.

Every graph of degree not greater than %k can be completed to
k-regular graph by adding new vertices and edges. Thus, Theorem 1 implies

that cach graph T' with A(T) = k can be decomposed into [kzi] forests of
degree not greater than L%l] . The decreasing of degrees in forests to some

function asymptotically equal even to o(n) is still open.
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