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LOWER BOUNDS FOR T H E DISCREPANCY 

OF SOME SEQUENCES 

KAZUO G O T O * — Y U K I O O H K U B O * * 

(Communicated by Stanislav Jakubec) 

ABSTRACT. Let f(x) be a function of a class that contains the functions 
/3(\ogx)s (P > 0, 5 > 1) and (3na (f3 > 0, 0 < a < 1). We obtain lower 
bounds for the discrepancy of the sequence (an + f(n)) , where a is the irra­
tional number with bounded partial quotients. In order to show this result, we 
estimate exponential sums by the saddle-point method. 

1. Introduct ion 

Let {x} = x — [x] denote the fractional part of the real number x. We write 

e(x) = e27Tix for the real number x. We use f(x) x g(x) to mean that both 

relations f(x) <C g(x) and g(x) < f(x) hold. 

Let (xn) (n = 1,2,... ) be a sequence of real numbers. The discrepancy of 

(xn) is defined by 

DNІXn) = S U P 
0<a<6<l 

1 N 

мl2x[a>Ь)(xn)-(b-a) 
n=l 

where A7" is a positive integer and X[a, b) (x) l s t n e characteristic function mod 1 

of [a,b), that is, X[a,b)(x) = 1 -> o r i x } ^ ia^) and X[a,b)(x) = ^ otherwise 

(see [6]). 

O h k u b o [7] obtained an upper estimate of DN (an + (3 log n) as follows: 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 11K38; Secondary 11L07. 
K e y w o r d s : discrepancy, exponential sum, saddle-point method, regularly varying function. 
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If a is of constant type and (3 is non-zero real, then, for all positive integer JV, 

DN(an + 0\ogn) < C(/?).AT§ log TV. 

See [2] for a multi-dimensional case and also see [3] for an extended result. 

Let r(x) be a positive measurable function on [X, oo) for some X > 0. If 
there exists a real number p such that 

lim T-^- = \p for each A > 0 , 
z-»oo r(x) 

then r is said to be regularly varying function of index p and we write r G R 
(see [1]). 

The purpose of this paper is to obtain the lower bounds for the discrepancy 
of the sequences (an + f(n)), where f(x) is some regularly varying function. 

We shall need several assumptions on / and a. For convenience, we list the 
eight assumptions: 

(Fl) f(x) is real for x > 1. 
(F2) f'(x)-+0 ( z - > o o ) . 
(F3) f"(x) -^0 ( x - > o o ) . 
(F4) f" G Rp for some p < - 2 . 
(F5) f'"(x) is ultimately non-increasing. 
(F6) xf'(x) is ultimately non-decreasing. 
(Al) a is the irrational number with continued fraction expansion a = 

[ a 0 , a 1 , a 2 , . . . ] . Let pn/qn = [a0, a 1 ? . . . , an] (n > 0) be the sequence 
of principal convergents to a , and let hm = P2m+i and km = q2m+1 for 
ra > 0. 

(A2) a = [a0, a1,a2,...] has bounded partial quotients, say a- < c for i > 1. 

From (F2), (F3), (F4), and L'Hospital's rule, it follows that -f" G Rp+1 and 
/ ' G Rp+2-

 S i n c e / 7 ( x ) | 0 (x t oo) and 0 < hm/km-a < km
2 -+ 0 (m -» oo), 

there exists cm such that f'(cm) = ^ —a for sufficiently large m (m > 3A/0). 
Since hm/km - a > hm+1/km+1 - a ' and / ' is decreasing, we have cm < cm+1 

for m > M 0 . Since f'(cm) < km
2 -+ 0 as m -)• oo and /x(x) | 0 as x | o o , we 

have cm t °° a s ^^ t °° • 

First, we show the detailed estimate of the exponential sum. 
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THEOREM 1.1. Suppose that (F l ) , (F2), (F3), (F4), (F5), and (Al) are sat­
isfied. Then 

N 

Y,e(km(an + f(n))) 

<(^m-hJcm + kmf(cJ-l/S) 

П=l 

1 

!4/2|/"(Ol1/2 

i 
+ o 

.^/I/'(c„)"3l/"(<;„)l"V 

+° i^kj)+ ° ( e (^Zf/{xf M m k - + 2 ) ) 
for sufficiently large positive integer N, where m is defined by 2cm < N < 2 c m + 1 . 

Applying Theorem 1.1, we can prove the main theorem. 

THEOREM 1.2. Suppose that (F l ) , (F2), (F3), (F4), (F5), (F6), (Al), and 
(A2) are satisfied. Then there exists a constant C such that 

DN(an + f(n))>cl±^ 

for all positive integer N. 

The following two corollaries are immediate from Theorem 1.2. 

COROLLARY 1.1. Let a be an irrational number with bounded partial quo­
tients, let (3 > 0 and s > 1. Then, there exists a constant C > 0 such that 

DN (an + /J(log n ) ' ) > C ' ^ ^ 

for all positive integer N. 

COROLLARY 1.2. Let a be an irrational number with bounded partial quotients 
and let j3 > 0, 0 < a < 1. Then there exists a constant C" > 0 such that 

DN(an + fin*) > C'N^-W* 

for all positive integers N. 
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2. Preliminary lemmas 

LEMMA 2.1 . ([4; p. 56]) Let F(x) be a real differentiate function such that 
F'(x) is monotonic and F'(x) > m > 0 or F'(x) < —m < 0 for a < x < b. Let 
G(x) be a positive, monotonic function for a < x < b such that \G(x)\ < G. 
Then 

/ а д e , ғ w љ 
< AGm-1. 

LEMMA 2.2. ([9; Lemma 10.5]) Let (p(x) be a positive decreasing and differ-
entiable function defined on the interval [a, b]. If g"(x) is of constant sign and 
(p'(x)/g"(x) is monotone on [a, b], then 

W(x) 
I (p(x)e(g(x)) dx 

( ip(x) 
< 8 max , ... . , 1 / 9 I + max 

a<x<b \ \g"(x)\1/2 ) a<x<b g"(x) 

LEMMA 2.3. ([8; Lemma 4.6 and Notes]) Let g(x) be a real-valued function on 
the interval [a, b] and suppose that g(x) satisfies the following conditions: 

(i) g'"(x) is continuous on [a, b]; 
(ii) either g"(x) > 0 on [a, b] or g"(x) < 0 on [a, b]; 

(iii) there exists positive number A2 such that 
g"(x) x A2 on [a, b]; 

(iv) there exists positive number A3 such that 
g'"(x) <:A3 on [a,b]; 

(v) g'(c) = 0 for some c G [a, b]. 

Then 

b 

fe(g(x)) Ax = \g"(c)\-"2 e(g(c) + \ sgn(g"(c))) + 0(A~1A1

3

/3) 

+ O min 
\9'(a)\ 

5 - 4 2 
-1/2 

+ O min -1/2 

\9'(b)\ 
5 -т-2 

LEMMA 2.4. ([9; Lemma 4.4]) Let f(x) be a real-valued function and f'(x) 
be monotone on the interval [a, b] such that \f'(x)\ < X on [a, b] for some 
0 < A < 1. Then 

b 

e(f(x))dx- Y, «(/(«)) = ° ( T 3 A ) -
/ • a<n<b 

The following lemma is a modified saddle-point theorem. 
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LEMMA 2.5. Suppose that g(x) and (p(x) are real-valued functions on the 
interval [a, b] which satisfy the following conditions: 

(i) g'"(x) is continuous and (p"(x) exists on [a, b]; 
(ii) either g"(x) > 0 on [a, b] or g"(x) < 0 on [a, b]; 

(iii) there exists a number A2 > 0 such that 

g"(x)x_42 on [a, 6]; 

(iv) there exists a number A3 such that g'"(x) <C A3; 

(v) there exist numbers H0, Hx, and H2 such that 

(p(x)<^H0, (p'(x)<^H±, (p"(x)<^H2] 

(vi) g'(c) — 0 for some c G [a, b]. 

Then 
b 

(p(x)e(g(x)) dx 

" =^(c) | f l / /(c) | - 1 / 2c(^(c) + | sgn( f l
/ / (c ) ) ) 

+ Ofa^A1*) + O^A-1) + 0(H2A2\b - a)) 

+ 0(H, A2
2A3(b - a)) + 0(H2A2

2A3(b - a)2) 

+ O(H0 min{ A~ 1 / 2 , la ' ta)!"1}) + O(H0 min{ A2
l/\ \g'(b)\-1}). 

(2.1) 

P r o o f . The cases g" > 0 and g" < 0 are analogous, so only the former is 
considered. We have 

b b b 

/ <p(x)e(g(x)) dx = <p(c) f e(g(x)) dx + (<p(x) - <p(c))e(g(x)) áx 
(2.2) 

= A + h > say-
We split the integral J2 into two parts: 

c 6 

72 = / M x ) - ^ ( c ) ) e (# ( x ) ) dx + / (<p(x) - (p(c))e(g(x)) dx 

= 4 1 ) + 4 2 ) , say. 
By change of variable and integration by parts, we obtain 

7 ( i ) _ ^ + C)-^(C) 1° 
2тri5 '(_ + c) e W ж + c Л 

1 / y ' ( _ + c ) ď ' ( _ + c ) - g » ( _ + c ) ( y , ( _ + c ) - ¥ , ( c ) ) 
-—: / ^ -e(g(x + c)ì ăx . 
2 ^ i j ( 5 ' ^ + c)) 2 ^ " 

n.— r ^ v ' a—c 
(2.3) 
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From the conditions concerning 9(x) and <p(x), it follows that for x < 0 
<p'(x + c) = <p'(c) + 0(H2x), (2.4) 

<p(x + c) - <p(c) = <p'(c)x + 0(H2x
2), (2.5) 

g'(x + c) = g"(c)x + 0(A3x
2), (2.6) 

g'(x + c)= g'(c) + g"(c + 0_x)x = g"(c + d_x)x x A2x (2.7) 
for some 0 < 0_ < 1, and 

g"(x + c) = g"(c) + g'"(c + 62x)x = g"(c) + 0(Azx) (2.8) 

for some 0 < 02 < 1. By (2.5), (2.7), and <p'(x) < H_, we obtain 

<p(a) - <p(c) _ <p'(c)(a -c) + Q(H2(a - c)2) 

9'(a) 9'(a) 
= O^A^1) + 0(H2A^(b - a)). (2.9) 

By (2.5) and (2.6), we obtain 
<p(x + c) ~ <p(c) _ <p'(c)x + Q(H2x

2) <p'(c) + Q(H2x) 
g'(x + c) ~ g"(c)x + 0(A3x

2) ~ g"(c) + 0(Azx) ' 
From this and g"(x) x A2 and <p'(x) < H1, it follows that 

ss v±7<^r° w.+«»=%MO) « *># • <"o) 
Using (2.4), (2.5), (2.6), (2.8), and (p'(x) < H_, g"(x) < A2, we have for 
a — c < x < 0, 
(7O

/(x+c)g/(^+c)-g//(x+c)((^(a:+c)-(.O(c)) < H1A3x
2+H2A2x

2+H2A3(b--a).x2 , 

and so 

/ 

<p'(x + c)g'(x + c) - g"(x + c)(<p(x + c) - <p(c)) , + , ^ 

(g'(x + c)f (2.11) 

< H_A2-A3(b -a)+ H2A2-(b - a) + H2A2
2A3(b - a)2 , 

where in the second step, we also use (2.7). 

From (2.3), (2.9), (2.10), and (2.11), it follows that 

4 1 } < H_A2
l + H2A2

X (b-a) + H_A2
2A3(b - a) + H2A2

2A3(b - a)2 . 

Similarly, we can obtain the same estimate for I2 '. Hence, we have 

I2 < H_A2
l + H2A2-(b -a) + H_A2

2A3(b - a) + H2A2
2A3(b - a)2 . (2.12) 

Applying Lemma 2.3 to the integral I_, by the assumption cp(x) <C H0 , we have 
I_ =<p(c)\g"(c)\-^2e{g(c) + _ sgn(g"(c))) + O^A'1 A\'3) 

+ O(H0 min{A2-1/2, ^'(aT1}) + O(H0 min{^- 1 / 2 , W(b)\-1}) . 
Combining (2.2), (2.12), and (2.13) completes the proof. • 
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LEMMA 2.6. ([8; Lemma 4.7]) Let f(x) be a real function with continuous and 
steadily decreasing derivative f'(x) in (a ,b) . and let f'(b) = A, f'(a) — B. 
Then 

b 

] T e ( / ( n ) ) = J2 fe{f(x)-vx)dx + 0(\og(B-A + 2)), 
a<n<b A-r}<v<B+rj J

a 

where rl is any positive constant less than 1 . 

X 

LEMMA 2.7. ([1; Monotone Density Theorem]) Let U(x) = J u(y) dy. 
o 

If U(x) ~ cxp£(x) (x —> oo), where c G R, p G R. £ G i? 0 , ana7 i/ Î is 
ultimately monotone, then 

u(x) ~ cpxp~1£(x) (x -> oo ). 

LEMMA 2.8. Le£ / G it tm£/i p G M. Suppose that f'(x) is ultimately mono­
tone. Then 

v xf'(x) 
h m ~77~r = P • 

a:->cx) J\X) 

P r o o f . Let f(x) is defined on the interval [X, oo) for some X > 0. Since 
/ G it , we have / (x ) = xp£(x) for some £ £ R0. We set 

/ ' (y ) i f X < y . 

We have 

/ u(y) dy = / ( x ) 

o 

for x > X. Lemma 2.7 yields that 

u(x) ~ pxp~x£(x) (x —> oo ), 

and so 
/ ' (x ) ~ px~lf(x) (x -> oo), 

wThich completes the proof. D 

LEMMA 2.9. ([1; Uniform Convergence Theorem]) If f e Rp, then 

f(Xx)/f(x) —> Ap (x —> oo) uniformly in X on each [a,b] 

(0 < a <b < oo). 
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LEMMA 2.10. ([1; Theorem 1.2.12]) If f e R with p > 0. there exists 

g G R\ip with 

f(g(x)) ~ g(f(x)) ~ x (x -> ex)). 

Applying Koksma's inequality (see [6; p. 143, Theorem 5.1]), we obtain the 
following lemma by the same reasoning as in the proof of [6; p. 143, Corollary 5.1]. 

LEMMA 2.11. ([6]) Let (xn) be a sequence of real numbers. Then for any 
positive integer h, 

1 - " 

4Л мH<ҺXn) N 
7 1 = 1 

<DN(xn) 

3. Proof of Theorem 1.1 

Let m> M0, and let am = cm/2, bm = 2cm and xn = an + f(n). We have 

E <kmXn)= E <kmXn-hmn)= E €(^)) , (3.1) 
am<n<bm am<n<bm am<n<bm 

where g(x) = (akm — hm)x + kmf(x). Since / ' ( x ) is decreasing, we have 

g'(x)<(hm-akm)(^^-l) for a m < a : < 6 m . (3.2) 

Since hm — cYkm —r 0, we have hm — akm < 2p+l for sufficiently large m 

(m > 3M1 > M0). Since / ' 6 Rp+2
 a n (^ c™ —^ °° ( m "^ °°)> w e n a v e 

"»->«> / ' ( C m ) 2P+2 

Therefore, we obtain 

/'(C-J-) < J _ + x (33) 
/ ' (O <2P+2

 + 1 ( 3 - 3 j 

for sufficiently large m (m > 3M2 > Mx). By (3.2) and (3.3), we have 
g'(x) < 1/2 for am < x < bm (m > M2). Since / ' > 0, km > 0, and 
p < — 2, we have 

gf(x)>-(hm-akm)> - 2 ^ > -1/2 for am < x < bm (m>M,). 

Thus \g'(x)\ < 1/2 for am < x < bm (m > M2). Therefore, from (3.1) and 
Lemma 2.4 with A = 1/2, it follows that 

bm 

~Z e(kmxn)= f e(g(x))dx + 0(l) for m > M2 . (3.4) 
am<n<bm J 

Mm 
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Let m > M 2 . Using integration by parts, we have 

am a>m 

where ip(x) = f'(x). In order to apply Lemma 2.5 to the integral in the right-
hand side of (3.5), we consider the conditions that the functions cp and g satisfy. 
We observe that g'(x) is decreasing and 

9\Cm) = ° a n d am < Cm < bm ' 
Since g" = kmf" < 0, / " is increasing, and —/" G i? + 1 , we find 

-g"(x)^-kmf"(cj for am<x<bn. 

Since f'"(x) is ultimately non-increasing and f" G It , we have 

W"(x)\ = knf'"(x) « kj'"(cj2) « knf'"(cj 

for &m < x < bm and for sufficiently large m (m > 3M3 > M 2 ) . We note that 
f G I?p+2' / ' 1S positive and decreasing. It follows that 

Mx)\ = f'(x)<f'(cJ2)«f'(cJ for am<x<bm. 

We also note that — f" G I?p+1 and —f" is positive and decreasing. It follows 
that 

W(x)\ = -f"(x) < -f"(cm/2) « -f"(cj for am < x < bm . 

Since f'"(x) is ultimately non-increasing and / / ; / G It , we have 

W'(x)\= f'"(x)«f'"(cj (am<x<bn) 

for sufficiently large m (m > M 3 ) . Hence, we can apply Lemma 2.5 with 
A = -kmf"(cj, A, = kmf'"(cj, H0 = f'(cj, Hx = -f"(cj, and 

bm 

^2 — / ' " ( c m) t ° the integral J ^p(x)e(g(x)) dx. We compute each term on 
dm 

the right-hand side of (2.1) in Lemma 2.5. We have 

„ ,-i .1/3 _ f'(cJ2/3 ( f'icj V73 (c_mr(cj\1/3 . 
0 " ^/3(-/"(cm))1/3 Uc m / " (oJ {-^rKJ) • (3-6) 

We note that cm -> oo (m -* oo), - / " G Itp+1, and / " ' (x ) is ultimately 
non-increasing. Applying Lemma 2.8, we have 

c f'"(c ) 

" °° " / (Cm) m . __ , . w 
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and so 
c f'"(c ) 
: , > ; = Q ( i ) . (3-7) 

J \Cm) 
Similarly, we have 

-c f"(c ) 
H m m K m ) = - ( p + 2 ) , 

m ^ ° ° / (Cm) 
and so 

From (3.6), (3.7), and (3.8), it follows that 

We also obtain 

H.A-1 = -f"{cj{-kmf"{cjyl - kj . (3.10) 

From (3.7), it follows that 

c f'"(c ) 
H2A-\bm - a J « k'J m_r{cj « k™ ' (3 J 1) 

H1A-2A3(bm-aJ^km\ (3.12) 

and 

H2A-"A3(bm - aj* « fcj ̂ ^Icj) K< k™ • (3-13) 

Since / ' G I?p+2 > w e n a v e 

/to m i n { ^ - 1 / 2 , \g\aj\-1} < ̂ ^ ( O l " 1 = fc™ 
_ _ _ ) _ , 

f'(cj 
« K1 • 

(3-14) 
Similarly, we obtain 

H0min{A2
1/2,\g'(bJ\-'} = O(kJ). (3.15) 

From Lemma 2.5, (3.9), (3.10), (3.11), (3.12), (3.13), (3.14), and (3.15), it follows 
that for m > M3, 

bm 

f v(x)e(g(x)) dx = f *J e ( g ( c j - I) 
m ^ J ^ " ^ (3.16) 

+ oUf-w)+ o K l )-
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By (3.5) and (3.16), we have 

bm 

fe(g(x))dx= l / 2e(ď ( cj-í) 
kUг(-f"(cJ) 

+ 0 + 0 
k2rlzf'(cmyi*(-f"(cjyi*) \kmf(cj 

for m> M3. From (3.4) and (3.17), it follows that 

E e(kmXn) 
dm <n<bm 

(3.17) 

.1/2 ы H"(cj) 

+ 0 

hт^^e(9(cJ - Ì) (3.18) 

+ 0 
kU3f'(cmyi\-f"(cjy/*) \kmf(cj 

+ 0(1) 

for m > M3, 
Next, we estimate the sum ^ e(^mxn) • We Pu^ ^(x) ~ ^m(ax + f(x)) • 

l<n<a m 

Setting 77 = akm — hm + ^ m / ' ( c
m /2 ) , w e obtain 0 < 77 < 1 for sufficiently large 

m (m > 3M4 > M3). Applying Lemma 2.6, we have for m > M4, 

a m 

E e ( * W O = E / " e ( ^ x ) - i / x ) d x + 0( log(B- .4 + 2)), (3.19) 
l<n<a m A-n<v<B+n \ 

where A = 4>'(am), L? = </>'(!) • By integration by parts, we have 

Qrn 0>m 

j e(4>(x) - vx) dx = - ^ Z - v f f'(x)e(<l>(x) - ux) dx + 0 ( j ^ - ^ ) • 

Applying Lemma 2.2, we obtain 

J l<x<a r 

f'(x) 
+ mаx 

We have 

S"(x)\1/2 J l<x<a 

/'(*) - k-
ll2(xf'(x)Ý'2 ( f'iX) \ 

\4>"(xW/2 ~ m \XJKX)> \-xf"(x)J 

f"(x) 
ф"(x) 

1/2 
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r(-) Therefore, since lim _i}i?L\ = ~~zro by Lemma 2.8, we have 
x—j>oo J W p^~ 

w^<<k'jnisi:ll[x)T tor 1<x<a-
Hence 

& m -i / o 

f f(x)e((t>(x) - vx) dx « km
x'2 ( sup * / ' ( * ) ) + km

l . (3.20) 
J \ l < a ; < a m / 
1 

We remark that hm is not contained in the interval A — n < v < B + r). By 
(3.19) and (3.20), we obtain 

E <kmXn) « [ kli2( ^ p Xf(x))1 2 + 1 ) \0g(f(l)km + 2) . (3.21) 
Kn<am \ \ - < ^ < a m / / 

Let bm< N < bm+1. We have 

_H <kmXn)= _H <kmXn-hmn)= _H e{d(n)) . 
brn<n<N 6m<n<jN brn<n<N 

Since 0 < - g ' ( x ) < V 2 f o r &m 5- ^ < ^> Lemma 2.4 yields 

N 

E e (^ ) ) = J <9(x)) dx + 0(1). (3.22) 
6 m <n</V J 

Vm 

Applying integration by parts, we have 

7V IV 

/ e ( 9 ( I ) ) d x- 'd^/ / 'W e ( 9 < I ) ) d I +K'^-) • (323) 

Since f(x) is decreasing, we obtain 0 < f(x) < f(bm) for bm < x < N. Let 
F(x) = 2ng(x). We have, by the definition f(cm) = ^ - a , 

Since lim Q^\ = 2 P + 2 < 1 > 
7TI—>QO •! V C m J 

fib ) 2P+1 + 1 
J L(

 mi < for sufficiently large m (m > 3M5 > M4 ) . 
J \Cm) 2 
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Hence 
F'(x)<-7r(l-2^2)kmf'(cJ<0 for m>M4. 

Using Lemma 2.1 and / ' G i? + 2 , we have 

Al 

Jf'(x)e(g(x))dx 
bm 

Hence, by (3.23) 

bm 

and so, by (3.22) 

£ e ( f f ( n ) ) = o ( — J - — ) + 0 ( 1 ) for m > M 5 . (3.24) 
6m<n<7V V ^ J l C ™ ^ 

Combining (3.18), (3.21), and (3.24) completes the proof of Theorem 1.1. 

4. Proof of Theorem 1.2 

We note that / ' G i t + 2 and / " is increasing. Applying Lemma 2.8, we 
obtain 

,. xf"(x) 
hm 4 - Y = P + 2 . 

.r-)-oo / ' ( x ) Hence, we have 

7 l ' ~ f'(x) x ~ x • l • ' 

Applying Theorem 1.1, we have for sufficiently large TV, 

N 

VJe(fcm(an + /(n))) 
n = l 

1 =аг1л".<*")^)+°( 
+° (кшзд+°(е и<аПх)1)""1об(/,(1)*»+2)) • 

(4.2) 

fcm/3|T(cm)ľ/3|T'(cm)ľ/3, 
1/2 
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where 2cm < N < 2 c m + 1 and g(x) = (akm - hm)x + kmf(x). 
We compare the order of magnitude of the main term wTith that of each error 

term in (4.2). Because of (4.1), for the main term, we have 

Л/2 

kU2{-f"(cjf2 kU2f(cmy/> kU2{cmf(cjf2 

Because of (4.1), for the first error term, we have 

1 cm 

(4.3) 

( .2/З í , / „ M/Зř- tll(„ W1^ k2Jf'(cmy/*{-f''(cjy» kT{cmf<{cjy 

Since the function xf(x) is ultimately non-decreasing, wre have 0 < 
lim cmf'(cm) < oo. By comparing the right-hand sides of the above two 

formulas, it follows that the order of magnitude of the main term is properly 
bigger than that of the first error term. Similarly, it follows that the order of 
magnitude of the main term is properly bigger than that of the second error 
term. For the third error term, we have for sufficiently large m 

k'j( sup _•/'(_) Y 2log(/'(l)fcm+2) < ^ 2 ( c m / ' ( c m ) ) 1 / 2 l o g ( / ' ( l ) A ; m + 2 ) , 
Vl<x<c m /2 / 

because xf(x) is ultimately non-decreasing. Since kmf(cm) < l/km, wre have 

.1/2 ( - 1 / 2 X 

^ / 2 ( c m / ' ( c m ) ) ^ l o g ( / ' ( l ) f c m + 2 ) = o 
kU2f(cmy/\ 

Hence, by comparing the second term of (4.3) with the right-hand side of the 
above formula, it follows that the order of magnitude of the main term is properly 
bigger than that of the third error term. After all, the order of magnitude of the 
main term (4.3) is properly bigger than that of each error term. Therefore we 
obtain 

J2e{km{an + f(n))) >CX-—^ (4.4) 
kU2f'(cmУ/i 

for some C1 > 0 and for sufficiently large N. 

Let fx(x) = l// ' (_). Since /' _ Rp+2,
 w e h a v e f\ £ R-ip+2) • By Lemma 2.10. 

there exists F 6 R_1irp+2)
 s u c n that F(f1(x)) ~ x as x —> oo. Hence, c_ ~ 

F(fi(cJ) = F{km/(hm ~ akj) as m -> oo. Therefore 

c_m±1^
F(km+J(h +l~ak )) ^ m ^ Q o _ 

F{kJ(hm-akJ) 
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Setting \ m := ^ f o i ^ * 0 > w e o b t a i n V 2 ^ Xm < 2(c + l ) 4 =: b 
for m > 0, because l/(2gn + 1) < pn - aqn < l/qn+1 and qn+1/qn = an+1 + 
qn_1/qn < c + 1 for n > 1 by the assumptions (Al) and (A2). By Lemma 2.9, 
F(\x)/F(x) -> A " 1 ! ^ 2 ) (_ -> oo) uniformly in A G [1/2,6]. Hence, there 
exists X0 such that if x > X0, then 

F(A_) _ л-l/(p+2) < 1 
F(x) 

for all A € [1/2,6]. We note that 

F(km+1/(hm+1-ahm+1)) _ F(\mxJ 
(4.6) 

F(kJ(hm-ahJ) F(xJ ' 

• oo as m -4 oo and Am G [1/2, b], if where z m = kj(hm - ahm). Since xm 

m is sufficiently large, then 

F(XmXm) < A-l/(p+2) + 1 < ft-l/(p+2) + j 

Prom (4.5), (4.6), and (4.7), there exists K > 0 such that 

-m+l 
<к 

(4.7) 

(4.8) 

for sufficiently large m (m > 3M > 0). For 2cm < N < 2 c m + 1 (m > M), we 
have 1/(2K) < cJN < 1/2. By Lemma 2.9, f'(Xx)/f'(x) -4 A^+2 (x ̂  oo) 
uniformly in A G [l/(2_ftT), 1/2). Therefore, there exists X1 > 0 such that if 
x> Xx, then 

/'(As) 

/'(*) 
_ Л P + 2 < 1 

for all A € [l/(2__), 1/2). Hence, we have 

| / ' ((c r o /7V)_/) /C_XP+2 

f'(N) ( * ) ' < 1 

for all _V > X1, and so 

f (c ) / c \t>+2 / i \P+2 

m < 1 — 1 4-1 < ( —— I 4-1 
f'(N) \N J + - U ^ / 1 + 1 , 

Hence, we have 
f'(cJ«f'(N). 

Hence, from (4.4), (4.8), and (4.9), it follows that 

J_ ' N 

N 

(4.9) 

1 N 

Л?Eв(fcm («« + /(»))) 
n = l 

> 
Co 

_m/2.ҶlV)1/2lV1/2 
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for some C2 > 0 and for sufficiently large m . Since / ' is decreasing, / ' G Rp+2 > 

and f'(cj < k~2, we have 

f'(N)<f'(2cJ«f'(cJ<k-2, 
so that 

Therefore 

km « / W -1/2 

1 - " 

k„ 
lJ2Фm(an + f(n))) 
N , 

П = l 

f'(7V)1 / 4 

> ^ ^ Ӣ T ^ ^ 4 Л 0 ) 

for some C > 0. By (4.10) and Lemma 2.11, we obtain the desired inequality. 
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