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The Baire property in remainders

of topological groups and other results

Alexander Arhangel’skii

Abstract. It is established that a remainder of a non-locally compact topological
group G has the Baire property if and only if the space G is not Čech-complete.
We also show that if G is a non-locally compact topological group of countable
tightness, then either G is submetrizable, or G is the Čech-Stone remainder of
an arbitrary remainder Y of G. It follows that if G and H are non-submetrizable
topological groups of countable tightness such that some remainders of G and
H are homeomorphic, then the spaces G and H are homeomorphic. Some other
corollaries and related results are presented.
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By a space we understand a Tychonoff topological space. A compactification
of a space X is a Hausdorff compactification of X . A remainder of a space X

is the subspace bX \ X of a compactification bX of X . For the definition and
properties of p-spaces see [1], [6], or [7]. We only recall that Lindelöf p-spaces
can be characterized as preimages of separable metrizable spaces under perfect
mappings ([1], [6]). A space X has the Baire property if the intersection of an
arbitrary countable family of dense open subsets of X is dense in X .

In terminology and notation, we mostly follow [6], [7], and [10]. To these books
a reader may also refer in the case of folklore type references.

1. The Baire property in remainders of topological groups

The Dichotomy Theorem in [5] can be reformulated as follows: If G is a topo-

logical group, and some remainder of G is not pseudocompact, then every remain-

der of G is Lindelöf .
A natural question arises: what if we strengthen the assumption and assume

that some remainder of G does not have the Baire property? This question leads
to the Second Dichotomy Theorem for remainders of topological groups:

Theorem 1.1. Suppose that G is a non-locally compact topological group. Then

either every remainder of G has the Baire property, or every remainder of G is

σ-compact.

To prove this statement, we need the next result of independent interest:
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Theorem 1.2. If Y is a Čech-complete subspace of a topological group G, then

either Y is nowhere dense in G, or the space G is Čech-complete as well.

Proof: Assume that Y is not nowhere dense in G. Then some non-empty open
subset V of G is contained in the closure of Y in G. Clearly, PV = Y ∩ V is a
dense Čech-complete subspace of V .

Claim 1: For every non-empty open subset W of G, there exist a non-empty
open subset U contained in W and a Čech-complete subspace Z of U such that
Z is dense in U .

Indeed, since G is a topological group, we can use translations in G, in an
obvious way, to establish Claim 1.

By Zorn’s Lemma, we can take a maximal disjoint family γ of non-empty open
subsets of G such that each element of γ contains a dense Čech-complete subspace.
Put M =

⋃
γ. It follows from Claim 1 that M is dense in G. For each U ∈ γ,

fix a Čech-complete subspace ZU of U dense in U , and put Z =
⋃
{ZU : U ∈ γ}.

Obviously, Z is dense in G.
Let us show that the subspace Z is also Čech-complete. Fix a compactification

B of G, and for each open subset U of G fix an open subset bU of B such that
U = G ∩ bU . Observe that U is dense in bU , since G is dense in B. Now
take any U ∈ γ. Then ZU is dense in bU , and since ZU is Čech-complete, we
can fix a countable family ηU = {Wn(U) : n ∈ ω} of open subsets of bU such
that ZU =

⋂
ηU . For what follows, it is essential to notice that the family

bγ = {bU : U ∈ γ} is disjoint. This is so, since γ is a disjoint family of open
subsets of G and G is dense in B. Thus, bγ is a disjoint family of open subsets
of B. It also follows that the family ξn = {Wn(U) : U ∈ γ} is disjoint, for each
n ∈ ω.

Put Wn =
⋃

ξn =
⋃
{Wn(U) : U ∈ γ} for n ∈ ω. Clearly, Z ⊂ Wn, for each

n ∈ ω. Hence, Z ⊂ Z1, where Z1 =
⋂
{Wn : n ∈ ω}.

Claim 2: Z1 = Z, and hence, Z is Čech-complete. Indeed, Z1 =
⋂
{Wn : n ∈

ω} =
⋃
{
⋂
{Wn(U) : n ∈ ω} : U ∈ γ} =

⋃
{ZU : U ∈ γ} = Z, since each family

ξU is disjoint.

Claim 3: The topological group G is Rajkov complete.

Assume the contrary, and take the Rajkov completion H of G. Then H \ G is
non-empty. Recall that H is a topological group containing the group G as a dense
subgroup. Fix a ∈ H \ G, and consider the subspaces aG and aZ of H . Clearly,
aG and G are disjoint, since G is a subgroup of H and a is not in G. Observe that
aG is dense in H , since G is dense in H . It follows that Z and aZ are disjoint
Čech-complete subspaces of H dense in H . However, this is impossible. Indeed,
the intersection of any two dense Čech-complete subspaces of any Tychonoff space
is dense in this space, by the Baire property of compact Hausdorff spaces. Thus,
G is Rajkov complete.
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The existence of a dense Čech-complete subspace in G also implies that G

contains a non-empty compact subspace with a countable base of open neigh-
bourhoods. Hence, G is a paracompact p-space, since G is a topological group
(see [7], Theorem 4.3.20 and Corollary 4.3.21).

However, M.M. Choban has shown that if a Rajkov complete topological group
is a paracompact p-space, then this space is Čech-complete ([8]). Hence, G is
Čech-complete. �

Proof of Theorem 1.1: Suppose that bG is a compactification of G such that
the remainder Y = bG \ G does not have the Baire property.

Claim: Y is σ-compact.

In other words, we have to show that G is Čech-complete. Since Y does not
have the Baire property, we can find a countable family η of open dense subsets
of Y such that

⋂
η is not dense in Y . Note that G is nowhere locally compact,

and therefore, Y is dense in bG. It follows that there exist a countable family
ξ of open dense subsets of bG and a non-empty open subset U of bG such that
(
⋂

ξ) ∩ (U ∩ Y ) = ∅. Then the subspace M = (
⋂

ξ) ∩ (U ∩ G) = (
⋂

ξ) ∩ U is
Čech-complete and dense in the open subset U ∩ G of G. This is so, since U is
locally compact and hence has the Baire property. Therefore, M is not nowhere
dense in G, and Theorem 1.2 implies that G is Čech-complete. �

Remark. Observe that a remainder Y of a non-locally compact topological group
G cannot have the Baire property and be σ-compact at the same time. Indeed,
otherwise the interior of Y in bG is not empty and clearly Y must be dense in the
compactification bG. Therefore, Y has to intersect its complement G, since G is
also dense in bG, a contradiction.

Corollary 1.3. Every remainder (some remainder) of an arbitrary non-locally

compact topological group G has the Baire property if and only if G is not Čech-

complete (that is, if and only if the remainder of it is not σ-compact).

Proof: This statement follows from Theorem 1.2. �

The last result shows that topological groups can be used to produce non-trivial
topological spaces with the Baire property.

Corollary 1.4. For an arbitrary topological group G with countable Souslin

number, either G is Lindelöf and each remainder of G is a σ-compact p-space, or

every remainder of G has the Baire property.

Proof: Assume that the second alternative does not hold. Then G cannot be
locally compact and, by Theorem 1.1, G is Čech-complete. Hence, G is paracom-
pact ([7, Corollary 4.3.21]). Since the Souslin number of G is countable, it follows
that G is Lindelöf. Thus, G is a Lindelöf p-space. Now a theorem in [4] implies
that every remainder of G is a Lindelöf p-space. Observe that each remainder of
G is σ-compact, since G is Čech-complete. �

In connection with the last result, we present the next theorem.
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Theorem 1.5. Suppose that G is an arbitrary topological group with countable

Souslin number, and let Y be a remainder of G of countable pseudocharacter.

Then the space Y is first countable.

Proof: Indeed, Y is either pseudocompact or Lindelöf, by a theorem in [5]. If Y

is Lindelöf, then G is a paracompact p-space ([4]). Thus, Y is either pseudocom-
pact or a p-space. Since each point in Y is a Gδ-point, in both cases it follows
that Y is first countable. �

2. Remainders of topological groups and the Čech-Stone compactifi-

cation

In this section, we will establish a curious property of remainders of topological
groups: under certain general assumptions, the Čech-Stone remainder of any such
space turns out to be homeomorphic to the group itself!

Let us start with the following general question: when a topological space
has a remainder homeomorphic to a topological group? One, probably, would
guess that this occurs rather rarely. We even may conjecture that a homogeneous
remainder of a topological space is a rare specimen.

Recall that a space X is Moscow if the closure of an arbitrary open subset in
X is the union of some family of Gδ-subsets of X ([3]; see also [7, Section 6.1,
p. 346]).

A space X is said to be submetrizable if its topology contains a metrizable
topology.

Theorem 2.1. Suppose that G is a Moscow topological group, and that Y is

a remainder of G in some compactification bG of G. Then at least one of the

following three conditions is satisfied:

(1) the space G contains a topological copy of Dω1 ;

(2) the space G is submetrizable;

(3) the compactum bG is the Čech-Stone compactification of the space Y ,

and hence, G is the Čech-Stone remainder of Y .

Proof: Every locally compact non-metrizable topological group contains a copy
of non-metrizable compact group, and therefore, contains a topological copy of
Dω1 ([7, Section 6.1, p. 226]).

Thus, we may assume that G is not locally compact. Then, of course, G is
nowhere locally compact, since G is a topological group. It follows that Y is dense
in bG, that is, bG in this case is indeed a compactification of the space Y .

Assume also that condition (3) is not satisfied. Then we can find closed sets A

and B in Y and a real-valued continuous function f on Y such that f(A) = {0}
and f(B) = {1}, while some point z ∈ G belongs to the intersection of the closures
of A and B in bG. Using the continuity of f , we can find open subsets U and
V of Y containing A and B, respectively, such that the closures of U and V in
Y are disjoint. Fix now open subsets U1 and V1 of bG such that U = U1 ∩ Y

and V = V1 ∩ Y . Let F be the intersection of the closures of U1 and V1 in bG.
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Note that F is compact. Clearly, U is dense in U1, and V is dense in V1, since
Y is dense in bG. Therefore, no point of Y belongs to F , that is, F ⊂ G. Put
U ′ = U1 ∩G and V ′ = V1 ∩G. Then, by the construction, F is the intersection of
the closures of U ′ and V ′ in G. Since G is a regular Moscow space, it follows that
F is the union of closed Gδ-subsets of G. Since F is compact, we conclude that G

contains a non-empty compact Gδ-subset P . We are going to consider two cases.

Case 1: P is metrizable. Then every point of P is a Gδ-point in G. Since G

is a topological group, it follows that the space G is submetrizable ([7, Theo-
rem 3.3.16]).

Case 2: P is not metrizable. By a fundamental theorem of M.M. Choban in [9],
the space P is a dyadic compactum. Since P is non-metrizable, it follows that P

contains a topological copy of Dω1 ([10, 3.12.12]). �

Corollary 2.2. Suppose that G is a non-submetrizable topological group of

countable tightness, and that Y is a remainder of G in some compactification

bG of G. Then the compactum bG is the Čech-Stone compactification of the

space Y , and hence, G is the Čech-Stone remainder of Y .

Proof: Observe that G is not locally compact, since otherwise G would be
metrizable ([7, Theorem 3.3.12], [2]).

Since the tightness of G is countable, and G is a topological group, the space G

is Moscow ([3], [7, Section 6.4]). The space G does not contain a topological copy
of Dω1 , since the tightness of G is countable ([10, 3.12.12]). By the assumption,
G is not submetrizable. Now it follows from Theorem 2.1 that the conclusion in
Corollary 2.2 holds. �

Corollary 2.3. Suppose that G is a topological group algebraically generated

by a non-metrizable compact subspace B of countable tightness, and let Y be a

remainder of G. Then G is the Čech-Stone remainder of Y .

Proof: It easily follows from the assumptions on G that G is covered by a
countable family of compacta of countable tightness. Each of these compacta is a
continuous image of a finite power of the compactum B (recall that the tightness of
Bn is countable, for each n ∈ ω, and that the tightness is not increased by perfect
mappings, see [2]). It is known that the tightness of an arbitrary compactum
covered by a countable family of compacta of countable tightness is also countable
(D.V. Ranchin [11]). Therefore, the tightness of every compact subspace of G is
countable. Therefore, G does not contain a topological copy of Dω1 . Observe that
the space G is not submetrizable, since B is a non-metrizable compactum. The
space G is Moscow, since G is a σ-compact topological group ([3], [7, Section 6.4]).

Now it follows from Theorem 2.1 that the conclusion in Corollary 2.3 holds. �

For the definition and properties of free topological groups see [2] and [7, Chap-
ter 7].
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Corollary 2.4. Suppose that F (X) is the free topological group of a non-

metrizable compact space X of countable tightness, and let Y be a remainder

of F (X). Then F (X) is the Čech-Stone remainder of Y .

Corollary 2.5. Suppose that G and H are non-submetrizable topological groups

of countable tightness. Then the spaces G and H are homeomorphic if and only

if some remainders of G and H are homeomorphic.

Proof: The necessity is clear. The sufficiency follows from Corollary 2.2, since
both G and H turn out to be homeomorphic to the Čech-Stone remainder of the
same space Y . �

To demonstrate that the assumptions in Theorem 2.1 are not too excessive,
we consider the next simple example. Let Q be the topological group of rational
numbers, with the usual topology and operation. Clearly, Q has a compactifi-
cation bQ homeomorphic to the circumference S1 and such that the remainder
Y = bQ \ Q is homeomorphic to the space of irrational numbers. The space
of irrational numbers is also homeomorphic to a topological group. Since bQ is
metrizable, bQ is not the Čech-Stone compactification of Y . However, Q in this
example is metrizable.

In fact, we have a general statement which complements Theorem 2.1 and
generalizes the above situation.

Theorem 2.6. Suppose that G is an arbitrary separable metrizable topological

group, and that bG is any compactification of G. Then bG is not the Čech-Stone

compactification of the space Y = bG \ G.

Proof: If G is locally compact, then bG is not a compactification of Y , since Y

is not dense in bG.
So we may assume that the space G is not locally compact. Then Y is dense

in bG, and, clearly, Y is not compact. Observe that Y is a Lindelöf p-space, since
G is a Lindelöf p-space ([4]). Therefore, Y is normal and Y is not countably
compact, since Y is not compact. Hence, we can fix an infinite countable discrete
closed subspace A in Y . Put Z = A \ A, where A is the closure of A in bG.

Assume now that bG is the Čech-Stone compactification of Y . Then A is
the Čech-Stone compactification of A, since Y is normal and A is closed in Y .
Therefore, the space Z is not metrizable, since the space A is infinite and discrete.
On the other hand, Z is metrizable, since Z is a subspace of G and G is metrizable.

�
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