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1. INTRODUCTION

We consider the Cauchy problem

(1.1) % = Z a%ai(x,t,u,Vu) —cou— f(x,t,u,Vu) in Q@ =R™ x (0,400)
i=1 t

(1.2)  u(xz,0)=0 in R™

assuming degenerate ellipticity condition

m

(1.3) Alul) Y~ aila, t,u, p)p; = v(@)b(0)lpl,

i=1

where v(x), 1¥(t) and \(s) are nonnegative functions verifying additional conditions

to be precised later.
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A model representative of (1.1) is as follows

ou < 0 . OU 9
5 = 2 (g ) ~ At
where 0 < a < 2, 8> 0, A(z,t) € L1(Q)* and p > 2.

At present time many results have been established concerning linear and quasilin-
ear degenerate parabolic second or high-order equations. Existence and boundedness
of weak solutions of equations of the same class as in the present paper have already
been studied, for instance, in [2], [3], [4], [10] and [11]. For regularity results such as
Holder continuity we refer the reader to [12]. Our goal is to study the asymptotic
behavior near infinity of any weak solution of the problem (1.1)—(1.2). Analogous
result for quasilinear degenerate elliptic equation is contained in [5], while results
concerning asymptotic properties of the weak solutions to the parabolic equation

%3 (anstr. 02 ol =0
- - — | ai (x,t)z— a(x)ulu =
ot i—1 8:51 BINT 8$i ’
subject to the Neumann boundary condition, are obtained in [6] via comparison
principles.

2. HYPOTHESES AND FORMULATION OF THE MAIN RESULT

Let R™ denote the Euclidean m-space (m > 2) with generic point © = (z1,
Z2y...,Tm). We denote by Qr the cylinder R™ x ]0,T[, T > 0.

Hypothesis 2.1. Let v(z) be a positive and measurable function defined in 2
such that:

Vo) € L@, v )€ @) (9> ).

Hypothesis 2.2. Let ¢ (¢) be a positive measurable monotone nondecreasing
function defined in |0, 4+o0.

There exists a positive number § such that 1/¢ € LI(0,T), VT > 0.

Assumptions (2.1), (2.2) are classical in the theory of weighted parabolic equations
(see [10] for more details).

The symbol W1(v1), Q) stands for the set of all real valued functions u € L?(Q)
such that their derivatives (in the sense of distributions), with respect to z;, are
functions which have the following property

\/uwg; e L*Q), i=1,2,...,m.

114



W19(1h, Q) is a Hilbert space with respect to the norm

m 2 %
Mm=<AOW+wa Jaat)”.
=1

Whi(vh, Q) is the subset of W9 (vih, Q) of all functions u such that du/dt (in
the sense of distributions) belongs to L?(Q). We can suppose that any function of
Whl(1h, Q) is continuous in [0, +oo[ with respect to values in L?(R™).

ou
(9171'

Hypothesis 2.3. The functions f(z,t,u,p), a;(z,t,u,p) (i = 1,2,...,m) are
Carathéodory functions in @ x R x R™, i.e. measurable with respect to (z,t) for any
(u,p) € R x R™, continuous with respect to (u,p) for a.e.(z,t) in Q. A: [0, 400 —

[1,4+00[ is monotone nondecreasing.

Hypothesis 2.4. There exists a function f*(z,t) € L*(Q) such that
(2.1) st )] < Al [F(2,8) + v@)o(t)pl?)
holds for almost every (z,t) € ) and for all real numbers w, p1,p2, ..., Pm-

Hypothesis 2.5. There exist a function fo(z,t) € L*(Q) N L°>(Q) and a non-
negative real number ¢; < ¢o such that for almost every (z,t) € @ and for all real

numbers u, p1, p2, . . ., Pm the inequality
(2.2) wf(x,t,u,p) + ¢ + Au)v (@) (t)pl® + folz,t) >0
holds.

Hypothesis 2.6. There exists a function a*(z,t) € L?(Q) such that, for almost
every (z,t) € @, we have

|ai(x7tau7p)| *
(2.3) ——— < Aul)[a"(x, 1) + vVvolpl]
VY
for any real numbers u, p1,p2, ..., Pm-

Hypothesis 2.7. The condition (1.3) is satisfied for almost every (z,t) € @ and
for all real numbers u, p1,po, ..., Dm-

Hypothesis 2.8. For almost every (z,t) € Q we have

(2.4) Z [ai(z,t,u,p) — a;i(z,t,u,q)] (p; —qi) =0

i=1
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for any real numbers u, p1,p2, - - -, Pm,q1,492, - - - , ¢m; the inequality holds if and only
if p#gq.
Now, we are in position to give the definition of weak solution of the equation

(1.1).

Definition 1. A weak solution of the problem (1.1)—(1.2) in @ = R™ X [0, +00]
is a function u(z,t) € WhO0(vah, Q) N L>°(Q) such that the equality

ow

+oo “ ow
(2.5) /0 /m { Z_Zl a;(z,t, u, Vu) oz, + couw + f(x,t,u, Vu)w — ug} dedt=0

holds for any w € Wi (v, Q) N L>(Q).

Under Hypotheses 2.1-2.8 the existence of a weak solution u of the equation (1.1)
follows from the results of [3], [4], [7], [8] and [9].

The following theorem states the asymptotic behavior of the solutions near infinity.

Theorem 2.1. Let Hypotheses 2.1-2.8 be satisfied and let Ry be a positive real
number such that

supp a*(x,t), supp fo(z,t),supp f*(x,t) C {z € R™; || < Ro} x [0,400].
Take a function u(z,t) € W10 (v, Q) N L>=(Q) which satisfies (2.5) for all w €

Wiy, Q)N L>®(Q). Then for any T > 0 there exist two positive constants 3 and
%, depending on L = esssupg, |u(z,t)|, such that

_ A(R—Rg)?
(2.6) HRr(T) < B{lfollLr@r) + If L1 (@)} € 7T VR > Ry,

where

T
HR(T):/ u2(x,T)d:17+// vip |[Vaul? dz dt,
le|>R 0 J|z|>R

and

n(R)= sup v(z).
R<|z|<2R
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3. PROOF OF THEOREM 2.1
Let R > Ry, 0 < o < R and

0 if || <R

-R
lal =R fR<|z|]<R+op

1 if |z| > R+ o.

For fixed T' > 0, we extend u(x, t) by zero in R™ X ]—o00, +00[ and for any n,s € N,
we define

0 ift <0

nt ifo<t<
0,1t =<1 if L<t<T

1+n(T—t) fT<t<T+1

0 ift>7T+2

t+1/s
o8 (1) = 5O(t) / u(er, N, )POT (3) dA
t

where v > 0 will be chosen later.

Taking &2(z)vs (r,t) as test function in (2.5) we obtain

+oo m
a0 [ [ T et vog @@ + o

t+1/s
+ f(2, t,u, Vu)2(2)vs (2, 1) — ué?(2)0' (1) <s/t u(z, \)|u(z, \)[7O7TH(N) dA
t+1/s
- u§2(ac)®n(t)% (s/t u(z, \)|u(z, \)[ 7O T(N) dA) } dzdt = 0.

We note that

9n _ s0,(1) / e (u(z, N)u(z, N)[7) 71 (A) dA
(9171' = s9, ] 6561 ulzx, ul\zx, n ?

so, according to the Hypothesis 2.2, we have
oy 2

v(@)(t)| 5

t+1/s 2
<sy(x)/t 1/)()\)’81 (u(z, V|u(a, )Y | dr.
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Moreover, it follows that

/0+°°/m u£2(x)@n(t)% (5 /t“rl/s w(w, N)|u(z, \)[7OHN) d)\) de dt
=s [ ] stwte@enofu(ni+ t)fu(ne )]

1
x @1t (t + —) —u(z, t)|u(x, t)|7@:’l+1(t)} dz dt

<o [T meorrewerrwara) ([ fu(xes 1)

= +oo
x £2(x)0) T2 (tJr )dxdt) / / u(z, )22 ()07 T2 (t) da dt = 0.
Then, from (3.1), letting s — 400, we get
+o0 o
sa [ { it V) (ulul 62 (2)) ©372(1)
m €X;

+ 00|u|7+2€2($)@l+2(t) + (.t u, Vu)ulu|7€2(2)0)2(t)
- IUI”+2§2(x)®;(t)®g+1(t)} dzdt <0.

y+2

On the other hand, for o € ]0, 1], we have
+oo
Gar [ wrrewenne; o d
0 m

1/n T+o/n
fn/ / |u| Y22 (z) da dt 4+ n(1 — o)t / / |u[7F2¢2 () dz dt.
0 m T m

Combining (3.2) and (3.3), for n — +00, we obtain

oo [ S

+ f(z,t,u, Vu)u|u|7§2(:c)} dz dt

(UIUI”€2( ) + colul"F?€3 ()

+(1- o)7+1cr/ |u(z, T)|" 262 (x) de < 0.

Let us prove, for instance, that

lim +°°/ Zal 8 (u|u|”’§ (x )) ©12(t) da dt
Rm a n

n—-+o0o

// a;(z,t, u, VU)@?& (ulu"€*(z)) dzdt.
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In fact

0 ift<0
0, —< 1 ito<t<T
0 ift>T

moreover, the integration of the first term of the previous relation can be evaluated
in R™ x ]0, T 4 1] where a.e. we have

> it V) (ulu€2(0) €37(0)
i=1 T

0
Z|az x,t,u, Vu) |‘8 (ulul"€?(x ))‘ Vn € N.
Then with respect to these facts, our assertion is true due to the Lebesgue theorem.

Next, choosing o = (v + 2)~! and using the growth conditions in the right-hand
side of the inequality (3.4) we have

’ 5 VY 2 42 ’ Y4242
L[ ier S 19 @ dedt + (co—eo) [ @ arar
v 1 2
) [ [ e arat s A [ e ds

< /0 /[Rm | follu|"€2(x) dwdt—2/0/m;ai(x,t,u,Vu)a_iumpg(x)dxdt’

and from this, for v such that (y+1)/A(L) — AX(L) > 1 (y > 1),

1

(3.5) //m lu| v |Vul? €2 (z) do dt + ——— (,y+2)

< [ 1miree aa
T m
+2/0/Mi_zl|ai(ac,t,u,Vu)|

By Hypothesis 2.6 and the Young inequality it results

/ / Z|al x,t,u, Vu)|

T
* v E v 2 42
51{/0/Rma Vrlu[TEIVEl dadt + 2/0/[Rm lu|Yv |Vu|? € (x) de dt

1 T
+—// viplu[ 12| Ve|? dxdt}.
2e 0 JRrRm

/ (e, T) € (z) da

5—5‘ [ (2) da dt.
Z;

5 &(x)dadt
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Hence, taking into account that suppa*(x,t) and supp fo(x,t) are subsets of
{x € R™; |z| < Ro} x[0, +00], from (3.5) for & > 0 sufficiently small, we obtain

T T
ot 2 2 2 2
(3.6) /0/m|u| v |Vl §(x)d:vdt<ﬁg/0/Rmuw|u| Vel dadt,

On the other hand, from (3.4) for v = 0 and o = 3, we get

T
/0 /m {Zaz ' i (UfZ(x)) + cou€?(z) + f(z,t,u, Vu)qu(x)} dzx dt
+ % |u(x, T)[2€¢2(z) dz < 0.

From this, according to Hypotheses 2.4, 2.6 and 2.7, we have

1 T 2 .9 1 242
- \V4 dzd +— T d
//m vip |[Vul® € (z) da dt IRm|u(x, )|#€* () dx

<// lu| v |Vul® € (z d:cdt) <// v [Vul® €3( )dgcdt)T
+2)\(L)/O/Rm v [V [ulé () [VE| de dt

and, after a simple calculation,
T
/ / v |Vaul? €2(z) dz dt +/ lu(z, T)|?€?(x) dx
0 m m

T T
5 2 22 2 2
<53</0/Rm o |Vl € (w)dxdt) +ﬁ4/0/Rm vlul? Ve da dt.

The above inequality and (3.6) give

T
/ / v |Vul? €(z) da dt + / (e, T) 263 (a) da
0JRm™ Rm™
T
< 2|\vel? dedt;
< [ [ ot Vel avar

in this way, by the definition of £(z), we get

(3.7) HpooT) < 2

~ T
Sr(R R+ 0 / B(r) HR(r) dr,

where if Ry < Ry, (R1,R2) = sup v(x).
Ri<|z|<R2
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Let us prove, by induction, the following inequality

(3.8) HrorrolT) < 8 {ollzram + 1} 1/;5%.)) PR+ 0. Ro + ko]

Our next claim is that to prove (3.8) where k = 0.
Choosing vZ (z,t) as test function in (2.5) and proceeding analogously to the proof

of (3.4), we get
T
d:z:dt+co/ / |u| "2 da dt
O m

(3.9) /OT/m(erl)iai(
1 /m lu(z, T)["2dz <0

T
+ flz,t,u, Vu)u|u|" de dt + ——
/ Rm ( Julul e(y+2)

i)

and from this for v > A\?(L) + A(L) —

1

T
3.10 // ul| v Vu2dxdt+7/ w(z, T)" 2 dz
CEU A Tl 3 | )

v T
< ( ess sup |u|> / / | fo(z,t)| dz dt.
R™x]0,+o00] 0 Jrm

On the other hand if we write (3.9) for v = 0 we obtain

e 2 1 2
_L)/O/mm/J|Vu| dxdt—i—%/Rm |u(z, T)|* da
T
L)/O/m[|f*(x,t)|+V1/J|Vu|2]|u|dxdt< //m ()| da dt

L)(/OT/m|u|7mp|Vu|2 dxdt) (//mmmvm dxdt) ’

Hence using the Young inequality we conclude that

T
1

// vip |[Vul® dzdt + — lu(z, T)|* dz

0 m 2e Rm™
T T

<o [ [ irotasarss( [ [ upos vuf asar)
0 Jrm 0 JrRm
and finally, according to (3.10), that

(3.11) Hpo(T) < Bl foll ey + 1/ i@ |-
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Let us assume that the inequality (3.8) holds for some integer k£ > 0. Due to (3.7)
and (3.8), we obtain

Hpy 4 (h1)0(T) < g (Ro+ko,Ro+ (k +1)o / V(T)HRy+ko(T)
B 5 (Ro + ko, Ro+ (k 1o k *
\? 7 (Ro + ko, Ro + (k + w )B% {1 foll 1@y + 1711 }
T T
T 5y 4o, Ry + 5+ 1) a
ﬁk—H k-‘rl *
= ROADR [7 (Ro + ko, Ro + (k+ 1))]"" {Ilfoll L2 (@r) + 1f I 1@m }

y /0 ()] dr,

According Hypothesis 2.1, taking into account that

U (Ro+ ko, Ro+ (k+ 1)) < sup v(x),
R+o<|z|<Ro+(k+1)p

the last inequality implies (3.8) for kK + 1. Let k¥ > 1. Choosing in (3.8) ¢ =
(R — Ry)/k we obtain

Top(T))" k2F k
Hgr(T) < B* 1 *| (7 R)|".
WD) < (Ifollran + 157 1@n} (5 om0
From this inequality, using also Stirling’s formula, it follows that

(R—Rg)?

(3.12) Hr(T) < {llfollr@r) + 1/ lL1@r e~ K10 st

Now, if
B(R— Ry)?
en(R)TH(T) ~

the estimate (2.6) easily follows from (3.11). Otherwise, we can obtain (2.6) from
(3.12) taking as k the integer part of

(oo
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