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ON THE OSCILLATION OF VOLTERRA SUMMATION EQUATIONS
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Abstract. The asymptotic and oscillatory behavior of solutions of Volterra summation
equations

yn = pn ±
n−1∑

s=0

K(n, s)f(s, ys), n ∈ �

where � = {0, 1, 2, . . .}, are studied. Examples are included to illustrate the results.
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1. Introduction

Qualitative properties of solutions of difference equations assume importance in the
absence of closed form solutions. In case the solutions are not expressible in terms of

the usual known functions, an analysis of the equation is necessary to find the facets
of the solutions. One such qualitative property, which has wide applications, is the

oscillation of solutions. It is but natural to expect to know the solution in an explicit
form which unfortunately is not always possible. Hence a rewarding alternative is to

resort to the qualitative study.
In the qualitative theory of difference equation oscillatory and asymptotic behavior

of solutions play an important role. This is apparent from a large number of research
papers dedicated to it. The references [1, 2, 4] present a fairly exhaustive list for

the interested reader. However, oscillation results for summation equations of the
Volterra type are scant eventhough such equations arise in the study of mathematical

biology, engineering etc. in which discrete models are used (see, for example, the
model of the spread of an epidemic [p. 99, 4]). Some recent results on Volterra
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summation equations can be found in [3, 5, 6, 7]. In this paper we establish sufficient

conditions for all solutions of the equations

(1) yn = pn −
n−1∑

s=0

K(n, s)f(s, ys), n ∈ �

and

(2) yn = pn +
n−1∑

s=0

K(n, s)f(s, ys), n ∈ �

where � = {0, 1, 2, . . .} to be oscillatory. Further we obtain growth estimates on
solutions of equations (1) and (2).
One may easily observe that the conditions presented in the paper guarantee,

roughly speaking, that the solutions {yn} behave like the sequence {pn}.

2. Assumptions and definitions

(C1) {pn} is a sequence of real numbers;
(C2) K : � × � → �

+ and K(n, s) = 0, s > n;

(C3) f : � × � → � is continuous and ϕf(n, ϕ) > 0 for ϕ �= 0.
By a solution of equations (1) and (2) we mean a real sequence {yn} satisfying equa-
tions (1) and (2) for all n ∈ �. A solution of equations (1) and (2) is said to be
oscillatory if it is neither eventually positive nor eventually negative, and nonoscil-

latory otherwise. An oscillatory solution {yn} is said to be properly unbounded if
lim

n→∞
sup(yn) = +∞ and lim

n→∞
inf(yn) = −∞. A nonoscillatory solution is properly

unbounded if it is unbounded.

3. Main results

We begin with the following theorem.

Theorem 1. Assume that

(3)
f(n, u)

u
� M

for some M > 0, n ∈ � and u �= 0. Further assume that there exist positive real
sequences {qn}, {hn}, n ∈ �, such that hs = 0 for s > n,

(4) K(n, s) � qnhs
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(5)
∞∑

n=0

hn < ∞

and

(6) qn and
( pn

nα

)
are bounded for n ∈ �

where α � 1. If {yn} is any solution of equation (1), then yn = O(nα), that is,

lim
n→∞

sup
(

yn

nα

)
< +∞.

�����. From equation (1) we have

|yn|
nα

� |pn|
nα
+

n−1∑

s=0

qnhs
f(s, ys)
|ys|

|ys|
sα

� K + L

n−1∑

s=0

hs
|ys|
sα

for some positive constants K and L. The result follows by the discrete Gronwall’s
inequality [1]. �

�����	
 1. Consider the difference equation

(7) yn = n+
1
2n−1

−
n−1∑

s=0

2−s

(s+ 1)(s+ 2)
ys (1− |ys|) .

All conditions of Theorem 1 are satisfied for α = 1. If {yn} is any solution of equation
(7), then {yn} = O(n). In fact {yn} = {(n+ 2)} is one such solution.

Theorem 2. Suppose conditions (3), (4) and (6) hold. Further assume that

(8)
∞∑

nαhn < ∞,

(9) lim
n→∞

sup(pn) =∞, lim
n→∞

inf(pn) = −∞.

Then all solutions of equation (1) are oscillatory.

�����. Since condition (5) of Theorem 1 is implied by (8) for n � 1, we can
assume that the conclusion of Theorem 1 holds. Without loss of generality, suppose
that N ∈ � is large enough so that yn > 0 for n � N.

From equation (1),

yn = pn −
N−1∑

s=0

K(n, s)f(s, ys)−
n−1∑

s=N

K(n, s)f(s, ys)(10)

� pn +
N−1∑

s=0

qnhsf(s, ys) +
n−1∑

s=N

qnhss
α f(s, ys)

ys

ys

sα
.(11)
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Now {qn} is bounded, and by Theorem 1, { yn

nα } is bounded. In view of condition
(8), the last two summations on the righthand side of (11) are finite. Since yn > 0
and (9) holds, we obtain a contradiction. This completes the proof. �

�����	
 2. Consider the Volterra summation equation

(12) yn = (−1)n(n+ 1)−
2
3

(
(−1)n
2n

+ 1

)
−

n−1∑

s=0

2−s

(s+ 1)
ys, n ∈ �.

Equation (12) satisfies all conditions of Theorem 2. Hence all solutions of equation

(12) are oscillatory. In fact {yn} = {(−1)n(n+ 1)} is one such solution.
Corollary 3.2 of Greaf and Thandapani [3] does not yield this conclusion.

Our next theorem improves condition (8) of Theorem 2.

Theorem 3. Suppose all conditions of Theorem 1 hold. Further suppose that (9)
holds and

(13) lim
n→∞

sup(qn)
n−1∑

s=N

sαhs < ∞.

Then all solutions of equation (1) are oscillatory.

�����. Without any loss of generality, let yn > 0 for n � N ∈ � be a solution
of equation (1). As in the proof of Theorem 1 , we see that

(14) yn = O(nα).

From equation (1),

yn � pn −
N−1∑

s=0

K(n, s)f(s, ys) +
n−1∑

s=N

qnsαhs
f(s, ys)

ys

ys

sα
(15)

� pn +
N−1∑

s=0

K(n, s)f(s, ys) +Mqn

n−1∑

s=N

sαhs
ys

sα
.

From (13), (14) and the boundedness of {pn}, we see that the last two summations
in inequality (15) are bounded. From (9) we have

lim
n→∞

sup(pn) =∞

and

lim
n→∞

inf(pn) = −∞

which gives a contradiction. The proof is now complete. �
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�����	
 3. Consider the difference equation

yn = (−1)n+1(2n+ 1)−
e

(e + 1)(n+ 1)(n+ 2)

(
(−1)n
en

− 1
)

−
n−1∑

s=0

(4s2 + 4s+ 2)e−s

(n+ 1)(n+ 2)(2s+ 1)

(
y2s
1 + y2s

)
, n ∈ �.(16)

Here, if we choose α = 1 and

K(n, s) =
(4s2 + 4s+ 2)e−s

(n+ 1)(n+ 2)(2s+ 1)
, n � s = 0, s > n,

then all conditions of Theorem 3 are satisfied. Therefore, all solutions of equations

(16) are oscillatory. In fact {yn} = {(−1)(n+1)(2n+ 1)} is one such solution.

In our next theorem we do not require that {pn} be unbounded.

Theorem 4. Suppose conditions (3)–(5) hold, {qn} and {pn} are bounded and

(17) lim
n→∞

inf
n−1∑

s=0

ps = −∞, lim
n→∞

sup
n−1∑

s=0

ps = +∞.

Further suppose that

(18)
∞∑

n=0

qn < ∞.

Then all solutions of equation (1) are bounded and oscillatory.

�����. Let {yn} be any solution of equation (1). Then boundedness of {yn}
follows by the discrete Gronwall’s inequality since {pn} is bounded. Now suppose
that {yn} is nonoscillatory, without loss of generality suppose there exists a large
N ∈ � such that yn > 0 for n � N .
From equation (1),

n−1∑

s=1

ys =
n−1∑

s=N

ps −
n−1∑

s=N

s−1∑

t=0

K(s, t)f(t, yt)

=
n−1∑

s=N

ps −
n−1∑

s=N

N−1∑

t=0

K(s, t)f(t, yt)−
n−1∑

s=N

s−1∑

t=N

K(s, t)f(t, yt)(19)

�
n−1∑

s=N

ps +
n−1∑

s=N

qs

N−1∑

t=0

ht
f(t, yt)

yt
yt +

n−1∑

s=N

qs

s−1∑

t=N

ht
f(t, yt)

yt
yt.
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Since {yn} and f(n,yn)
yn

are bounded and conditions (5) and (18) hold, the last two
summations on the righthand side of (19) are finite. Since

n−1∑

s=N

ys > 0

for n � N , we have a contradiction to condition (17). This completes the proof of

the theorem. �

�����	
 4. The difference equation

(20) yn =
1

n+ 1
+

2
(n+ 1)(n+ 2)

(
1− 1
2n

)
−

n−1∑

s=0

(s+ 1)2−s

(n+ 1)(n+ 2)
ys

satisfies all conditions of Theorem 4 except condition (17). The equation (20) has a

bounded nonoscillatory solution {yn} = { 1
n+1}.

Theorem 5. In addition to conditions of Theorem 4, assume

(21) ∆pn → 0, ∆qn → 0, hnqn+1 → 0

as n →∞. Further assume

(22) |∆nK(n, s)| � |hn∆qn|, s � n, n ∈ N.

Let {yn} be any solution of equation (1). Then {yn} is bounded and ∆yn → 0 as
n →∞.

�����. From equation (1),

∆yn = ∆pn −K(n+ 1, n)f(n, yn)−
n−1∑

s=0

∆nK(n, s)f(s, ys)

|∆yn| � |∆pn|+Mqn+1hn|yn|+ |∆qn|
n−1∑

s=0

|hs|f(s, ys).(23)

Since the conditions of Theorem 4 hold, {yn} is bounded. From conditions (21) and
(22), we see that (23) implies ∆yn → 0 as n → ∞. This completes the proof of the
theorem. �
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In the following theorem we prove a partial converse of Theorem 2.

Theorem 6. Suppose conditions (3), (4), (6) and (8) hold. Let {yn} be a properly
unbounded oscillatory solution of equation (1). Then

lim
n→∞

sup(pn) = +∞

and

lim
n→∞

inf(pn) = −∞.

�����. From equation (1),

(24) yn = pn −
N−1∑

s=0

K(n, s)f(s, ys)−
n−1∑

s=N

K(n, s)f(s, ys).

Since the conditions of Theorem 1 are satisfied, we see that { yn

nα } is bounded. Now

(25)
∣∣∣

n−1∑

s=N

K(n, s)f(s, ys)
∣∣∣ �

n−1∑

s=N

qnsαhs
f(s, ys)

ys

ys

sα
.

In view of condition (8) of Theorem 2, we find that the lefthand side of (25) is
bounded. Thus the last two summations in (24) are finite. The conclusion now fol-

lows from the fact that {yn} is a properly unbounded oscillatory solution of equation
(1). �

Corollary 7. Suppose conditions (3), (4), (6) and (8) hold. Then a necessary
and sufficient condition for all properly unbounded solutions of equation (1) to be
oscillatory is that

lim
n→∞

sup(pn) = +∞

and

lim
n→∞

inf(pn) = −∞.

�
���� 1. From the conditions given in Theorems 2–6 and Corollary 7 one

can see that the oscillatory behavior of solutions of equation (1) may depend on the
behavior of the sequence {pn}.

47



Next we study the asymptotic behavior of solutions of equation (2). To prove our

results we need the following lemma which is a discrete analogue of Lemma 2 given
in [9].

Lemma 8. Let {wn} be a positive nondecreasing real sequence such that
lim

n→∞
wn =∞. If

∞∑

n=N

Fn

wn
< ∞

for all Fn � 0, n ∈ �, then

lim
n→∞

1
wn

n−1∑

s=N

Fs = 0.

Theorem 9. Assume that

(26) |f(n, u)| � anϕ (|u|)

where {an} is a positive real sequence and ϕ : [0,∞) → (0,∞) is a positive, non-
decreasing continuous function such that

(27)
1
v
ϕ(u) � ϕ

(u

v

)

for u � 0, v � 1 and ϕ is sub-multiplicative for u � 0. Further assume that there
exists a non-negative function Q(n, s) such that

(28) |K(n, s)| � Q(n, s)

for n � s ∈ �. If wn � 1 satisfies the hypothesis of Lemma 8 and Q(n, s) is
non-increasing in n for each s and

(29) lim
n→∞

pn

wn
< ∞,

(30)
∞∑

Q(s, s)as < ∞,

and

(31)
∞∑ Q(s, s)

ws
asϕ(ws) < ∞,
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then for any solution {yn} of equation (2) we have

lim
n→∞

yn

wn

exists and

lim
n→∞

yn

wn
= lim

n→∞
pn

wn
.

�����. Since

lim
n→∞

pn

wn
< ∞,

there exists a constant c such that
∣∣ pn

wn

∣∣ � c for all n ∈ �. Dividing the equation (2)
by wn, we have

(32)
yn

wn
=

pn

wn
+
1

wn

n−1∑

s=0

K(n, s)f(s, ys)

and by the assumptions

∣∣∣ yn

wn

∣∣∣ �
∣∣∣ pn

wn

∣∣∣+ 1
wn

n−1∑

s=0

Q(n, s)asϕ (|ys|) � c+
n−1∑

s=0

Q(s, s)asϕ
(∣∣∣ ys

ws

∣∣∣
)
.

Using Theorem 1.6.4 of [8], we have

∣∣∣ yn

wn

∣∣∣ � c+G−1
[ n−1∑

s=0

Q(s, s)as

]

where

G(r) =
r−1∑

s=0

1
ϕ(s)

.

Hence by (30) there exists a constant c1 > 0 such that

c1 = c+G−1
[ ∞∑

s=0

Q(s, s)as

]
,

so that
|yn| � c1wn

for n ∈ �. Thus lim
n→∞

∣∣∣ yn

wn

∣∣∣ exists. Now

∣∣∣ 1
wn

n−1∑

s=0

K(n, s)f(s, ys)
∣∣∣ � 1

wn

n−1∑

s=0

Q(n, s)asϕ(|ys|)

� 1
wn

n−1∑

s=0

Q(s, s)asϕ(c1)ϕ(ws).(33)
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Set Fs = Q(s, s)asϕ(ws) in Lemma 8, then

∞∑

s=0

Fs

ws
< ∞

by (32), so Lemma 8 implies that

lim
n→∞

1
wn

n−1∑

s=0

Fs = 0

and taking the limit as n →∞ in (33), we conclude

lim
n→∞

∣∣∣ 1
wn

n−1∑

s=0

K(n, s)f(s, ys)
∣∣∣ = 0.

As n →∞ in (32), we have

lim
n→∞

yn

wn
= lim

n→∞
pn

wn

and the proof is complete. �

We conclude this paper with the following theorem.

Theorem 10. Assume conditions (26)–(28) hold and let wn � 1 be as in Lemma 8.
Let Q(n, s) = hnqs where hn � 1 and non-decreasing with qs � 0 for all s ∈ �.

Assume

(34) lim
n→∞

pn

wnhn
< ∞,

(35)
∞∑

hsqsas < ∞,

and

(36)
∞∑ qs

ws
asϕ(ws) < ∞.

Then for any solution {yn} of equation (2) we have

lim
n→∞

yn

wnhn
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exists and

lim
n→∞

yn

wnhn
= lim

n→∞
pn

wnhn
.

�����. Since

lim
n→∞

pn

wnhn
< ∞,

there exists a constant c2 < ∞ such that
∣∣∣ pn

wnhn

∣∣∣ � c2,

for all n ∈ �. Dividing the equation (2) by wnhn, we have

(37)
yn

wnhn
=

pn

wnhn
+

1
wnhn

n−1∑

s=0

K(n, s)f(s, ys), n ∈ �.

Using the assumptions of the theorem, we have from (37)

∣∣∣ yn

wnhn

∣∣∣ � c2 +
n−1∑

s=0

hsqsasϕ
(∣∣∣ ys

wshs

∣∣∣
)
.

Again using Theorem 1.6.4 of [8], we have

∣∣∣ yn

wnhn

∣∣∣ � c2 +G−1
( n−1∑

s=0

hsqsas

)

and as in the last theorem, by virtue of the condition (35) there exists a positive

constant c3 such that

c3 = c2 +G−1
( ∞∑

s=0

hsqsas

)

and ∣∣∣ yn

wnhn

∣∣∣ � c3

for n ∈ �. Further |yn| � c3wnhn for n ∈ �, and hence

∣∣∣ 1
wnhn

n−1∑

s=0

K(n, s)f(s, ys)
∣∣∣ � 1

wnhn

n−1∑

s=0

hnqsasϕ (c3wshs)

� ϕ(c3)
wn

n−1∑

s=0

qsasϕ(hs)ϕ(ws).
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Setting Fs = qsasϕ(hs)ϕ(ws) and applying Lemma 8, we obtain using (35) that

lim
n→∞

1
wn

n−1∑

s=0

Fs = 0.

Hence

lim
n→∞

1
wnhn

n−1∑

s=0

K(n, s)f(s, ys) = 0

and the result follows from (37). �

�
���� 2. Once again, from the conditions given in Theorems 9 and 10 we see

that the asymptotic behavior of solutions {yn} of equation (2) may depends on the
behavior of the sequence {pn}.
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