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Abstract. This paper is closely related to the paper of Harry I.Miller: Measure theoretical
subsequence characterization of statistical convergence, Trans.Amer.Math. Soc. 347 (1995),
1811–1819 and contains a general investigation of statistical convergence of subsequences
of an arbitrary sequence from the point of view of Lebesgue measure, Hausdorff dimensions
and Baire’s categories.
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Introduction

The concept of statistical convergence was introduced in papers [9] of H. Fast and

[22] of I. J. Schoenberg, generalized and developed in many later papers (e.g. [2], [3],
[4], [5], [6], [7], [10], [11], [12], [13], [15], [16], [21]).

The statistical convergence can be viewed as a regular method of summability of
sequences. This evokes the question about its relation to other methods of sum-

mability. This question is considered in [3], where it is shown that the statistical
convergence is equivalent in the space l∞ of all bounded sequences with the strong
Cesàro method of summability. The results from [3] are extended in [4].

The concept of the statistical convergence is based on the notion of the asymptotic
density of sets A ⊆ � = {1, 2, . . . , n, . . .}.
In [10] an axiomatic approach is given for introducing the concept of density of

sets A ⊆ �. This makes it possible to extend the concept of statistical convergence

The work on this paper was supported by GRANT VEGA 1/4314/97, GRANT VEGA
1/7173/20.
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(e.g. by using non-negative regular matrices). Applications of such matrices can be

found also in [6].

In [13] a class K of matrices similar to the Cauchy matrix is defined and it is proved
there that the statistical convergence of an arbitrary sequence x ∈ l∞ is equivalent
to the summability of x by each matrix of the class K.
In [10] the µ-statistical convergence and convergence in µ-density is introduced,

where µ is a two-valued finitely additive measure defined on a field of subsets of �.
These convergences are extensions of the usual statistical convergence.

In connection with the concept of the usual limit point of a sequence, A. Fridy

in [12] introduced the notion of a statistical limit point of a sequence. A number
L ∈ � called a statistical limit point of a sequence x = (xn)∞1 if there is a set
{n1 < n2 < . . . < nk < . . .} ⊆ �, the asymptotic density of which is not zero

(i.e. it is greater than zero or does not exist), such that lim
k→∞

xnk
= L. The notion of

statistical limit points is extended in [7] to the notion of T -statistical limit points, T

being a non-negative regular matrix. In [15] topological properties of the set Λx of
all statistical limit points of x are investigated and the relation of Λx to distribution
functions of x is established. The set Λx is equal to the set of discontinuity points

of a distribution function of x.

The concept of convergence of subsequences in the usual convergence and the
above mentioned notion of statistical limit points suggests the study of statistical

convergence of subsequences of a given sequence. This study was started in [16]
by H. I.Miller. The purpose of our paper is to investigate the structure of the set

Cstat(y) from various points of view, where Cstat(y) = {t ∈ (0, 1] : y(t) converges

statistically}, y(t) = yk1 , yk2 , . . . , ykn , . . . if t =
∞∑

n=1
2−kn ∈ (0, 1]. The set Cstat(y)

and the related sets depend on y = (yn)∞1 , but we will see that these sets have
some common properties for all y = (yn)∞1 . In the first section of the paper we will

describe the fundamental metric, in the second section the topological properties of
the set Cstat(y) and the related sets for an arbitrary y = (yn)∞1 .

Definitions and notation

We recall the concept of the asymptotic density of sets B ⊆ � = {1, 2, . . . , n, . . .}.
If B ⊆ � we put B(n) = |B ∩ {1, 2, . . . , n}|, where |M | denotes the cardinality of
M . The numbers d(B) = lim inf

n→∞
B(n)

n , d(B) = lim sup
n→∞

B(n)
n are called the lower and

upper density of B. If d(B) = d(B) = lim
n→∞

B(n)
n then d(B) = lim

n→∞
B(n)

n is called the

asymptotic density of B (cf. [14], p. xix; [17], p. 70–72).

We recall the concept of statistical convergence (cf. [9], [22]).
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Definition A. A sequence x = (xn)∞1 of real numbers is said to converge sta-

tistically to ξ ∈ � provided that for every ε > 0 we have d(A(ε)) = 0, where
A(ε) = {n ∈ � : |xn − ξ| � ε}.
If x = (xn)∞1 converges statistically to ξ then we write lim-statxn = ξ or

lim-statx = ξ.

The statistical convergence is a natural generalization of the usual convergence. If
lim

n→∞
xn = ξ (in the usual sense), then lim-statxn = ξ. The converse in general does

not hold.

We will often use the following characterization of statistical convergence (cf. [21],
Lemma 1.1).

Theorem A. A sequence x = (xn)∞1 converges statistically to ξ ∈ � if and only

if there is a set M = {m1 < m2 < . . .} ⊆ � with d(M) = 1 such that lim
k→∞

xmk
= ξ.

We recall the above mentioned correspondence between the numbers of (0, 1] and
the subsequences of a given sequence y = (yn)∞1 (cf. [16]). If t ∈ (0, 1], then t has a
unique non-terminating dyadic expansion

(1) t =
∞∑

k=1

ck(t)2−k,

ck(t) = 0 or 1 (k = 1, 2, . . .) and ck(t) = 1 for infinitely many k’s.

If we put {k, ck(t) = 1} = {k1 < k2 < . . .}, then (1) has the form t =
∞∑

k=1
2−kn .

Put y(t) = yk1 , yk2 , . . . , ykn , . . .

So we get a one-to-one correspondence between the numbers of (0, 1] and the
subsequences of y. This correspondence enables us “to measure” the magnitude of
a class S of subsequences of y by a corresponding set A ⊆ (0, 1] of all t’s from (0, 1]
that correspond to subsequences from S.
We will suppose in the whole paper that y = (yn)∞1 is a fixed sequence of real

numbers. We will deal with the following subsets of (0, 1]:

C(y) = {t ∈ (0, 1] : y(t) is convergent},
D(y) = {t ∈ (0, 1] : y(t) is divergent},

Cstat(y) = {t ∈ (0, 1] : y(t) converges statistically},
Dstat(y) = {t ∈ (0, 1] : y(t) does not converge statistically}.

Further, if y = (yn)∞1 converges statistically, then

C∗
stat(y) = {t ∈ (0, 1] : lim-stat y(t) = lim-stat y}

D∗
stat(y) = (0, 1] \ C∗

stat(y).
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From the previous definitions we immediately get:

C∗
stat(y) ⊆ Cstat(y),(2)

C(y) ⊆ Cstat(y),(2′)

Dstat(y) ⊆ D∗
stat(y).(2′′)

In what follows λ(M) (M ⊆ �) denotes the Lebesgue measure of M and dimM

the Hausdorff dimension of M (cf. [20]).

1. Metric results

In [16] (Theorem 3 in [16]) the following result is proved which in our terminology
can be formulated as follows.

Theorem B. A sequence y = (yn)∞1 converges statistically to ξ ∈ � if and only

if λ(C∗
stat(y)) = 1.

Hence, if y = (yn)∞1 converges statistically then C∗
stat(y) is a measurable set and

has full measure. This fact evokes the question whether the set Cstat(y) is Lebesgue
measurable for an arbitrary y = (yn)∞1 . We will give the affirmative answer to this
question.

In connection with the question mentioned we recall the following classical fact
concerning the sets C(y) and D(y):

If a sequence y = (yn)∞1 converges, then C(y) = (0, 1] and if y = (yn)∞1 diverges,
then λ(D(y)) = 1 (and so λ(C(y)) = 0, cf. [1], [8] p. 404).

In the first place we will deal with the measurability of the set Cstat(y) in the case
that y = (yn)∞1 is a bounded sequence.

The interval (0, 1] is considered as a metric space with the Euclidean metric.

Theorem 1.1. Let y = (yn)∞1 be a bounded sequence of real numbers. Then the

set Cstat(y) is an Fσδ set in (0, 1].

Corollary 1.1. Under the assumption of Theorem 1.1 the set Dstat(y) is a Gδσ

set in (0, 1].

����� �� ������� 1.1. We will define functions gm,n as follows:

If t =
∞∑

k=1
ck(t)2−k is the non-terminating dyadic expansion of t, then we put

p(n, t) =
n∑

i=1
ci(t) (n = 1, 2, . . .). Then p(n, t) > 0 for all sufficiently large n’s.
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Suppose that p(h, t) > 0 for h = min{m, n}. Then we put

gm,n(t) =
1

p(m, t)
1

p(n, t)

∑

i�m,j�n

ci(t)cj(t)|yi − yj |.

If p(h, t) = 0, then we put gm,n(t) = 1.

In [24] a test for statistical convergence of bounded sequences is established which

can be formulated in our terminology as follows:

t ∈ Cstat(y) if and only if lim
m,n→∞

gm,n(t) = 0.

From this we get the following expression for Cstat(y):

(3) Cstat(y) =
∞⋂

k=1

∞⋃

m0=1

∞⋃

n0=1

∞⋂

m=m0

∞⋂

n=n0

B(k, m, n)

where

B(k, m, n) = {t ∈ (0, 1] : gm,n(t) < 1
k}.

Put Y = (0, 1] \ � where � is the set of all rationals. The set Y is considered as

a metric space with the Euclidean metric. Then (3) implies

(4) Cstat(y) ∩ Y =
∞⋂

k=1

∞⋃

m0=1

∞⋃

n0=1

∞⋂

m=m0

∞⋂

n=n0

D(k, m, n)

where D(k, m, n) = Y ∩B(k, m, n).

Observe that for fixed m, n the function gm,n is constant on every interval

(5)
( l

2p
,
l + 1
2p

]
(0 � l � 2p − 1)

where p = max{m, n}. From this fact it can be easily deduced that D(k, m, n) is a
closed set in Y (for fixed k, m, n). But then we get from (4) that Cstat(y) ∩ Y is an

Fσδ set in Y and so an Fσδ set in (0, 1] as well.

From the equality

Cstat(y) = (Cstat(y) ∩ Y ) ∪ (Cstat(y) ∩ �)

the theorem follows immediately. �
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Let us analyse the statement that a number t belongs to Cstat(y). If t ∈ Cstat(y)

then there exists lim-stat y(t) = ξ(t) ∈ �. If t =
∞∑

j=1
2−lj , l1 < l2 < . . ., then by

Theorem A there exists a set J ⊆ � with d(J) = 1 such that lim
j→∞, j∈J

ylj = ξ(t).

The converse is also true.

Note that lim
n→∞, n∈A

zn = L has the following meaning: For every ε > 0 there is

an n0 ∈ � such that for each n > n0, n ∈ A we have |zn − L| < ε (we say shortly

that (zn)∞1 converges to L along the set A). In a similar manner the convergences
lim

n→∞, n∈A
zn = +∞ and lim

n→∞, n∈A
zn = −∞ can be interpreted.

It seems to be useful for further purposes to introduce the statistical limits +∞,
−∞.

Definition 1.1. The number +∞ (−∞) is called a statistical limit of the se-
quence x = (xn)∞1 (lim-statxn = lim-statx = +∞ (−∞)) provided that for each
K ∈ � we have

d({n ∈ � : xn � K}) = 1 (d({n ∈ � : xn � K}) = 1).

���	�
. Observe that lim-statxn = +∞ if and only if d({n ∈ � : xn � K}) =
0 for every K ∈ �. A similar statement holds for −∞.

The existence of the infinite statistical limit +∞ can be characterized in a similar
way as the existence of a finite limit (cf. [21], Lemma 1.1, our Theorem A).

Lemma 1.1. The statement

(6) lim-statxn = +∞

holds if and only if there exists a setM ⊆ � with d(M) = 1 such that lim
n→∞,n∈M

xn =

+∞.

�����. 1. The proof of ⇐ is easy and can be omitted.
2. Suppose that (6) holds. Put Mm = {n ∈ � : xn > m} (m = 1, 2, . . .). Then

M1 ⊇ M2 ⊇ . . . ⊇ Mm ⊇ Mm+1 ⊇ . . . ,(7)

d(Mm) = 1 (m = 1, 2, . . .).(8)

Choose v1 ∈ M1. According to (8) there is a v2 > v1, v2 ∈ M2, such that for every

n � v2
M2(n)

n
>
1
2
.
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Again by (8) there is a v3 > v2, v3 ∈ M3, such that for every n � v3

M3(n)
n

>
2
3
, a.s.o.

So we get (by induction) a sequence v1 < v2 < . . . < vj < . . ., vj ∈ Mj (j = 1, 2, . . .),

such that for every n � vj

Mj(n)
n

>
j − 1

j
(j = 2, 3, . . .).

We construct the set M as follows: We insert into M the interval [1, v1) ∩ �;

further, a number n ∈ [vj , vj+1) ∩ � (j � 1) will belong to the set M if and only if
it belongs to Mj .

We prove that d(M) = 1. Let n � v1. Then n belongs to an interval [vj , vj+1) for
some j. Thus by (7), (8) we get

(9)
M(n)

n
� Mj(n)

n
� j − 1

j
.

From (9), d(M) = 1 follows at once.

Let m ∈ � be an arbitrary positive integer. If n ∈ �, n � vm, then n belongs to
an interval [vj , vj+1) for some j � m, hence it belongs to Mj and also to Mm (see

(7)). But then xn � m by the definition of Mm. Thus

lim
n→∞, n∈M

xn =∞.

�

���	�
. Observe that if lim-statxn = ξ, ξ ∈ � ∪ {+∞,−∞} then evidently
we can choose the set M mentioned in Theorem A and Lemma 1.1 in such a way
that the elements xk (k ∈ M) belong to an arbitrary chosen neighbourhood of ξ.

In what follows we introduce the following notation:

C∞
stat(y) = {t ∈ (0, 1] : lim-stat y(t) = +∞},

C−∞
stat (y) = {t ∈ (0, 1] : lim-stat y(t) = −∞},

Kstat(y) = Cstat(y) ∪ C∞
stat(y) ∪C−∞

stat (y).

Observe that the “summands” from the right-hand side are pair-wise disjoint.
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Let x = (xn)∞1 be a sequence of real numbers. Form ∈ � we define a new sequence
x(m) = (x(m)j )∞j=1 as follows:

xj if xj ∈ (−m, m),

x
(m)
j = m if xj � m,

−m if xj � −m.

���	�
. It is easy to see that |xj − t| � |x(m)j − t| for every t ∈ [−m, m].

The next lemma is of fundamental importance in our further considerations.

Lemma 1.2. We have

(10) Kstat(y) =
∞⋂

m=1

Cstat(y(m)).

�����. 1. Let t =
∞∑

j=1
2−lj ∈ (0, 1]. Suppose that t belongs to Kstat(y). We can

suppose that lim-stat y(t) = ξ � 0 (if not, we take the sequence −y = (−yn)∞1 ). Let
m ∈ �. We have two possibilities:
a) ξ � m. Then {j ∈ � : |y(m)lj

− ξ| < ε} ⊇ {j ∈ � : |ylj − ξ| < ε} for every ε > 0
(see the remark above). This immediately yields that lim-stat y(m)(t) = ξ.

b) ξ > m. Then there exists a set J ⊂ �, d(J) = 1, such that ylj ∈ (m,∞) for
every j ∈ J . Thus for every j ∈ J we have y

(m)
lj
= m and lim-stat y(m)(t) = m.

2. Let t ∈
∞⋂

m=1
Cstat(y(m)). We show that t belongs to Kstat(y). Define ξ(m)(t) =

lim-stat y(m)(t). We have two possibilities:

a) There exists an m0 such that ξ(m0)(t) ∈ (−m0, m0). Then there exists a set

J ⊆ � with d(J) = 1 such that lim
j→∞, j∈J

y
(m0)
lj

= ξ(m0)(t) and y
(m0)
lj

∈ (−m0, m0)

(j ∈ J). Thus ylj ∈ (−m0, m0) (j ∈ J) and lim-stat y(t) = ξ(m0)(t).

b) Such m0 does not exist. It means that for every m ∈ � we have ξ(m)(t) = m

or ξ(m)(t) = −m, so we can suppose that ξ(m)(t) = m for infinitely many m’s. We

show that in this case lim-stat y(t) = +∞.
Let K be an arbitrary positive real number. Choose m0 ∈ � such that m0 > K

and lim-stat ym0(t) = m0. Then there is a set J ⊆ � with d(J) = 1 such that

lim
j→∞, j∈J

y
(m0)
lj

= m0 and y
(m0)
lj

∈ (K,∞) (j ∈ J). So ylj ∈ (K,∞) for each j ∈ J

and lim-stat y(t) = +∞ follows immediately. �
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Lemma 1.3. Each of the sets C∞
stat(y), C

−∞
stat (y) is a Gδσδ set in (0, 1].

�����. Let n ∈ �. The interval (0, 1] is the union of the following intervals i(j)n

(of the n-th order):

i(j)n =
( j

2n
,
j + 1
2n

]
(0 � j � 2n − 1).

To every interval i(j)n (0 � j � 2n − 1) a sequence c
(j)
1 , . . . , c

(j)
n of 0’s and 1’s corre-

sponds in such a manner that the dyadic expansion of every t ∈ i(j)n , t =
∞∑

k=1
ck(t)2−k,

satisfies the conditions ck(t) = c
(j)
k (k = 1, 2, . . . , n). We say shortly that i(j)n belongs

to the sequence c
(j)
1 , . . . , c

(j)
n .

Let m, k, K be positive integers. Denote by A(m, k, K) the union of all intervals
i(j)m of the m-th order that belong to such sequences c

(j)
1 , . . . , c

(j)
n of 0’ and 1’s that

(11)
m∑

h=1

c
(j)
h χJK (h) >

k − 1
k

m∑

h=1

c
(j)
h ,

where JK = {l ∈ {1, 2, . . . , m} : yl > K} and χM denotes the characteristic function
of the set M .

We show that

(12) C∞
stat(y) =

∞⋂

K=1

∞⋂

k=1

∞⋃

m0=1

∞⋂

m=m0

A(m, k, K).

Let t =
∞∑

k=1
ck(t)2−k =

∞∑
l=1
2−kl ∈ C∞

stat(y). By Lemma 1.1 there is a set L ⊆ �

with d(L) = 1, such that

lim
l→∞, l∈L

ykl
= +∞ and ∀l∈L : ylk > K.

Indeed, if k ∈ �, the previous facts imply that for everym � m0 (m0 being suitably
chosen) the number of all l’s with kl � m, ykl

> K is greater than k−1
k p(m, t),

p(m, t) =
m∑

i=1
ci(t) = |{l ∈ � : kl � M}| (see (11)).

From this we see that t belongs to the right hand side of (12).

Let t belong to the right-hand side of (18). We will show that t belongs to C∞
stat(y).

Let k, K ∈ �. Choose an m′
0 ∈ � such that t belongs to

∞⋂
m=m′

0

A(m, k, K). Then

by the definition of the set A(m, k, K) we have (for m � m′
0)

q(m, t) >
k − 1

k
p(m, t),
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where q(m, t) denotes the number of all i’s, i � m for which ci(t) > 0 and yi > K.

Since the values of the sums p(m, t) =
m∑

i=1
ci(t) (m � m′

0) coincide with

( m′
0∑

i=1
ci(t),+∞

)
∩ �, it is easy to deduce from the previous facts that d(JK(t)) = 1,

where JK(t) = {l ∈ � : cl(t)yl > K}. But this by definition of C∞
stat(y) means that t

belongs to the left-hand side of (12).

Now, take into account that each of the sets A(m, k, K) is a Gδ set in (0, 1]. Then
the theorem follows from (12) immediately. �

Now we are able to formulate our result about measurability of Cstat(y) and the

related sets.

Theorem 1.2. Let y = (yn)∞1 be an arbitrary sequence of real numbers. Then

each of the sets Cstat(y), C∞
stat(y), C−∞

stat (y), Kstat(y) is (L)-measurable, the set
Kstat(y) is an Fσδ , each of the sets C∞

stat(y), C−∞
stat (y) is a Gδσδ set and the set

Cstat(y) is an Fσδσ in (0, 1].

�����. The part of Theorem 1.2 concerning the set Kstat(y) follows from

Theorem 1.1 and Lemma 1.2 (see (10)), since each of the sequences y(m) (m =
1, 2, . . .) is bounded.

The part concerning the sets C∞
stat(y), C

−∞
stat (y) follows from Lemma 1.3. Further,

Cstat(y) = Kstat(y) \ (C∞
stat(y) ∪C−∞

stat (y)).

By Lemma 1.2 and Lemma 1.3 the set on the right-hand side is a difference of an
Fσδ set and a Gδσδ set (see Lemma 1.3). Therefore it is an Fσδσ set in (0, 1]. �

Using Theorem 1.1 and Theorem 1.2 we can give a certain general information

about the Lebesgue measure of the sets Cstat(y), C∞
stat(y), C

−∞
stat (y), Kstat(y):

Theorem 1.3. Let y = (yn)∞1 be an arbitrary sequence of real numbers. Then
the Lebesgue measure of each of the sets Cstat(y), C∞

stat(y), C−∞
stat (y), Kstat(y) is

either 0 or 1.

�����. It is obvious that if t =
∞∑

k=1
ck(t)2−k ∈ (0, 1] belongs to some of the

mentioned sets, then t′ =
∞∑

k=1
ck(t′)2−k, ck(t) 
= ck(t′) only for a finite number of

k’s, belongs to the same set as well. From this the homogeneity of each of the sets
follows (cf. [19], Lemma 1.1), thus each of these sets has measure 0 or 1 (cf. [25]). �
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We give yet some further metric results about the above sets.

Theorem 1.4. Let y = (yn)∞1 be a sequence of real numbers.

(i) If y converges, then C(y) = Cstat(y) = C∗
stat(y) = (0, 1], D(y) = Dstat(y) =

D∗
stat(y) = ∅,
(ii) If y is a bounded divergent sequence and y converges statistically, then

λ(C∗
stat(y)) = λ(Cstat(y)) = 1, λ(D∗

stat(y)) = λ(Dstat(y)) = 0, λ(D(y)) = 1,

λ(C(y)) = 0.

�����. (i) This part can be obtained by some well-known facts from analysis
and by inclusions (2), (2′), (2′′).

(ii) From Theorem 3 of [16] (our Theorem B) we get λ(C∗
stat(y)) = 1. Further, it

is well-known that λ(D(y)) = 1 (cf. [1] and [8], p. 404). The rest of (ii) follows from

(2), (2′), (2′′). �

We now present some applications of the Hausdorff dimension to the investigation

of metric properties of our sets.
The next result shows that the statistical convergence of a sequence y guarantees

that the magnitude of the set C(y) is maximal from the point of view of the Hausdorff
dimension.

Theorem 1.5. If a sequence y = (yn)∞1 converges statistically then dimC(y) = 1.

Corollary 1.2. If a sequence y = (yn)∞1 is a divergent sequence which converges

statistically then λ(C(y)) = 0 and dimC(y) = 1.

����� �� ������� 1.5. If y = (yn)∞1 converges then the assertion is trivial.
Suppose that y = (yn)∞1 is divergent and simultaneously there exists ξ =

lim-stat yn ∈ �. By Theorem A there exists a set M = {m1 < m2 < . . .} ⊆ �

with d(M) = 1 such that

lim
k→∞

ymk
= ξ.

Obviously all subsequences of the sequence (ymk
)∞k=1 converge to ξ.

We now use a result from [20] (Theorem 2,7 in [20]) which when applied to dyadic

expansions can be formulated as follows:
Let A ⊆ � be a fixed set. For each k ∈ A let ε0k be a fixed number (0 or 1). Denote

by Z(A; (ε0k), k ∈ A) the set of all t =
∞∑

j=1
cj(t)2−j ∈ (0, 1] for which cj(t) = ε0k if

j ∈ A and cj(t) = 0 or 1 if j 
∈ A. Then

dimZ(A; (ε0k), k ∈ A) = lim inf
n→∞

log
∏

j�n,j∈�\A
2

n log 2
= d(A).
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Choose A = � \M , ε0k = 0 for every k ∈ � \M . Then obviously

(13) Z(� \M ; (ε0k), k ∈ � \M) ⊆ C(y)

and so by the result of [20] dimZ(� \ M ; (ε0k), k ∈ � \ M) = d(M) = d(M) = 1.
Theorem 1.5 follows from (13). �

In connection with Theorem 1.5 a question arises what can be stated about the
set C(y) if y = (yn)∞1 has an infinite statistical limit. In this case λ(C(y)) = 0 since

y is a divergent sequence (cf. [1]; [8], p. 404). But we prove that a stronger statement
holds for C(y):

Theorem 1.6. Suppose that y = (yn)∞1 has an infinite statistical limit. Then
dimC(y) = 0.

�����. We restrict ourselves to the case lim-stat yn = +∞. Then by Lemma 1.1
there exists a set M = {m1 < m2 < . . .} ⊆ � with d(M) = 1 such that lim

k→∞
ymk
=

+∞.
If the set � \M is finite, then C(y) = ∅ and the assertion is clear.
Suppose that � \M is infinite. If a subsequence yj1 , yj2 , . . . of y converges the set

{j1, j2, . . . , jm, . . .} has only a finite number of common elements with the set M .
From this observation we immediately get the identity

(13′) C(y) =
⋃

B

DB,

where B runs over all finite subsets ofM andDB denotes the set of all t =
∞∑

k=1
ck(t) =

2−k ∈ (0, 1], where ck(t) = 0 if k ∈ M \ B, ck(t) = 1 if k ∈ B and ck(t) = 0 or 1 if
k ∈ � \M .

The Hausdorff dimension of the set DB (by fixed B) can be calculated using the
methods applied in the proof of Theorem 1.5. For A (in Z(A; (ε0k), k ∈ A)) we

take the set M and put ε0k = 1 if k ∈ B and ε0k = 0 if k ∈ M \ B. Then we get
dimDB = d(� \M) = d(� \M) = 0.

Since the class of all finite subsets of M is countable, we get from (13′) (using

Lemma 4 of [18]):

dim(C(y)) � sup
B
dimDB = 0,

hence dimC(y) = 0. �
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Using the idea of the proof of Theorem 3 from [16] we can establish the following

result (Theorem 1.7).

Lemma 1.4. Suppose that lim-stat yn = ξ ∈ �. Put P (t) = {k ∈ � : ck(t) = 1}
for t =

∞∑
k=1

ck(t)2−k ∈ (0, 1]. If d(P (t)) > 0, then lim-stat y(t) = ξ.

�����. Let P (t) = {n1 < n2 < . . .}. By assumption

lim inf
k→∞

k

nk
> 0.

Therefore there exist c > 0 and k0 ∈ � such that for every k > k0 we have k
nk

> c > 0,

thus

(14)
nk

k
<
1
c
(k > k0).

Using a simple estimation we get from (14)

1
k
|{i � k : |yni − ξ| � ε}| � nk

k

|{i � nk : |yi − ξ| � ε}|
n

� 1
c

|{i � nk : |yi − ξ| � ε}|
nk

.

If k →∞ the assertion follows immediately. �

The following result can be considered to be a completion of Theorem 1.4:

Theorem 1.7. Suppose that y = (yn)∞1 converges statistically. Then

dimD∗
stat(y) = 0.

Corollary 1.3. (a) Under the assumption of Theorem 1.7 we have dimDstat(y) =

0.
(b) If y = (yn)∞1 converges statistically then dimC(y) = 1 and dimD(y) = 0

(see (2′′) and Theorem 1.5).

����� �� ������� ��. By Lemma 1.4, if d(P (t)) > 0, then the number
t belongs to C∗

stat(y). Hence if t does not belong to C∗
stat(y) (i.e. if t belongs to

D∗
stat(y)) then d(P (t)) = 0.

Take into account that P (t)(m) =
m∑

i=1
ci(t) = p(m, t). So Lemma 1.4. asserts in

fact that if t ∈ D∗
stat(y), then

lim inf
m→∞

p(m, t)
m

= 0,
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hence

D∗
stat(y) ⊆

{
t : lim inf

m→∞
p(m, t)

m
= 0

}
= H0.

But it is a well-known fact that dimH0 = 0 (cf. [17], p. 194). So from the previous

inclusion the theorem follows at once. �

2. Topological results

In this part we give some applications of the concept of Baire’s categories of sets

to the study of the structure of Cstat(y) and the related sets.

In what follows we suppose that the set of limit points of the sequence y = (yn)∞1
can also contain points +∞ and −∞. In the investigation of the set Cstat(y) it seems
to be convenient to distinguish two cases concerning the structure of the set of all
limit points of y.

Theorem 2.1. Let y = (yn)∞1 be an arbitrary sequence of real numbers. If y has
only one limit point ξ then

(i) If ξ is finite then Cstat(y) = C∗
stat(y) = (0, 1].

(ii) If ξ = +∞ then C∞
stat(y) = (0, 1].

(iii) If ξ = −∞ then C−∞
stat (y) = (0, 1].

(iv) Kstat(y) = (0, 1].

Theorem 2.2. Let y = (yn)∞1 be an arbitrary set of real numbers which has at
least two limit points. Then

(i) If one of them is finite, then Cstat(y) is a dense set of the first Baire category

in (0, 1].

(ii) If one of them is +∞, then C∞
stat(y) is a dense set of the first Baire category in

(0, 1].

(iii) If one of them is −∞, then C−∞
stat (y) is a dense set of the first Baire category in

(0, 1].

(iv) Kstat(y) is a dense set of the first Baire category in (0, 1].

(v) If y converges statistically then C∗
stat(y) is a dense set of the first Baire category

in (0, 1].

Proof of Theorem 2.2 is based on the following lemma:

Lemma 2.1. Suppose that a sequence y = (yn)∞1 has two distinct finite limit
points. Then Cstat(y) is a set of the first Baire category in (0, 1].
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�����. Let t =
∞∑

k=1
ck(t)2−k ∈ (0, 1]. For v ∈ � we put

h(v)n (t) = 1, if p(n, t) =
n∑

k=1

ck(t) = 0,

h(v)n (t) =
1

p(n, t)

n∑

k=1

ck(t)e
ivck(t)yk , if p(n, t) > 0.

By the Schoenberg criterion for statistical convergence (cf. [22]) a sequence x =

(xn)∞1 converges statistically to ξ ∈ � if and only if

∀v ∈ � lim
n→∞

1
n

n∑

k=1

eivxk = eivξ.

Using this criterion we see that y(t) converges statistically to ξ = ξ(t) ∈ � if and

only if

(15) ∀v ∈ � lim
n→∞

1
p(n, t)

n∑

k=1

ck(t)eick(t)vxk = eivξ(t).

Hence we get

(16) Cstat(y) ⊆ H(v)

where H(v) = {t ∈ (0, 1]: there exists lim
n→∞

h
(v)
n (t) = h(v)(t) ∈ C}, C denotes the set

of all complex numbers, h(v)(t) = eivξ(t).
Suppose that ξ1 
= ξ2 are two distinct finite limit points of y = (yn)∞1 . We can

assume that ξ1 
≡ ξ2(mod 2�) and put v = 1 in (16). In the opposite case we should
choose an irrational number v such that vξ1 
≡ vξ2(mod 2�) and replace h = h(1),
hn = h

(1)
n and H = H(1) by h(v), h(v)n and H(v), respectively.

For v = 1 we obtain from (16)

(16′) Cstat(y) ⊆ H.

Since ξ1 
= ξ2, there are two disjoint sets K, L ⊆ �, K = {k1 < k2 < . . .},
L = {l1 < l2 < . . .} such that

(17) lim
n→∞

ykn = ξ1, lim
n→∞

yln = ξ2.

We can obviously assume that

(17′) lim
n→∞

(kn+1 − kn) = lim
n→∞

(ln+1 − ln) = +∞.
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With respect to (16′) it suffices to prove that H is the set of the first category in

(0, 1].
We sketch the plan of this proof. Put Y = (0, 1] \ �, � the set of all rational

numbers, Y being considered as a metric space with the Euclidean metric.

If m is a fixed positive integer, then Y can be expressed as a union of sets (see
(5)):

Y (j)m =
( j

2m
,
j + 1
2m

]
∩ � ′ (0 � j � 2m − 1),

� ′ = � \ �. The sets Y
(j)
m (j = 0, 1, . . . , 2m − 1) are called the intervals in Y of the

m-th order.
Functions h, hn are considered as partial functions restricted to Y . We show

that the oscillation of h at every point of H ∩ Y is � δ = |eiξ1 − eiξ2 | > 0. From
this the discontinuity of h on H ∩ Y follows. But the functions hn (n = 1, 2, . . .)

are continuous on Y (hn is constant on each Y
(j)
n , j = 0, 1, . . . , 2n − 1). Further,

lim
n→∞

hn = h on H ∩ Y . Therefore h is a function in the first Baire class on H ∩ Y

and so the set of its discontinuity points (i.e. the set H ∩Y ) is a set of the first Baire

category in H ∩ Y (cf. [23], p. 185). Thus H ∩ �′ is a set of the first category in Y

and so in (0, 1] as well. Then from H = (H ∩ �) ∪ (H ∩ � ′ ) we see that H is a set
of the first category in (0, 1].

Hence it remains to prove that the function h has at each point t0 ∈ H ∩ Y the
oscillation � δ = |eiξ1 − eiξ2 | > 0.
Let t0 =

∞∑
k=1

ck(t0)2−k ∈ H ∩ Y . For each m ∈ � there is a j = j(t0) such that

t0 ∈ i
j(t0)
m (m = 1, 2, . . .). It suffices to prove that in i

j(t0)
m there are two points t1,

t2 ∈ H ∩ Y such that |h(t1)− h(t2)| = δ.

Define t1, t2 ∈ (0, 1] in the following manner:

ck(t1) = ck(t0) if k � m,

ck(t1) = 0 if k > m, k 
= ks (s = 1, 2, . . .),

ck(t1) = 1 if k > m, k = ks (s = 1, 2, . . .).

Similarly

ck(t2) = ck(t0) if k � m,

ck(t2) = 0 if k > m, k 
= ls (s = 1, 2, . . .),

ck(t2) = 1 if k > m, k = ls (s = 1, 2, . . .).

From the definitions of ck(t1), ck(t2) (k = 1, 2, . . .) it follows that

t1 =
∞∑

k=1

ck(t1), t2 =
∞∑

k=1

ck(t2)
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are irrational numbers in (0, 1] and lim y(t1) = ξ1, lim y(t2) = ξ2 (see (17)); further,

t1, t2 ∈ Y
j(t0)
m . So h(t1) = eiξ1 , h(t2) = eiξ2 (see (15)) and |h(t1) − h(t2)| = δ > 0

follows at once. �

Recall the meaning of y(m) = (y(m)j )∞j=1 connected with y = (yn)∞1 (see Lem-
ma 1.2).

����� �� ������� 2.2. The density of the above sets follows from the fact

that if L = lim-stat y(t) ∈ � ∪ {+∞,−∞}, then L = lim-stat y(t′), where the dyadic
expansions of t and t′ differ only in a finite number of digits.

Since y = (yn)∞1 has two limit points ξ, η there is an m0 ∈ � such that ξ(m0) 
=
η(m0), where ξ(m0) and η(m0) are the corresponding (finite) limit points of the se-
quence y(m0). Therefore Cstat(y(m0)) is a set of the first category by Lemma 2.1.

However, then each of the sets is a set of the first category in (0, 1] by virtue of

(10). �
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