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Abstract. Every commutative nil-semigroup of index 2 can be imbedded into such a
semigroup without irreducible elements.
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1. Introduction

(Congruence-)simple semimodules over semigroups (and/or semirings) are easily

divided into four pair-wise disjoint classes. That is, if M is a simple semimodule

then the additive semigroup M(+) is either

(1) cancellative, or

(2) idempotent, or

(3) constant (i.e. |M + M | = 1), or

(4) nil of index 2 and without irreducible elements (i.e., 2x + y = 2x for all

x, y ∈ M and M + M = M).

Now, the last class is the most enigmatic one and was scarcely studied so far

(cf. [1]). In fact, structural properties of commutative 2-nil semigroups without

irreducible elements (zs-semigroups in the sequel) are not yet well understood and

examples of these semigroups are rarely seen (see e.g. [2]). The aim of the present

short note is to show that every commutative 2-nil semigroups can be imbedded into

a commutative zs-semigroup. Consequently, there should exist many commutative

zs-semigroups and then many simple semimodules of type (4) as well.

Supported by the institutional grant MSM 0021620839 and by the Grant Agency of Czech
Republic, grant #GAČR-201/05/0002.
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Throughout this note, the word semigroup will always mean a commutative semi-

group, the binary operation of which will be denoted additively.

1.1 An element w of a semigroup S is called absorbing if S + w = w. There exists

at most one absorbing element in S and it will be denoted by the symbol o (= oS)

in the sequel. The fact that S possesses the absorbing element will be denoted by

o ∈ S.

1.2 A non-empty subset I of S is an ideal if S + I ⊆ I.

1.3 Lemma.

(i) A one-element subset {w} is an ideal iff w = oS .

(ii) If I is an ideal then the relation r = (I × I) ∪ idS is a congruence of S and

I = oT , where T = S/r.

(iii) If o ∈ S and and s is a congruence of S then the set {a ∈ S; (a, o) ∈ s} is an

ideal.

1.4 Put (QS(a) =) Q(a) = S + a and (PS(a) =) P (a) = Q(a) ∪ {a} for every

a ∈ S.

1.5 Lemma.

(i) Q(a) ⊆ P (a) and both these sets are ideals of S.

(ii) P (a) is just the (principal) ideal generated by the one-element set {a}.

1.6 Assume that o ∈ S. An element a ∈ S is said to be nilpotent (of index at

most m > 1) if ma = o. We denote by N(S) (Nm(S)) the set of nilpotent (of index

at most m) elements of S.

The semigroup S is said to be nil (of index at most m) if N(S) = S (Nm(S) = S)

and reduced if oS is the only nilpotent element of S.

1.7 Lemma.

(i) o = N1(S) ⊆ N2(S) ⊆ N3(S) ⊆ . . . and all these sets are ideals.

(ii) N(S) =
⋃

Nm(S) is an ideal.

(iii) The factor-semigroup T = S/N(S) is reduced.

1.8 Lemma. The following conditions are equivalent:

(i) o ∈ S and 2x = o for every x ∈ S.

(ii) S is nil of index at most 2.

(iii) 2x + y = 2z for all x, y, z ∈ S.

(iv) 2x + y = 2x for all x, y ∈ S.

2



1.9A semigroup satisfying the equivalent conditions of 1.8 will be called zeropotent

(or, in a colourless manner, a zp-semigroup) in the sequel.

A zp-semigroup without irreducible elements (i.e., when S +S = S) will be called

a zs-semigroup.

1.10 Define a relation |S on S by a |S b iff b = a + u for some u ∈ S0, where S0 is

the least monoid containing S and 0 denotes the neutral element of S0.

1.11 Lemma. The following conditions are equivalent:

(i) a |S b.

(ii) b ∈ P (a).

(iii) P (b) ⊆ P (a).

Moreover, if a 6= b then these conditions are equivalent to:

(iv) b ∈ Q(a).

(v) P (b) ⊆ Q(a).

1.12 Lemma. The relation |S is a fully invariant compatible quasiordering of

the semigroup S and the equivalence ‖S = ker(|S) is a fully invariant congruence of

the semigroup S.

1.13 Lemma. The following conditions are equivalent:

(i) a ‖|S b.

(ii) P (a) = P (b).

Moreover, if a 6= b then these conditions are equivalent to:

(iii) Q(a) = Q(b) = P (a) = P (b).

1.14 Lemma. The following conditions are equivalent:

(i) S is a group.

(ii) |S = S × S.

(iii) ‖S = S × S.

(iv) P (a) = P (b) for all a, b ∈ S.

(v) P (a) = S for every a ∈ S.

(vi) Q(a) = S for every a ∈ S.
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1.15 Lemma. The relation |S is a (fully invariant compatible) ordering (or,

equivalently, ‖S = idS), provided that at least one of the following four conditions is

satisfied:

(1) S is not a group and idS , S×S are the only fully invariant congruences of S;

(2) S is cancellative and 0 /∈ S;

(3) S is nil;

(4) S is idempotent.

P r o o f. (1) Combine 1.13 and 1.14.

(2) If a 6= b, b = a+u and a = b+v, a, b, u, v ∈ S, then a = a+w, where w = u+v,

and hence w = 0, a contradiction.

(3) If a = a + w, a, w ∈ S, then a = a + mv for every m > 1, and hence a = o.

(4) If b = a + u, a, b, u ∈ S, then a + b = a + a + u = a + u = b. �

1.16 Define a relation /S on S by a/Sb iff Q(b) ⊆ Q(a).

1.17 Lemma. The relation /S is an invariant compatible quasiordering of the

semigroup S and the equivalence //S = ker(/S) is an invariant congruence of the

semigroup S.

1.18 Lemma. The following conditions are equivalent:

(i) /S = S × S.

(ii) //S = S × S.

(iii) S + a = S + b for all a, b ∈ S.

(iv) S + S = I is the smallest ideal of S and I is a subgroup of S.

2. The distractibility ordering of zp-semigroups

2.1 In this section, let S be a zp-semigroup. Put Ann(S) = {a ∈ S; S + a = o}.

2.2 Lemma.

(i) The relation |S is a fully invariant compatible ordering of the semigroup S.

(ii) o is the greatest element.

(iii) Ann(S) \ {o} is the set of maximal elements of T = S \ {o}.

(iv) If |S| > 2 then S \ (S + S) is the set of minimal elements of S.

(v) If |S| > 3 then S has no smallest element.
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2.3 Lemma. If S is a non-trivial zs-semigroup then S has no minimal elements,

S is infinite and not finitely generated.

P r o o f. Being nil, S is finitely generated iff it is finite. The rest is clear from

2.2(iv). �

2.4 Lemma. If 0 ∈ S then S is trivial.

3. Every zp-semigroup is a subsemigroup of a zs-semigroup

Now, we are in position to show the main result of this note.

3.1 Proposition. Every zp-semigroup is a subsemigroup of a zs-semigroup.

P r o o f. Let S be a non-trivial zp-semigroup and Q = S \ (S + S). For every

a ∈ Q, put Ra = S \ P (a); then o /∈ Ra and Ra 6= ∅, provided that |S| > 3. Further,

0 /∈ S by 2.4 and we put Ra,0 = Ra ∪ {0a}, where the elements 0a, a ∈ Q, are all

distinct, Va,1 = Ra,0 × {1} and Va,2 = Ra,0 × {2}. Now, consider the disjoint union

T = S ∪
⋃

a∈Q

Va,1 ∪
⋃

a∈Q

Va,2

and define an addition on T in the following way:

(1) x + y coincides in S(+) and T (+) for all x, y ∈ S;

(2) x + (y, i) = (x + y, i) = (y, i) + x for all x ∈ S, (y, i) ∈ Va,i, a ∈ Q, i = 1, 2,

x + y ∈ Ra (i.e., x + y /∈ P (a));

(3) (x, i) + (y, j) = x + y + a for all x, y ∈ Ra,0, a ∈ Q, i 6= j;

(4) α + β = o if α, β ∈ T and the sum α + β is not defined by (1), (2) or (3).

Clearly, α + β = β + α, α + α = o, α + o = o and o+ α = o for every α ∈ T . Next,

we check that α + (β + γ) = (α + β) + γ for all α, β, γ ∈ T .

Put δ = α + (β + γ), ε = (α + β) + γ and consider the following cases:

(a) α, β, γ ∈ S. Then δ = ε by (1).

(b) α, β ∈ S and γ = (x, i) ∈ Va,i. Assume first that α + β + x ∈ Ra. Then

ε = (α + β + x, i) by (2). Moreover, β + x ∈ Ra, and hence β + γ = (β + x, i) and

δ = α + (β + x, i) = (α + β + x, i) = ε.

Assume next that α+β+x /∈ Ra. Then ε = o by (4). Moreover, either β+x /∈ Ra,

β + γ = o and δ = α + o = o = ε, or β + x ∈ Ra, β + γ = (β + x, i) and

δ = α + (β + x, i) = o = ε.

(c) α, γ ∈ S, β ∈ Va,i (or β, γ ∈ S, α ∈ Va,i). These cases are similar and/or dual

to (b).
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(d) α = (x, i) ∈ Va,i, β = (y, i) ∈ Va,i and γ ∈ S. Then α + β = o by (4), and so

ε = o + γ = o. Assume first that y + γ ∈ Ra. Then β + γ = (y + γ, i) by (2) and

δ = (x, i) + (y + γ, i) = o by (4). Thus ε = δ.

Assume next that y + γ /∈ Ra. Then β + γ = o by (4) and δ = (x, i) + o = o = ε.

(e) α, γ ∈ Va,i, β ∈ S (or β, γ ∈ Va,i, α ∈ S). These cases are similar to (d).

(f) α = (x, i) ∈ Va,i, β = (y, j) ∈ Va,j , i 6= j, γ ∈ S. Then α + β = x + y + a

by (3), and hence ε = x + y + a + γ by (1). Assume first that y + γ ∈ Ra. Then

β + γ = (y + γ, j) by (2) and δ = (x, i) + (y + γ, j) = x + y + γ + a = ε.

Assume next that y+γ /∈ Ra. Then β +γ = o by (4), and hence δ = (x, i)+o = o.

However, y + γ /∈ Ra means y + γ ∈ P (a) and then a + y + γ = o, since S is nil of

index at most 2. Thus ε = x + a + y + γ = x + o = o = δ.

(g) α ∈ Va,i, γ ∈ Va,j , β ∈ S (or β ∈ Va,i, γ ∈ Va,j , α ∈ S). These cases are similar

to (f).

(h) α, β, γ ∈ Va,i. Then β + γ = o = α + β, and hence δ = a + o = o = o + γ = ε.

(i) α = (x, i) ∈ Va,i, β = (y, i) ∈ Va,i and γ = (z, j) ∈ Va,j , i 6= j. Then α + β = o

by (4), and hence ε = o + (z, j) = o. Further, β + γ = y + z + a by (3). Now,

x + y + z + a ∈ P (a) and δ = (x, i) + y + z + a = o by (4). Thus δ = ε.

(j) α, γ ∈ Va,i, β ∈ Va,j (or β, γ ∈ Va,i, α ∈ Va,j). These cases are similar to (i).

(k) In all the remaining cases we get δ = o = ε due to (4).

We have shown that T = T (+) is a zp-semigroup and S is a subsemigroup of T .

Clearly,

T + T = S ∪
⋃

a∈Q

(Ra × {1}) ∪
⋃

a∈Q

(Ra × {2}).

Thus S ⊆ T + T and

T \ (T + T ) =
⋃

a∈Q

{(0a, 1), (0a, 2)}.

Finally, put T0 = S, T1 = T and consider a sequence

T0 ⊆ T1 ⊆ T2 ⊆ . . .

of zp-semigroups such that Ti is a subsemigroup of Ti+1 and Ti ⊆ Ti+1 +Ti+1. Then⋃
Ti is a zs-semigroup. �
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