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Abstract. It is shown that there exist a continuous function f and a regulated function
g defined on the interval [0, 1] such that g vanishes everywhere except for a countable set,
and the K*-integral of f with respect to g does not exist. The problem was motivated by
extensions of evolution variational inequalities to the space of regulated functions.
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INTRODUCTION

The present paper has been motivated by an auxiliary problem which arose in
connection with the investigation of generalized evolution variational inequalities in
the space of regulated functions in [4]. It can be stated as follows: which notions of
the integral have the property that

b
(0.1) / £(t) dg(t) = 0

for every pair of regulated functions f,g: [a,b] — R such that g(¢) = 0 everywhere
except for a countable subset N C ]a, b[?

Recall that a function f: [a,b] — R is said to be regulated (cf.[1]) if finite one-
sided limits f(¢t—), f(t+) exist for every ¢ € [a,b] with the convention f(a—) = f(a),
f(b+) = f(b). A more systematic information about regulated functions can be
found e.g.in [2].

The identity (0.1) is obviously fulfilled if it is interpreted as the Young integral
in the form presented in [3]. The problem is more delicate for both versions of
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the Kurzweil integral, the original one introduced in [5] (the K-integral), and its
generalization proposed in [7] (the so-called K *-integral). In general, the above
statement holds only conditionally, that is,

b b
(0.2) if / f(t)dg(t) exists, then / f(®)dg(t) =0,

see Proposition 2.4 of [6]. On the other hand, (0.1) is true if at least one of the
functions f, g is of bounded variation, see Proposition 2.13 and Corollary 2.14 of [9].

The main result of this paper consists in giving a negative answer to the above
problem for the K*-integral (and, a fortiori, for the K-integral). We construct ex-
plicitly a regulated function g: [0,1] — R which vanishes everywhere except for a
countable set, and a continuous function f: [0,1] — R such that (K™*) fol f(®)dg(t)
does not exist, see Theorem 1.4 below. This means in particular that the Young
integral is not included in Kurzweil’s theory. An interested reader can find more
information about the Kurzweil integral and its relation to other types of integrals
e.g.in [6], [7], [8] or [9].

1. STATEMENT OF THE MAIN RESULT

We first recall the definition of the Kurzweil integral. Consider a compact interval
[a,b] C R. The basic concept in the whole theory is that of a d-fine partition. We
define the set

(1.1) I(a,b) :={0: [a,b] = R; §(t) >0 for every t € [a,b]}.
An element ¢ € T'(a,b) is called a gauge.

Let a =tg < t; < ... <ty = b be a division of [a,b] and let 7 = {71,..., 7},
a <7 <7 <...< Ty < b be asequence such that 7; € [t;_1,t;] for j =1,...,m.

Then the system D = {(7;,[t;—1,t;]); j = 1,...,m} is called a partition. For
t € [a,b] and § € I'(a,b) we denote

(1.2) Is(t) =]t = 0(¢), t + 0(¢t)].

Definition 1.1. Let 6 € I'(a, b) be a gauge. A partition D = {(7;, [tj—1,t;]); j =
1,...,m} is said to be d-fine if for every j = 1,...,m we have
(1.3) T € [tj_l,tj] - L;(Tj).

If moreover a d-fine partition D satisfies the implications
(13*) Tj :tj,1 :>]:1, Tj :tjﬁj:m,
then it is called a §-fine* partition.
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The set of all o-fine (d-fine*) partitions is denoted by Fs(a,b) (Fs(a,b), respec-
tively).

We have indeed Fj(a,b) C Fs(a,b). The next lemma implies in particular that
these sets are nonempty for every § € I'(a, b).

Lemma 1.2. Let § € T'(a,b) and a dense subset ) C |a,b[ be given. Then there
exists D = {(7,[tj—1,t;]); 7 = 1,...,m} € F;i(a,b) such that t; € Q for every
j=1,...,m—1.

Proof. We have [a,b] C |J Is5(t), hence there exists a finite covering
t€la,b]

(1.4) [a,b] C UL;(T]'), a<n <...<7, <b.
j=1

The inclusion remains valid if we eliminate all intervals I5(7;) for which there exists
k # j, Is(1j) C I5(1). We claim that then we have

(1.5) min{7j;1,7; +0(7;)} > max{r;, 711 — 0(7;41)}

for every j = 1,...,m — 1. Indeed, we obviously have 7;,1 > 7;, since otherwise
Is(1j41) C Is(;) or Is(rj) C Is(1j41) according to whether 6(7j11) < 6(7;) or
d(7j41) = 6(75). Assume now that for some j we have

min{7;41,7; + 6(7;)} < max{7;, 7j41 — 6(7j41)}

Then 7j41 > Tj41—0(7j4+1) = 7j+6(7;) > 75, hence the points 7,4+0(7;), 7j4+1—0(Tj+1)
do not belong to I5(7;)Uls(7;+1). Then there exists necessarily either k < j such that
7j + 0(7j) € Is(m), hence Is(7;) C Is(7), or k > j + 1 such that 7541 — 0(7j41) €
Is(7s), hence I5(7j+1) C Is(7x), which is a contradiction. Inequality (1.5) is thus
verified and we may choose arbitrarily

tj € | max{7), 741 — 0(mj41)}, min{7ip, 7 +(m)}[NQ, j=1,...,m—1,

to := a, t,, := b, and the assertion immediately follows. O

We are now ready to give a formal definition of both types of the Kurzweil inte-
gral. For given functions f,g: [a,b] — R and a partition D = {(75, [tj—1,t;]); j =
1,...,m} we define the integral sum Sp(fAg) by the formula

m

(1.6) Sp(fAg) = f(5)(g(ts) — g(t;—1))-

Jj=1
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Definition 1.3. We say that J € R (J* € R) is the K-integral (K*-integral,
respectively) over [a,b] of f with respect to g and denote

b b
17 J=(K) / F(t)dg(t), (J*:(K*) / F(t)dg(t), respectively),

if for every ¢ > 0 there exists § € I'(a,b) such that for every D € Fs(a,b) (D* €
Fi(a,b), respectively) we have

(1.8) |J — Sp(fAg)| < e, (|J* — Sp«(fAg)| < e, respectively).

Using the fact that the implication

Fi(a,b) C T3, (a,0) N F5,(a, b),

1.9 0 < min{dy,d2} =
(19) (01,02 {Fg(a,b)C]-“gl(a,b)ﬁ]-"gz(a,b)

holds for every 6,071,062 € T'(a,b), we easily check that the values J, J* in Defini-
tion 1.3 are uniquely determined. Since Fj(a,b) C Fs(a,b) for every gauge d, we
also see that if (K) f: f(t)dg(t) exists, then (K*) f: f(t)dg(t) exists and both are
equal.

Let I be the interval [0, 1]. Consider the function Q: I — I given by the formula

27" if t=(25—-1)27", j=1,...,2" 1 neN,
(1.10) Qt) := {

0 otherwise.

The main result of this paper reads as follows.

Theorem 1.4. Let « € ]0,1[ be given and for t € I put g(t) := Q*(t). Then there
exists a continuous function f: I — R such that the integral (K*) fol f(t)dg(t) does

not exist.

A proof of Theorem 1.4 will be given in the next section. It makes substantial use
of the concept of outer measure p(E) € [0,00] of an arbitrary set E C R. For the
reader’s convenience, we briefly recall here its basic properties that are used in the
sequel. By ‘meas’ we denote the Lebesgue measure in R.

Proposition 1.5.

(i) For every E C R we have u(E) = inf{meas (V); V open subset of R, E C V'}.
(ii) If E is measurable, then u(E) = meas (E).
(iii) For every Fy C Ey C R we have u(E1) < p(Es).
(iv) For every E1, Es C R we have pu(E1 U E2) < u(Er) + u(Es).
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(v) Let By C E5 C ... C I be a sequence of sets such that I = |J E,. Then we

n=1
have lim p(E,) =1.

Sketch of the proof. Statements (i)—(iv) belong to the standard course on
Lebesgue measure. To prove (v), we denote m,, := u(E,) for n € N. The sequence

{m,} is nondecreasing, we can therefore put m := lim m, < 1. Assume that
n—oo

m < 1 and put n := (1 —m)/2. By definition, for every n € N there exists an
open set V,, D E, such that meas(V,,) < 1 —n. The sets A, := T\ ( ﬂ Vi) are

measurable, meas (4,) =1, A, NE, =0 for every n € N, I D A} D A2 D . Put
As = () An, Dy := A\ Apyq for n € N. Then A, = A U ( U Dk) and the

n=1 k=n

union is disjoint, hence meas (A, ) = meas (Ax) + Z meas (Dy). Letting n tend to
infinity we conclude that meas (A ) = 1, Aoc N En = V) for every n € N, which is a

contradiction. O
2. PROOF OF THEOREM 1.4

In order to construct the function f satisfying the conditions of Theorem 1.4, we
choose a decreasing sequence {s,,; n € N} of positive numbers such that

(2.1) Z

NH

We introduce the intervals

(2.2) KP=](i—145,)27", (i —s,)27"[, i=1,...,2", neN,
' Jri=1[(i—5,)27" (i +5,)27"], i=1,...,2"—1, neN

completed by Ji :=1[0,5,27"], J& :=[1 — 8,27, 1], see Fig. 1. We further denote
2" 2" oo

(2.3) Jr=JJr Khe= K K= ()K"
i=0 i=1 n=1

Then J" U K™ = I and meas (J") = 2s,, for every n € N, hence

(2.4) meas (I \ K) = meas ([j J") <2isn:2a.
n=1 n=1

975



The function f will be constructed in the following way. We fix some A > 0 such

that
(2.5) 20l «p <1

and for n € N and ¢t € I put

h" if te K, i odd,
(2.6) falt) == 0 if te K i even,
e T

YA

~Y

J3 J3
Figure 1. Graph of the function y = fn(t) for n = 2.

Then f,, are continuous, |f,|.o = k™ for every n € N, see Figure 1. We next fix an

integer r € N such that

1
2. h" < =
(2.7) < 5

and for ¢ € I put

(2.8) F(t) = fo(t).
k=1

The series in (2.8) is uniformly convergent, hence the definition is meaningful and f

is continuous.

It remains to check that the integral (K*) fol f(t)dg(t) does not exist. To this
end, we consider an arbitrary gauge § € I'(0, 1), and for n € N we define the sets

(2.9) E,:={tel; §(t)>2"}.
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By Proposition 1.5 we have lim p(E,) = 1. We fix v > 0 and £ € N such that

n—oo

(2.10) 20<v<3, wkE)=1-v+20.
For every n > ¢ we then have by (2.4) and Proposition 1.5 that
(2.11) pw(EnNK) 2 p(Ey) —meas(I\ K) 21— .

Let us define the sets of indices

(2.12)

B,:={ie{l,...,2"}; E,NKNK# 0},
Cn:={ie{l,....,2"}; E,NnKNK=10}.

For every n € N we obviously have

(2.13) E,NK = |J(E.nKnK}),
i€B,
hence
(2.14) p(En, N K) < (#B,) max{meas (K")} < 27"(#DB,),

where the symbol ‘4’ means ‘number of elements’. This and (2.11) yields for n > ¢
that

(2.15) #B, > (1—-v)2", #C, <v2".
We continue by introducing the sets

Xp={je{l,....2n1}; 25— 1€ C, or 2j€Cyl,
(2.16) { et )i 2 JeCnl

Yo ={jef{l,....2»1}; 2j — 1€ B, and 2j € B,).
Then #X,, +#Y,, =271, #X, < #C,,, hence
(2.17) #Y, > (% - V)2" Vn > /.

We fix some n > ¢ of the form n = rp, p € N, and for every j € Y, we find
Toj—1 € BEpp NK N Ky, o € By N KN K,Y, and put tg;—1 = (25 — 1)27"7.

The next step consists in constructing a suitable 0-fine* partition D with an ar-
bitrarily large integral sum Sp(fAg). We are able to control the contribution to
Sp(fAg) on points 79;_1, To; and ;1 for j € Y,,, while the gaps between the
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YA
y = frp(t)
h"P [
|
\
T2jm T2ipm41—11 T25m41
Iy Iy .
0l bryr—1 tojnr—1 ay by 12 1—1  AM+1 ¢

Figure 2. Illustration to the proof of Theorem 1.4.

points 79; and 7251 for any two consecutive elements j, j’ € Y, will be filled in by
0-fine* partitions with zero contribution to Sp(fAg).

Let 1 <j1 <jo <...<jn <277 ! be all elements of Y,,, N = #Y,,,. We denote
ag :=0, by :=1, and

an = (2jar — $p)27F for M =1,...,N,
by = (2jm41 — 2+ 57)27F for M=0,...,N -1

)

see Fig.2. In each interval [aps,by] we use Lemma 1.2 for Q@ = I\ Q (by Q we

denote the set of rational numbers) and find a partition DM = {(zM [tM tM]); i =
L,...,mun} € Fi(ap,by) such that tM € Q for every i = 1,...,my — 1, ) = ap,
t% + = bar. We now choose arbitrarily

tAé\/IGI(;(Tl]V[)ﬁ]TQjM,aM[ﬁQ for M =1,...,N,
L ELs(m YN bar, T2 —1[NQ for M =0,...,N —1

T

and put ffw = tM otherwise. Then

(2.18) U{ JEM LMY i =1, ma )

z °

U U { T25n — 17 mM 17t2JM 1]) (T2j1u?[t2j1w—1’£(]}/j])}

M=1
is a d-fine* partition of I and using the fact that g(fM) = 0 for every i = 1,...,may,
M =0,...,N, we obtain
(2.19) Sp(fAg) = > gltaj1)(f(25-1) — f(77))-

JE€EYrp
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Let us now evaluate separately the three terms on the right-hand side of the

identity
(2:20) f(roj-1) = f(725) = D (Fek(T2j1) = Frr(72)) + Frp(T2j-1) = Frp(725)
k=1
+ Z (fri(T2j-1) = fri(T2;))-
k=p+1

By construction we have |fri(m2j-1) — fre(m25)] < h* for every k, hence

D (frklraj1) — frk(72j))' <A ﬁrhw

k=p+1

(2.21)

and, due to the choice of 7;_1,72; (see Figure 2), we obtain that

(2.22) frp(25-1) = frp(T2;) = 7.
From the inclusion K3¥ | U K,! C (4 — 1)2t=rp_j21=rP[ it follows for k < p that

(2.23) Kn(KP UKY) c K™ n](j—1)2' 7P, 520777
CK™n](m—-1)2""% m27"k[ = KF,

where m is the integer part of the rational number 1+ (j — 1)2'="(P=%)_ Since f,;, is
constant on K", we obtain from (2.23) that

(2.24) fri(T2i-1) — fri(me;) =0 for k < p.

Combining (2.20) with (2.21), (2.22) and (2.24) yields

(2.25) f(r2j—1) = flm25) =2 hrp%

for every j € Y,,. We moreover have g(tgj_1) > 2-*"? for every j € Y,,, and from
(2.17), (2.19) we conclude that

(2.26) Sp(fAg) = (#Yrp) (27 )P 11_,2::

1 1—2h"
2 -« Tp(_ _ .
@073 ”) 1—hr

Since p can be chosen arbitrarily large and 21 ~“h > 1, we see that (K*) fol f(t)dg(t)
does not exist and Theorem 1.4 is proved.

579



[1]
2]
8]
(4]

[5]

of S

References

G. Aumann: Reelle Funktionen. Springer, Berlin, 1954. (In German.)

D. Frarikovd: Regulated functions. Math. Bohem. 119 (1991), 20-59.

T. H. Hildebrandt: Introduction to the theory of integration. Academic Press, New York,
1963.

P. Krejéi, Ph. Laurencot: Generalized variational inequalities. J. Convex Anal. 9 (2002),
159-183.

J. Kurzweil: Generalized ordinary differential equations and continuous dependence on
a parameter. Czechoslovak Math. J. 7 (1957), 418—449.

S. Schwabik: On the relation between Young’s and Kurzweil’s concept of Stieltjes inte-
gral. Casopis Pést. Mat. 98 (1973), 237-251.

S. Schwabik: On a modified sum integral of Stieltjes type. Casopis Pést. Mat. 98 (1973),
274-277.

S. Schwabik, M. Tvrdy, O. Vejvoda: Differential and Integral Equations: Boundary Value
Problems and Adjoints. Academia and D. Reidel, Praha, 1979.

M. Tvrdy: Regulated functions and the Perron-Stieltjes integral. Casopis Pést. Mat. 114
(1989), 187-209.

Authors’ addresses: Pavel Krejcét, Jaroslav Kurzweil, Mathematical Institute, Academy
ciences of the Czech Republic, Zitna 25, 115 67 Praha 1, Czech Republic, e-mail: krejci

O@math.cas.cz, kurzweil@math.cas.cz.

580



		webmaster@dml.cz
	2020-07-01T15:11:58+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




