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Abstract. In the paper the notion of an ideal of a lattice ordered monoid A is introduced
and relations between ideals of A and congruence relations on A are investigated. Further,
it is shown that the set of all ideals of a soft lattice ordered monoid or a negatively ordered
monoid partially ordered by inclusion is an algebraic Brouwerian lattice.

Keywords: lattice ordered monoid, ideal, normal ideal, congruence relation, dually resid-
uated lattice ordered monoid
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Ideals of lattice ordered groups (notation l-groups) were investigated by Birkhoff.
His well known results are that congruence relations on an l-group G and l-ideals
of G are in a one-to-one correspondence and that the set of all l-ideals of G is an
algebraic Brouwerian lattice [1, p. 304].

Dually residuated lattice ordered semigroups were introduced and studied by
Swamy [13] as a common abstraction of Boolean rings and abelian l-groups. Ide-
als of dually residuated lattice ordered semigroups were investigated by Kovar [§],
Hansen [5], Rachtnek [12].

The theory of non-commutative dually residuated lattice ordered semigroups
(called DRIl-monoids) has been developed by Kovar [8], Kiihr [9], [10], [11]. Kiihr
[10] studied ideals of DRIl-monoids and extended the above mentioned Birkhoff’s
results to DRl-monoids. Ideals of DRl-monoids were also dealt with by Salounova
[14].

The purpose of this paper is to extend the concept of an ideal to any lattice
ordered monoid and study relations between ideals of A and congruence relations
on A. Further, the set of all ideals of an l-monoid A is investigated. The results
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obtained show that many assertions concerning ideals of DRIl-monoids and l-groups
also hold for lattice ordered monoids.

We review some notions and notation used in the paper.

A lattice ordered monoid (notation l-monoid) is a system (A, +,0, V, A) such that

(1) (A,+,0) is a monoid,

(2) (A,V,A) is a lattice and

B) a+(bVve)=(a+b)V(a+c),bVe)+a=(b+a)V(c+a),
a+(bAc)=(a+b)A(a+c), (bAc)+a= (b+a)A(c+a)for each a, b, c € A.

The partial order induced by lattice operations V and A is denoted by <. Clearly,
ifa<b thenc+a<c+band a+d<b+dforeacha,b,c,de A

We shall denote an 1-monoid (A, +,0,V, A) simply by A or by (4, +, <) if there is
no danger of confusion.

A subset S of a monoid (M, +,0) is called a submonoid of M if0 € S and a+b € S
for each a,b € S. A submonoid S of an l-monoid A is called an l-submonoid of A if
S is also a sublattice of A.

If for elements a and b of an l-monoid A there exist a least z € A such that
b+ z > a and a least y € A such that y + b > a, then the element x is denoted by
a ~— b and the element y by a — b.

A system (B, +,0,V, A, ~—,—) is called a dually residuated lattice ordered monoid
(notation DRI-monoid) iff

(1) (B,+,0,V,A) is an l-monoid,

(2) for each a, b in B there exist elements a ~— b and a — b,

3) b+ ((a~Db)V0)<aVh, ((a—=>b)vV0)+b<aVbioreacha, b B,
(4) as~a>0,a—a>0 for each a € B.

An element x of an l-monoid A is called positive (negative) if x > 0 (z < 0,
respectively). The set of all positive (negative) elements of an l-monoid A will be
denoted by AT (A~ respectively).

If x is an element of an l-monoid A, then z+ = z Vv 0 is called the positive part of
x and 7 = x A0 is called the negative part of x.

If z is an invertible element of an l-monoid A, then the inverse of z is denoted by
—x. The set of all invertible elements of an l-monoid A will be denoted by In(A).

We use N for the set of all positive integers. Throughout this paper 0 will denote
a zero element.

We shall often need the following assertions and we shall apply them without
special references.

(A1) For each element a of an l-monoid, a = a™ +a~ =a~ +a™ [8, p. 16].
(A2) Each negative element of a DRI-monoid is invertible [8, Lemma 1.2.2].

Kiihr defined the absolute value of an element x of a DRl-monoid B by |z| =

(x = 0)V (0 — ) [10, p.99].
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The following lemma shows that for the absolute value in DRIl-monoids the same
relation is valid as in lattice ordered groups [1, p.295].

Lemma 1. Let B be a DRI-monoid, € B. Then |z| = 2T +(—27) = (-2~ )+a™.

Proof. By Lemma 4 [10], |z| = 2t — 2~. In view of Lemma 1 [10] we have
gt =2~ 22" 22" =0,z =atVva =T a7 ) T+ =t —~z7)+a".
Therefore (—z7 )+ 2T =zt + (—27) =2t =2~ = |z]. O

In [10] Kiihr defined an ideal of a DRl-monoid B to be a subset I of B satisfying
the following conditions:
(I;) 0e1,
(Iz) ifz,ye I, thenz+y €1,
(I3) if z € B,y € I and |z| < |y|, then z € I.

Theorem 1. Let B be a DRI-monoid, I C B. Let 0 € I and u+ v € I for each
u, v € I. Then the following propositions are equivalent:

(i) Ifx € B,y € I and |x| < |y|, then z € I.
(ii) Ifxr e B,a,bel andat +a~ <~ +b", thenz € I.
(i) Ifr € B,a, b€l anda™ + 2T < bT + 2z, then v € I.

Proof. (i) = (ii) Let z* +a~ < 2~ 4+ b* for some = € B, a, b € I. Since
bt < |b], | —a~| < la|, we have bt, —a™ € I. Hence b* + (—a~) € I. Then
|z| = (—z7) + 2t <bF + (—a7) = |bT + (—a7)| yields z € I.

(i) = (i) Let |z| < |y| for some z € B, y € I. Then 2™ +y~ < 2z~ +y*. This
implies = € I.

Analogously we can prove that (i) < (iii). O

In view of Theorem 1 we can introduce the following concept of an ideal of an
I-monoid A so that if A is a DRI-monoid our definition is equivalent to Kiihr’s one.

Let A be an l-monoid. A subset I of A is called a left (right) ideal of A, if the
conditions (I1), (I2) and the following condition (I}) ((I;), respectively) are fulfilled:
(L) fre A a,bel and 2t +a~ <2~ +bF, thenz € 1.
(I5) fxe A,a,beland a™ + 2t <b" 4+ 27, then z € I.

A subset I of an l-monoid A is an ideal of A if I is both a left and a right ideal
of A.

Clearly {0} and A are ideals of A.

Remark 1. If I is a submonoid of an l-monoid A with the least element v and
the greatest element v, then I is a left (right) ideal of A iff for each z € A\ I from
¥ +u” <z7 +ot (um +2T < vt 427, resp.) it follows that z € I.
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Theorem 2. Let A be an I-monoid, I an ideal of A.
(i) fz € A, a,bel andx™ +a~ <bt +a~, thenx € I.
(ii) fxre A,a,belanda™ + 2T <2z~ +bT, thenz € I.

Proof. (i)Letze€ A,a,bel,z"+a” <bT4z~. Then (at)T+a~ =zt +a™ <
bt +a2- <bt=(zT)"+bT,a"+(z7) T =a" <zT+a” <bT+a” =0T+ (7).
This implies 27,2~ € I. Therefore z = 2T + 2~ € I.

The argument for (ii) is similar. t

Theorem 3. Let A be an I-monoid, I a left ideal of A, x € A. Then
(i) xeliffxt €l andz™ €1,
(ii) I is a convex subset of A,

(iii) I is an l-submonoid of A.

Proof. (i)Letxz e l. Then (z7)"+2z~ <z =(z") 42" and (7))t + 2~
2~ < (x7)” + a7t yield 7,2~ € I. The converse is obvious.

(i) Let z <2<y, z,y€l, 2€ A. Then 2+ <y*™, 2~ <27. By (i), y©
Since (%) + (5*)~ = 2+ < g+ = (1)~ + W), () + (60)" = o
(27)” + (z7)*, we have 2T, 2~ € I. Therefore z € I.

(iii) We need only to show that I is a sublattice of A. Let z, y € I. By (i), 2+ +y™*,
z-+y €I Thenfromz~ +y~ <z~ Ay  <zAy<azVy<at vy <zt +y*
and the convexity of I we get x Ay, x Vy € I. (]

,x~ €1
<z0 =

Remark 2. An analogous theorem is valid for a right ideal of an l-monoid A.

Corollary 1. Ifz is an element of a left ideal I of an I-monoid A, then the interval
[z7,2t] C I

Lemma 2. Let A be an I-monoid, I a left ideal of A.
(i) Ifre A-,ye It and0 <z +y, thenz € I.
(i) fre AT, ye I~ andz +y <0, thenx € I.

Proof. ()Letze A ,yel" andx+y <0. Thenazt +y~ =0<x+y=
z~ +yT implies x € I.
The proof of (ii) can be obtained dually. O

Analogously we can prove the following lemma.
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Lemma 3. Let A be an I-monoid, I a right ideal of A.
(i) Ifr€e A~,ye It and0 < y+ =z, thenz € I.
(ii) fz e AT, ye I~ andy+x <0, thenz € I.

Recall that the set In(A) of all invertible elements of an l-monoid A is an l-group
and a sublattice of A and —(z Ay) = (—x)V (—y), —(x Vy) = (—z) A (—y) for each
x,y € In(A) (cf. [6, p. 103]).

Hence, if z is an invertible element of an -monoid A, then 2+ and 2~ are invertible
elements of A and —(2%) = (—2)7, —(27) = (—2)*.

Lemma 4. Let A be an I-monoid, I a left ideal of A, x € I. If x is invertible,
then —x € I.

Proof. Let z be an invertible element of a left ideal I. Then (—z)* + 2~ =
—(z7)+2" =0=—(z%) + 2" = (—z)” +2*. This implies —z € I. O

If o is an equivalence relation on a set S, then we will write a ¢ b instead of
(a,b) € o.
An equivalence relation g on an l-monoid A is called a congruence relation on A
iff for each a, b, c,d € A the following condition is satisfied:
(C1) Ifa pband cpod, then (aAc) o (bAd), (aVe) o (bVd) and (a+c) o (b+d).
For a € A we set [a], = {z € A; x pa}.

Theorem 4. Let ¢ be a congruence on an I-monoid A. Then [0], is an ideal of A.

Proof. By Lemma 7 [4, p.20], [0], is a convex sublattice of A. Clearly, [0], is
a submonoid of A.

Let z € A, a,b € [0],, 27 +a~ < z7+b". Then froma™ < 2zt +a~ < z7+bT <bF
and the convexity of [0], it follows that (2T4+a~) g 0 and (27 +b™") 0 0. From (a™) ¢ 0
and (b7) 00 we get (27 +a7) 0 (2%), (27 +bT) 0 (27). Hence (2%) 00, (27) 0 0.
Therefore z € [0],. Thus [0], is a left ideal of A. Similarly we can show that [0], is
a right ideal of A. O

An ideal I of an l-monoid A is normal iff x + I = I + z for each x € A.
Lemma 5. An ideal I of an I-monoid A is normal iff x + IT = IT 4+ z and
x+ 1" =1 +x for each x € A.

Proof. Let I be anormal ideal of A. Let z € A,a € IT. Thenz+a=0b+z
forsomeb e I. Thenz+a= (r+a)Ve = (b+x)Vr=(bV0)+x=0b"+x. Hence
x4+ IT C It 4+ 2. Analogously IT +x C o+ IT. Therefore x + 1" = I + x.

Dually we can show that x + 1~ =1~ + x.
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Let e + 1t =1t +zand x4+ 1 =1 +z for each x € A. Then for z € A and
delwegetz+d=z2+d"+d =g+ h+zfor some g € IT and h € . Hence
z4+1CI+z Similarly, [ +2C z+ 1. O

Kiihr [10, p.103] defined a normal ideal I of a DRl-monoid B as an ideal of B
satisfying the following condition for each z, y € B:
(Ny) (z—y)T eliff (z—y)T €l
Further, he showed that an ideal I of a DRl-monoid B is normal iff z +11 = It + 2
for each x € B [10, Proposition 20].
The next lemma shows that in the case of DRI-monoids our definition of a normal
ideal coincides with the definition of Kiihr.

Lemma 6. Let I be an ideal of a DRI-monoid B. Then I is a normal ideal iff
r+ [T =1t + 2 for each x € B.

Proof. Necessity follows from Lemma 5.

Let I be an ideal of B, + € B and x +I" = IT™ + . Let ¢ € I~. Hence
x+(—g) = h+x for some h € I'". By the Representation Theorem of Kovaf [8, p. 25—
27], B is the direct product of In(B) and a DRl-monoid S with the least element 0.
Let z1,, x5 be components of z in the direct factors In(B) and S, respectively. Then
we have £+ (—¢g) = em+as+(—9) = 2m+ (—g9)+zs = 2+ (—g) + (—2m) + 2. Let
W = 2m+(—g9)+(—zm). Hence ' € (In(B))*. Then (hAR )+z = (h+x)A(K +2) =
x4+ (—g). Since 0 < h AR < h, I/, from the convexity of I and In(B) we obtain
hAR € ITN(In(B))". Then x+ (—g) = (hAR') +x implies (—(hAW))+z =2 +g.
Hence v+ 1~ C I~ +x. Analogously, I~ +xz C x+ I~. Then Lemma 5 implies that
I is a normal ideal of B. O

Kiihr imposed the condition (C;) and the condition
(Co) ifagband cod, then (a—¢)p(b—4d), (a~c) o (b d)
on an equivalence relation ¢ on a DRIl-monoid B to be a congruence relation on
B and showed that [0], is a normal ideal of B for each congruence relation ¢ on a
DRIl-monoid B [10, Theorem 28].
The following example shows that [0], need not be a normal ideal for any congru-
ence o on an l-monoid A.

Example 1. Let A = {0,a,b,¢,d}. The binary operation + on A is de-
fined by Table 1. The partial order < on A is defined by the diagram in Fig-
ure 1. Then (4,+,<) is a non-commutative l-monoid and the relation p =
{(0,0), (a,a), (b,b), (¢, ¢),(d,d), (c,0),(d,b), (a,b),(a,d),(0,c), (b,d), (b,a),(d,a)} is a
congruence on the l-monoid A. The ideal [0], = {0,c} is not a normal ideal, since

d+ 0] = {d,a} # {d} = [0], +d.
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Table 1 Figure 1

Let A be an l-monoid, I a left ideal of A and J a right ideal of A. We define two
binary relations o} and Q?, on A:

x o} y iff there exist elements g1, h; € I such that z hi + x,

1'+h2

g1 +yandy

<
Y+ g2 and y <

<
x 0% y iff there exist elements go, ho € J such that z <
for each z,y € A.

In [10, p. 106] for each ideal I of a DRIl-monoid B two binary relation ©1(/) and
O3 (1) were defined on B by

201Ny iff (z —~y)V (y—x) €1,

202Ny iff (x —y)V(y~—=x) el
for each x,y € B, and it was proved that ©1(I) and ©2(I) are congruence relations
on the lattice (B, V,A) [10, Theorem 18].

Further, it was shown that if I is a normal ideal of a DRI-monoid B, then ©(I) =
©2(1), [0Je,(ry = I and if ¢ is a congruence on B, then ©,([0],) = ¢ [10, p. 108-109].

We will show that in the case that I is an ideal of a DRIl-monoid B, g} coincides
with ©1(I) and o? coincides with Oa(I).

Lemma 7. Let B be a DRI-monoid.
(i) Ifz,ye B, then0 = (z ~y) <y—2,0— (z—y) <y~ =z.
(ii) If I is an ideal of B, then o} = ©1(I) and 03 = ©5(I).

Proof. (i) Let z,y € B. By Lemma 6(2) [10] and Lemma 1(2) [10], (y —
)+ —y) 2y—~y=0and (zr —y)+(y — ) >y — y = 0. This yields
0=(@—-y<y—2z0—(r—y <y—ua

(ii) Let I be an ideal of B, z,y € B, x o} y. Hence x < g+y, y < h+=z
for some g,h € I. Thus ¢ — y < g, y — = < h. In view of Proposition 8(6)
[10] we have 0 < (z — y) V (y — z) < g V h. From the convexity of I we obtain
(x = y) V (y — z) € I. Therefore 201(I)y.

Let z,t € B, z0:(I)t. Thus (z = t)V (t = z) € I. In view of (i) we have
z—=tl=E—=t)VO0—=(z—=t)<(z—=H)V(E—2)=|(z—=1t)V(t— 2)|. This
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yields z — ¢ € I. Analogously, t — z € I. Since z < (z = t) + ¢, t < (t — 2) + 2, we
have z o} t. Hence o} = ©1([).
Similarly we can show that ¢? = O4(I). O

Theorem 5. Let A be an I-monoid, I a left ideal of A and J a right ideal of A.
Then o} and p% are congruence relations on the lattice (A, V, A).

Proof. It is clear that the relation g} is reflexive and symetric. Let a,b,c € A,
a oy band b o} c. Hencea < g+b, b < h+a, b<u+c ¢ <v+b for some
g,h,u,v € I. Thena < g+u+c¢,c<v+h+a. Since g+ u,v+ h € I, we have
aotec

Let z,y,8,2 € A, x ot yand s g} 2. Hence z < ¢’ +y, y < W +z, s < u' + 2,
z < v'+sfor some ¢', ',/ 0" € I. Then (¢'Vu')+(yVz) = (¢'+y) V(¢ +2) V(v +y)V
(W+2) 2 (¢’ +y)V(u'+2) > xVs. Analogously, (W' Vv')+(zVs) > yVz. Further, we
have (¢'Vu')+(yAz) = [(9'+y) V(W +y)]A[(g'+2)V (W' +2)] = (¢'+y)A(u'+2) = zAs.
Similarly, (b’ V') +(zAs) = yAz. Since ¢’ Vu',h' Vv’ € I, we have (zV s) o} (yV2),
(x A s) o} (y A 2). Therefore g} is a congruence relation on the lattice (A, V, A).

Similarly we can show that Q?, is a congruence relation on the lattice (4,V,A). O

Let A be an l-monoid and I a left ideal of A. Then (4,V,A)/o} is a lattice and
for the partial order relation < of this factor lattice the following assertion is valid.

Theorem 6. Let A be an I-monoid, I a left ideal of A, x,y € A. Then the
following conditions are equivalent:

() ol < [9los.
(ii) 2 < g+ (z Ay) for some g € I,
(i) x Vy < h+y for some h € I.

Proof. (i) = (ii). Let z,y € A, [v] < [y],1. Then [z Ayl = [2],:. Hence
(z Ay) o} x. Therefore z < g+ (z Ay) for some g € I.

(ii) = (iii). Let z,y € A and 2 < g+ (x A y) for some g € I. Let h = g*. Then
hel. Sincez < h+(xAy) < (h+x)A(h+y), we have © < h+y. Clearly, y < h+y.
Therefore x Vy < h +y.

(iii) = (i). Let z,y € A, zVy < h+y for some h € I. Since y <0+ (z V y), we

conclude that y o} (z V y). Thus []gr = [z],1 V [y],1 and hence [2],1 < [y],r. O

1
I

Remark 3. An analogous theorem is valid for a right ideal of an l-monoid.
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Lemma 8. If g is a congruence relation on an I-monoid A, then of, C 0, of, < o

Proof. Letz,y€ A, x 9[10]9 y. Then x < g+y and y < h+x for some g, h € [0],.
Thus g 00, h 0 0. Then y o (9+¥y), 0 (h+ ) and hence (x Ay) o (x A (g+vy)),
(ynzx)o (A (h+x)). Thus (x Ay) oz, (x Ay) oy. This yields z ¢ y.

Analogously we can show that 9[20]9 Co. O

Unlike in a DRI-monoid, in an I-monoid A the relations 9[10]9 = o, Q[QO]Q = o need
not be valid for a congruence relation ¢ on A. For the congruence o from Example 1

we have 9[1019 = {(0,0), (b,b), (¢, ¢), (d,d), (a,a), (0,c), (c,0), (b,d), (d, b)} # o.

Lemma 9. If ] is an ideal of A, then [0],1 C I, [0],2 C I.

o1 —

Proof. Let I be anideal of A, p € [0],1. By Theorems 4 and 5, [0] 1 is an ideal
of A and hence (p™) o} 0, (p~) o+ 0. Then 0 < p™ < ¢, 0 < r+p~ < r for some
q,7 € I. From the convexity of I it follows that p™ € I. In view of Lemma 3 (i) from
0<r+p weobtainp~ € I. Then p=p" +p~ € I. Thus [O]Q} C I. Similarly we
can show that [0],2 C I. O

For a normal ideal I of an l-monoid the relations [0],; = I, [0],2 = I need
not be valid. The set A = {0,a,b,c,d,e, f} with the binary operation + on A
defined by Table 2 and the partial order < on A defined by the diagram in Fig-
ure 2 is a commutative l-monoid [7, Example 2]. The ideal I = {0,a,c,e,} of
the l-monoid A is normal, o} = 0? = {(0,0), (a,a), (b,b), (c,c), (d,d), (e,e), (f, f),
(0,¢€), (€,0),(0,a), (a,0), (e, a), (a,€), (d, f), (f,d)}, [0] ;1 = [0],2 = {0,a,e} # 1.

f

+|(0fa|b|cl|d|e]|f
010|a|bl|lc|d|el|f a d
alala|blc|flalf
blb|b|b|b|b|b]|Db o
cleclec|blc|blc|b b
dld|f|b|b|d|d]|f 0
elelalb|lc|d|el|f
Sl fIb o) fIf1f 4

Table 2 Figure 2

An ideal I of an I-monoid A is called tall iff for each x € I there exist b, c € I such
that 0 <z +b,0 < c+x.
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Theorem 7. Let I be a tall ideal of an I-monoid A. Then [0],1 = [0],2 = 1.

Proof. Let I beatallideal of A, x € I. Then 0 < b+ x, 0 < x + ¢ for some
bceI. Since x < x7 + 0, z < 0+ 2T, we have z g} 0 and x % 0. Hence I C (0],
I C [0],2. Then Lemma 8 completes the proof. O

A soft -monoid is an l-monoid in which every negative element is invertible.

Every DRI-monoid is a soft I-monoid.

We give a simple construction of a soft I-monoid which is not a DRIl-monoid from
a nontrivial l-group.

Example 2. Let (G,+, <) be a nontrivial l-group. Let G = G U {oo}. Let
cochr=x®oo=o0foreachz € G, y®z2=y+zforeachy, z € G. Let z < 00
for each x € G, and let y <’ z iff y < z for each y, 2z € G. Then (G, ®,<’) is a
soft l-monoid, but not a DRI-monoid since co — 0o, o0 «— oo do not exist in G*°.

An l-monoid A is called a positively (negatively) ordered l-monoid iff each element
of A is positive (negative, respectively).

Each positively ordered l-monoid is a soft l-monoid. Each pseudo MV-algebra is
a positively ordered l-monoid. For the definition of a pseudo MV-algebra (denoted
also as a noncommutative MV-algebra) we refer to [2] or [3].

The l-monoid A from Example 1 is a finite positively ordered l-monoid which is
not a DRl-monoid, since (b =~ ¢)VO+c=a>d=>bVe.

The l-monoids (B, ®,<1) and (G, ®, <;1) from Examples in [6, p. 106-107] are
infinite positively ordered l-monoids, but not DRI-monoids.

Example 3. Let (G,®,<’) be an l-group, (H,+,<) a positively ordered 1-
monoid which is not a DRl-monoid. Then the direct product of (G,®,<’) and
(H,4+, <) is a soft l-monoid, but not a DRI-monoid.

Lemma 10. Each ideal of a soft I-monoid A is a tall ideal.

Proof. Let I be an ideal of A, x € I. By Theorem 3 and Lemma 4, —z~ € I.
Since z + (—27) = (=27 )+ xz =aT >0, [ is a tall ideal of A. O

From Theorem 7 and Lemma 10 we obtain the following corollary.

Corollary 2. If I is an ideal of a soft I-monoid A, then [0],1 = [0],2 = I.
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Theorem 8. Let A be an I-monoid and I a normal ideal of A. Then
(i) o} = 0% (in the sequel it will be denoted by or),
(ii) or is a congruence relation on the l-monoid A.

Proof. (i) The proof is obvious.

(ii) Let ¢, y,s8,2 € A,z 01y, s 01 2. Thenz < g4y, y < h+z,s<u+z,z2<v+s
for some g,h,u,v € I. This yields s +s < g+y+u+z,y+2<h+zx+v+s
Then x +s < g+ui+y+z2, y+2< h+wv +z+ s for some up,v; € I. Since

g+ ui,h+wv; €I, we have (x + s) o1 (y + 2z). In view of Theorem 5 we conclude

<
<

that oy is a congruence relation on the l-monoid A. O
The next example shows that In(A) need not be a convex subset of an -monoid A.

Example 4. Let (Z,+, <) be the additive group of all integers with the natural
order. We define a new operation @& on the linearly ordered set (Z,<) as follows:
(2k)®(21) = (20)®(2k) = 2k+21, 2k+1)D(214+1) = (21+1)D(2k+1) = 2k+2[+1,
2k)e@2l+1)=(204+1)® (2k) =2k + 20+ 1 for all k,l € Z. Then (Z,®,<) is a
commutative linearly ordered monoid. In(Z) is the set of all even numbers, which is
not a convex subset of (Z,®, ).

Theorem 9. Let A be an I-monoid. Then In(A) is an ideal of A iff In(A) is a
convex subset of A.

Proof. Necessity follows from Theorem 3.

Let In(A) be a convex subset of A. Let z € A,y,z € In(A) and 2T +y~ <2~ +2zT.
From y~ < 2t + 3y~ < 2~ + 27 < 27 and the convexity of In(A) it follows that
xt+y 27 + 27 €In(A). Thenz™ =zt +y~ +(—y )2~ =z~ +2" +(—2z") €
In(A). Hence x € In(A). Thus In(A) is a left ideal of A. Analogously we can show
that In(A) is a right ideal of A. O

Lemma 11. Let A be a soft I-monoid. Then In(A) is a convex subset of A.
Proof. Letx,y € In(A), z € A, z < z < y. Since z + (—y) < 0, there exists
u € In(A) such that z+ (—y)+u =0. Then (—y)+u+z+(—y)+u+(—u)+y =0
yields z € In(A). O
Corollary 3. For each DRI-monoid B, In(B) is an ideal of B.

Proof. It follows from Theorem 9 and Lemma 11. O

It is clear that the intersection of any family of ideals of an l-monoid A is again an
ideal of A. Thus for any family of ideals there exists the least ideal containing this
family of ideals. It is the intersection of all ideals containing this family of ideals.
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Hence the following theorem holds for the set Id(A) of all ideals of an l-monoid A
partially ordered by inclusion.

Theorem 10. For each I-monoid A, 1d(A) is a complete lattice.

Remark 4. An analogous assertion holds for left ideals and right ideals of an
l-monoid.

Theorem 11. Let A be a linearly ordered monoid. Then Id(A) is a linearly
ordered set.

Proof. Let I and J be ideals of A, I # J. Then there exists € A such that
xelI\Jorze J\I

Suppose that x € I\ J, 0 < z. Let y € J. If < y, then from the convexity of J
we get x € J, a contradiction. Thus y < x. If 0 < y then from the convexity of I we
obtainy € I. If y < 0 and 2+ y < 0, then Lemma 2(ii) yields « € J, a contradiction.
Hence, if y < 0, then 0 < = + y. In this case Lemma 3(i) yields y € I. Therefore
J C I. For z < 0, analogously we can obtain that J C 1.

It is clear that if © € J\ I, than I C J. O

Let A be an l-monoid. For any subset M of A, the smallest ideal containing M,
i.e. the intersection of all ideals I of A such that M C I, is called the ideal generated
by M. It will be denoted by I(M). If M = {a}, we will write I(a) instead of I({a}).

Theorem 12. Let A be a commutative I-monoid, ) # M C A. Then I(M) =
{r€eA; a2t +a] +...4+a, <z~ +b +...+bf for some ay,...,am,b1,...,b, €
M, m,n € N}.

Proof. LetS ={z € A; 2" +a] +...+a, <z~ +bf +...+b} for
some ai,...,Gm,b1,...,b, € M;m,n € N}. Clearly, 0 € S. Let x,y € S. Then
thar+.tan, <z A0 4+ byt e+t Syt Adf .+ df
for some ai,...,am,b1,...,bp,c1,...,¢ck,dr,...,dp € M, m,n,k,l € N. Then (z +
Nr+ar +...4a,+ef +.. o+, <zt +yt+ar +...4a, e +...+¢ <
T Ay b df e d < (Y)W b+ d
Hence x +y € S.

Lett € A,u,v € S,tt+u™ <t +vt. Thusut+py+...+p,, <u+q +...+q,
U++7“1_—|— Ay <vT +31 —|—...—|—sl, for some P1, ... P/ q1ye ooy Qniy T1y e - Tkt
S1,...,80 € M,m/,n', k', ' € N. Then we have t* +py +...+p,+r] +...+7r, <
thdut+pr+.Ap T b <ttHduTHg g T+ <
t+ot g+ g T+ +r,;, St 4gi+.o+qh +v st s <
t~ +qf‘+...+q:, —|—sf‘+ +sl,. Therefore t € S. Hence S is a left ideal of A.
Clearly, S is also a right ideal of A and M C S.
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Let J be an ideal of A such that M C J, z € S. Then 2% +e; +...+ ¢, <
2T [+ o+ fi forsomeer, ... emy, fiy. o, fay € M, mi,my € N. Since e +...+
em fT + ...+ [, € J, we have z € J. Therefore I(M) = 5. O

Remark 5. Birkhoff [1, p.294] proved that if a, b, ¢ are elements of a lattice
ordered group, aAb =0 and aAc = 0, then a A (b+¢) = 0. From the proof it follows
that this assertion is also valid in the case that a, b, ¢ are elements of an I-monoid.

Lemma 12. Let A be a soft I-monoid, x € A, n € N. Then
() (na*) A (n(—2)) = 0,

(i) nzt +n(—27) = (nz*) Vv (n(—z7)),

(ii) nz~ = (nx)~, nz™ = (nx)*.

Proof. (i) Since zt =x+(—27), we havext A(—z7) = [z+ (—z7)|A(—27) =
2 A0+ (—x7) = 0. Then it follows from Remark 5 that (nz*) A (n(—z7)) = 0.

(ii) Since nz* and nz~ commute, in view of (i) from nz™ +n(—z7) < |
(na* + n(—2=))] A [(n(~2=) +na*) v 2n(~2)] = [(na) A (n(—2~
(n(=a)) = [@nar+) A (2= ) +na )]V [((n*) +n(—27)) A @n(-a7))] < na* +
n(—x7) we get nz™ +n(—z7) = (nat) V (n(—z7)).

(iii) In view of (i) we have (nz)” = (nz) A0 = (nz™ +nz~) A[n(—2~) +nz~] =
[(nz™) A (n(—27))] + ne~™ =na~.

By (ii), (nz)* = (nz) VO = (nzt +nz™) V[n(—27) + nz~] = [nzt Vn(—z7)] +
nr~ =nzt +n(—z")+nx” =nz’. O

The relation for the absolute value in a DRIl-monoid from Lemma 1 can be used
for the definition of the absolute value of an element x of a soft l-monoid A. Hence
we define: || = a1 + (—z7) for each z € A.

This absolute value has properties analogous to the absolute value in a DRI-
monoid.

Theorem 13. Let A be a soft I-monoid, x,y € A, n € N. Then

i) |#| >0 and |z| =0 iffx =0,

ii) |z|=x iff x 20,

) |zl =—a" iff £ <0,

(iv) Jo| = (=27) + 2t =2V (-27),

) x| Kyl iffzt 4y~ <a” +yt iffy” +2T <yt +z7,

) nlz| = |nxl,

(vii) |z +y| < |z| + |y| + |z|; if A is commutative, then |z + y| < |z| + |y|,
(vill) |z| +ly[ = [z| V [y| Z [z Vyl, 2]V |y] > |z Ayl

Proof. (i) Let || = 0. Then 0 < 2t = 2= < 0 yields z = 0. The rest is
obvious.
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(ii) If
(iii) If
r=x <

0, then 2= = 0. Hence || = 2. The rest is obviuos.

=
x < 0, then 7 = 0. Thus |z| = —x~. If |z| = —2~, then 2% = 0. Therefore

e

(iv) It follows from Lemma 12(ii).

(v) It is obvious.

(vi) In view of Lemma 12(iii) we get n|z| = nzt + n(—z~) = nzt + [~ (nz™)] =
(nx)™ + [=((nx)7)] = |nl.

(vii) Obviously, |z|+[y[+]z| = 2 ¥ +y*+(—y7)+(=27) = (z4y) " +[- (=" +y7)] >
(x+y)T +[-((x+y)7)] = |z + y|- The rest is obvious.

(viii) Clearly |z| + |y| > |z| V |y|. In view of (iv) we have |z| V |y| = 2T VyT V
(2T V(=yT) = @@Vy) T VI=(zry) )] = @Vvy T V-(@Vvy) )] =levyl O

Corollary 4. Let A be a soft I-monoid, I C A. Let 0 € I and u + v € I for each
u,v € I. Then I is an ideal of A iff x € A, y € I and |z| < |y| implies x € I.
Proof. It follows from Theorem 13(v). O

Corollary 5. Let A be a soft I-monoid, I an ideal of A, a € A. Then a € I iff
la| € I.

Theorem 14. Let A be a soft l-monoid, ) # M C A. Then I(M) = {z €
A; |zl <ai| + ...+ |ay| for some ay,...,a, € M,n € N}.

Proof. Let S={x € A; || <|ai1|+...+]ay| for some ay,...,a, € M,n € N}.
Clearly 0 € S. Let x, y € S. Thus |z| < |ai| + ... + |am], [y| < |b1] + ... + |by]

for some ay,...,am,b1,...,b, € M, m,n € N. In view of Theorem 13 (vii) we have
|z +y| < lz|+ |yl + |z <|ar|+ ...+ |am|+ 01| + ...+ |bu| + a1 + ... + |am|. Hence
r+yes.

Let z € A, t € S and |z| < |t|. Then |z] < |e1| + ... + |ex| for some ¢1,...,¢; €

M,k € N. Hence z € S. By Corollary 4, S is an ideal of A. Clearly, M C S.

Let J be an ideal of A containing M, v € S. Then |u| < |d1| + ...+ |di], for some
di,...,d; € M,l € N. Since |di| + ...+ |di| € J, we have v € J. Hence S C J.
Therefore S = I(M). O

Corollary 6. Let A be a soft I-monoid.
(i) If I and J are ideals of A, then IV J = {z € A; |z| < |ai|+ ...+ |ay| for some
a,...,an € IUJn €N}
(ii) If I and J are normal ideals of A, then IV J = {z € A; |z| < ¢+ d for some
celt,de JT}.
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Remark 6. Kiihr [10, Lemma 11] showed that for all positive elements z, y, z
of a DRIl-monoid the following proposition is valid:
(P1) eA(y+2) < (zAy)+ (zA2).
From the proof it follows that the assertion (P1) also holds for any positive elements
x, y, z of an l-monoid A. The dual assertion is also valid. Hence for any negative
elements z, ¥y, z of an l-monoid A the following proposition is valid:
(P2) eV(y+2) = (zVy) + (zV2).

The following two theorems generalize Theorem 14 and Proposition 15 of Kiihr
[10].
Theorem 15. For any soft I-monoid A, the lattice Id(A) is algebraic and Brouw-

erian.

Proof. First we prove that Id(A) is an algebraic lattice. Let J be an ideal of
A. Clearly, J =\ I(a).

acJ
Let a € J and let K, be ideals of A, where v € T, such that I(a) C \/ K,. In
yel’
view of Theorem 14 from a € \/ K, we get |a| < |ai| + ... + |a,|, where n € N

yel

n
and a; € K,, for some v; € T, i = 1,...,n. This yields a € \/ K,, and hence
i=1

I(a) € \/ K,,. Thus I(a) is a compact element of the lattice Id(A) and hence Id(A)

is an allg_e}oraic lattice.

Since every algebraic distributive lattice is Brouwerian, it suffices to show that
Id(A) is a distributive lattice.

Let I, J, K be ideals of A. Let € IN(JVK). By Corollary 6, || < |b1]|+...4|bk],
where by, ...,b, are elements of JU K, k € N. In view of (P;) we obtain || =
lz] A(b1|+. .. +1bk]) < (Jz|Ab1])+. ..+ (Jz| Abk]). Since |z|Alb;| € (INJ)V(INK)
for i = 1,...,k, we obtain (|z| A [b1]) + ...+ (Jz| Albk|) € I NJ)V (I N K). This
implies z € (INJ) Vv (INK). Therefore IN(JVK)C (INJ)V(INK). Hence
Id(A) is a distributive lattice. O

Since Id(A) is a Brouwerian lattice for each soft l-monoid A, for any ideals J and
K of A the relative pseudocomplement of J with respect to K in Id(A) exists which
is described in the following theorem.

Theorem 16. For any ideals J and K of a soft I-monoid A, the relative pseudo-
complement of J with respect to K in1d(A) is given by JxK = {z € A; |z|A|a| € K
for any a € J}.
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The proof is the same as the proof of Proposition 15 in [10], only instead of Proposi-
tion 9(3), Lemma 11 and Theorem 14 from [10] it is necessary to use Theorem 13(vii),
(P1) and Theorem 15, respectively.

Corollary 7. Let A be a positively ordered I-monoid. Then Id(A) is an algebraic
and Brouwerian lattice.

Theorem 17. Let A be a negatively ordered I-monoid.
(i) If M is a nonempty subset of A, then (M) ={z € A; a1 + ...+ a, < z for
some ay,...,a, € M,n € N}.
(ii) Id(A) is an algebraic and Brouwerian lattice.

Proof. (i)LetS={xe€A; a1+...+a, <z for some ay,...,a, € M,n € N}.
Clearly, 0 € S. Let z, y € S. Thenay; +...+apy, <z, by + ...+ b, < y for some
A1y ey, b1, 0p € My, mn € N. Thena; + ...+ apym +b1+...+b, <x+y.
Hence x +y € S.

Let z€ A, u,v €S, 2T +u~ <2z~ +v". Thenec; +...+ ¢, < u < z for some
c1,...,¢cx € M,k € N. This yields z € S. Therefore S is an ideal and M C S.

It is easy to see that if K is an ideal containing M, then S C K. Hence I(M) = S.

(i1) The proof is similar to the proof of Theorem 15, only instead of Theorem 14,
Corollary 6 and (P1) we have to use (i) and (P3). O

Theorem 18. Let I and J be normal ideals of an I-monoid A. Then IV J =
{r € A; 2t +a] +a; <2~ +bf +b5 for some ay,by € I,az,bs € J}.

Proof. Let I and J be normal ideals of A, S = {z € A; 2t +a] +a; <
x~ —i—b+ —i—b+ for some a1,by € I,a2,by € J}. Clearly 0 € S. Let x, y € S. Hence
zt+a] +ay <a”+b7 403, yt+c] +ey <y +df +dg for some ay, by, 1, dq € 1,
az, by, c2,dy € J. Thus 2t +aj +a; +yT+cy +c;5 <a™+bf +b5 +y~ +df +d5.
Then % +y* +e] +e; +cf +c; <a~ +y™ + fi7 + fi7 +df +dj for some
e1, f1 € I, e, fo € J. This yields (x +y)T + (e] + (¢})7)” + (e5 +¢5)” <
(x+y)~ + (ffF + @)+ (fS +df)T for some ¢}, d} € I. Hence z +y € S.

Let z€ A, u,ve S, 2t +u™ <2z +ot. Hence ut +py +p; <u™ +4q +4¢,
vt +ry +ry < U +sf —|—s§' for some p1, q1, r1, s1 € I, p2, g2, 12, S2 € J.
Thenz“‘—i—p1 +py 4] Ay <zt 4ut4pl 4y 4] Ay <zt Hu +qf +
a5 + 717 +7“2 2+t gl +qf +r1 +7’2:z +ot+r +ry + R+ RS
27 4o s +s5 b +hd <z 4+ s +sd + k] + b for some by €1, hgeJ
Thus 2+ (py + (1) 7))~ +(py +r3)” <27+ (s7 +(h) )T+ (s3 +h3)* for some
ri,hy € I. This yields z € S. Therefore S is a left ideal of A. Analogously we can
show that S is a right ideal of A.
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Forccl,dcJwehavect +c+0<c +ct+0,d" +0+d <d™ +0+dT.
This implies ¢, d € S. Hence I C S, J C S.

Clearly, if K is an ideal containing ideals I and J, then S C K. Therefore
S=1VvJ. d

Theorem 19. Let A be an I-monoid, In(A) a convex subset of A, g € In(A).

(i) If0 < g < a1 + ...+ a, for some ay,...,a, € AT, n € N, then there exist
elements by, . ..,b, € In(A) such that g =b1+...+b,,0<b; <a;,i=1,...,n.
(ii) If a1 + ... + an, < g < 0 for some ay,...,a, € A=,n € N, then there exist

e]ementsbl,...,bn € In(A) such that g=b1+...+by, a; <b; <0,i=1,....n

Proof. (i) We prove this statement by induction on n. The statement is valid
for n = 1. Assume that the statement holds for n = k, k € N.

Let 0<g<ai+...+ag+arr1, whereay,...,apy1 € AT. Let a = a1 + ...+ ax,
brr1 = g N\ ag+1. Hence bgy1 < agy1. Since 0 < bgy1 < g, from the convexity of
In(A) it follows that bg1 € (In(A))™. Further, g < a+ g and g < a + ap41 implies
g<(a+tg)AN(a+agt1) =a+gAagr1 =a+bgrr. Let h = g+ (—bgs1). Hence
g=h+bri1, h€ (In(A)*T. From 0 < h = g+ (—bry1) < a=aj+...+a, we obtain
that h = by + ... + by, where b1,...,bp € In(A), 0 < b; < a;, i =1,...,k. Then we
have g =b1+...+bp+bk1+1,0 < b; < a0 =1,...,k+1, where bl,...,bk_H € In(A).

The proof of (ii) can be obtained dually. O

An l-monoid A is called a weak divisibility l-monoid if for each a,b € A such that
a < b there exist x,y € A such that a+2x =0, y +a =b.

Remark 7. Birkhoff [1, p.320] defined a divisibility monoid as a partially or-
dered monoid M in which a < b is equivalent to a + x = b, y + a = b for some
z,y € M.

Each weak divisibility l-monoid is a soft l-monoid. From Lemma 5 [10] it follows
that if a,b are elements of a DRl-monoid A such that a < b, then (b — a) +a = b,
a+ (b~ a) = b. Hence each DRI-monoid is a weak divisibility l-monoid.

The l-monoid (G*°,®,<1) from Example in [6, p.107] is a weak divisibility 1-
monoid, but not a DRIl-monoid.

Lemma 13. If J and K are normal ideals of an I-monoid A, then J N K is a
normal ideal of A.

Proof. Letx € A, ce€ (JﬂK)"’. Then  +c¢c = ¢4 + ¢ = ¢o + x for some
c1 € JT,ca € KT. Since 0 < ¢1 A ca < c1,c2, from the convexity of J and K it
follows that ¢; Acg € (JNK)T. Then ¢c1 Acg+x = (¢1 + ) A(c2 +x) = 2+ c. Hence
z+ (JNK)T C(JNK)T + 2. Analogously, (JNK)T+z Cx+ (JNK)*.
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Dually we obtain that (JNK)~ +xz =z + (JNK)~. Then Lemma 5 implies that
J N K is a normal ideal of A. O

Theorem 20. Let A be a weak divisibility I-monoid, I and J normal ideals of A.
Then IV J is a normal ideal of A.

Proof. Letz € A. Suppose that c € (IV J)T. By Corollary 6(ii), ¢ < a +b for
some a € IT, b€ JT. Since x < = + ¢, there exists d € AT such that d +z = x + c.
Hence d+z < x+a+b=a'+b +x for somea’ € I,V € JT. Then [dA(a'+V)|+x =
(d+a)AN(a+V +x)=d+x=x+c Since 0 <dA (a +b) <ad +V, from the
convexity of IV J we get dA(a' +b') € (IVJ)T. Hence x+(IVJ)" C(IVJ)" 4.
Analogously (IV /)t +z Cax+ (IVJ)*T.

Let g € IV J)", h = —g. Then g,h € In(4), h € (I VvV J)". In view of
Corollary 6(ii) we have h = |h| < ¢c+d for some ¢ € I, d € JT. By Theorem 19 and
Lemma 11, there exist elements h1, hy € In(A) such that h = hy + ha, 0 < hy < ¢
0 < he < d. From the convexity of I and J we have hy € I, hy € JT.

Since —hy € I, —hy € J, we get  + g = x + (—ha) + (—h1) = b} + by + x, where
hyeI ,hheJ . Clearly b +htb e (IVJ)". Hencex+ (IVJ)" CIVJ)” +z.
Similarly z + (I vV J)~ Ca+ (IV J)~". In view of Lemma 5 we have x + (I V J) =
IvJ)+zx. O

Corollary 8. The set of all normal ideals of a weak divisibility I-monoid A is a
sublattice of Id(A).
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