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Abstract. In the paper the notion of an ideal of a lattice ordered monoid A is introduced
and relations between ideals of A and congruence relations on A are investigated. Further,
it is shown that the set of all ideals of a soft lattice ordered monoid or a negatively ordered
monoid partially ordered by inclusion is an algebraic Brouwerian lattice.
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Ideals of lattice ordered groups (notation l-groups) were investigated by Birkhoff.

His well known results are that congruence relations on an l-group G and l-ideals

of G are in a one-to-one correspondence and that the set of all l-ideals of G is an

algebraic Brouwerian lattice [1, p. 304].

Dually residuated lattice ordered semigroups were introduced and studied by

Swamy [13] as a common abstraction of Boolean rings and abelian l-groups. Ide-

als of dually residuated lattice ordered semigroups were investigated by Kovář [8],

Hansen [5], Rach̊unek [12].

The theory of non-commutative dually residuated lattice ordered semigroups

(called DRl-monoids) has been developed by Kovář [8], Kühr [9], [10], [11]. Kühr

[10] studied ideals of DRl-monoids and extended the above mentioned Birkhoff’s

results to DRl-monoids. Ideals of DRl-monoids were also dealt with by Šalounová

[14].

The purpose of this paper is to extend the concept of an ideal to any lattice

ordered monoid and study relations between ideals of A and congruence relations

on A. Further, the set of all ideals of an l-monoid A is investigated. The results
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obtained show that many assertions concerning ideals of DRl-monoids and l-groups

also hold for lattice ordered monoids.

We review some notions and notation used in the paper.

A lattice ordered monoid (notation l-monoid) is a system (A, +, 0,∨,∧) such that

(1) (A, +, 0) is a monoid,

(2) (A,∨,∧) is a lattice and

(3) a + (b ∨ c) = (a + b) ∨ (a + c), (b ∨ c) + a = (b + a) ∨ (c + a),

a + (b∧ c) = (a + b)∧ (a + c), (b∧ c) + a = (b + a)∧ (c + a) for each a, b, c ∈ A.

The partial order induced by lattice operations ∨ and ∧ is denoted by 6. Clearly,

if a 6 b, then c + a 6 c + b and a + d 6 b + d for each a, b, c, d ∈ A.

We shall denote an l-monoid (A, +, 0,∨,∧) simply by A or by (A, +, 6) if there is

no danger of confusion.

A subset S of a monoid (M, +, 0) is called a submonoid ofM if 0 ∈ S and a+b ∈ S

for each a, b ∈ S. A submonoid S of an l-monoid A is called an l-submonoid of A if

S is also a sublattice of A.

If for elements a and b of an l-monoid A there exist a least x ∈ A such that

b + x > a and a least y ∈ A such that y + b > a, then the element x is denoted by

a ↽ b and the element y by a ⇀ b.

A system (B, +, 0,∨,∧, ↽, ⇀) is called a dually residuated lattice ordered monoid

(notation DRl-monoid) iff

(1) (B, +, 0,∨,∧) is an l-monoid,

(2) for each a, b in B there exist elements a ↽ b and a ⇀ b,

(3) b + ((a ↽ b) ∨ 0) 6 a ∨ b, ((a ⇀ b) ∨ 0) + b 6 a ∨ b for each a, b ∈ B,

(4) a ↽ a > 0, a ⇀ a > 0 for each a ∈ B.

An element x of an l-monoid A is called positive (negative) if x > 0 (x 6 0,

respectively). The set of all positive (negative) elements of an l-monoid A will be

denoted by A+ (A−, respectively).

If x is an element of an l-monoid A, then x+ = x∨ 0 is called the positive part of

x and x− = x ∧ 0 is called the negative part of x.

If x is an invertible element of an l-monoid A, then the inverse of x is denoted by

−x. The set of all invertible elements of an l-monoid A will be denoted by In(A).

We use N for the set of all positive integers. Throughout this paper 0 will denote

a zero element.

We shall often need the following assertions and we shall apply them without

special references.

(A1) For each element a of an l-monoid, a = a+ + a− = a− + a+ [8, p. 16].

(A2) Each negative element of a DRl-monoid is invertible [8, Lemma 1.2.2].

Kühr defined the absolute value of an element x of a DRl-monoid B by |x| =

(x ⇀ 0) ∨ (0 ⇀ x) [10, p. 99].
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The following lemma shows that for the absolute value in DRl-monoids the same

relation is valid as in lattice ordered groups [1, p. 295].

Lemma 1. Let B be a DRl-monoid, x ∈ B. Then |x| = x++(−x−) = (−x−)+x+.

P r o o f. By Lemma 4 [10], |x| = x+ ⇀ x−. In view of Lemma 1 [10] we have

x+ ⇀ x− > x− ⇀ x− = 0, x+ = x+ ∨ x− = (x+ ⇀ x−)+ + x− = (x+ ⇀ x−) + x−.

Therefore (−x−) + x+ = x+ + (−x−) = x+ ⇀ x− = |x|. �

In [10] Kühr defined an ideal of a DRl-monoid B to be a subset I of B satisfying

the following conditions:

(I1) 0 ∈ I,

(I2) if x, y ∈ I, then x + y ∈ I,

(I3) if x ∈ B, y ∈ I and |x| 6 |y|, then x ∈ I.

Theorem 1. Let B be a DRl-monoid, I ⊆ B. Let 0 ∈ I and u + v ∈ I for each

u, v ∈ I. Then the following propositions are equivalent:

(i) If x ∈ B, y ∈ I and |x| 6 |y|, then x ∈ I.

(ii) If x ∈ B, a, b ∈ I and x+ + a− 6 x− + b+, then x ∈ I.

(iii) If x ∈ B, a, b ∈ I and a− + x+ 6 b+ + x−, then x ∈ I.

P r o o f. (i) ⇒ (ii) Let x+ + a− 6 x− + b+ for some x ∈ B, a, b ∈ I. Since

|b+| 6 |b|, | − a−| 6 |a|, we have b+, −a− ∈ I. Hence b+ + (−a−) ∈ I. Then

|x| = (−x−) + x+ 6 b+ + (−a−) = |b+ + (−a−)| yields x ∈ I.

(ii) ⇒ (i) Let |x| 6 |y| for some x ∈ B, y ∈ I. Then x+ + y− 6 x− + y+. This

implies x ∈ I.

Analogously we can prove that (i) ⇔ (iii). �

In view of Theorem 1 we can introduce the following concept of an ideal of an

l-monoid A so that if A is a DRl-monoid our definition is equivalent to Kühr’s one.

Let A be an l-monoid. A subset I of A is called a left (right) ideal of A, if the

conditions (I1), (I2) and the following condition (Il3) ((I
r
3), respectively) are fulfilled:

(Il3) If x ∈ A, a, b ∈ I and x+ + a− 6 x− + b+, then x ∈ I.

(Ir3) If x ∈ A, a, b ∈ I and a− + x+ 6 b+ + x−, then x ∈ I.

A subset I of an l-monoid A is an ideal of A if I is both a left and a right ideal

of A.

Clearly {0} and A are ideals of A.

R em a r k 1. If I is a submonoid of an l-monoid A with the least element u and

the greatest element v, then I is a left (right) ideal of A iff for each x ∈ A \ I from

x+ + u− 6 x− + v+ (u− + x+ 6 v+ + x−, resp.) it follows that x ∈ I.
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Theorem 2. Let A be an l-monoid, I an ideal of A.

(i) If x ∈ A, a, b ∈ I and x+ + a− 6 b+ + x−, then x ∈ I.

(ii) If x ∈ A, a, b ∈ I and a− + x+ 6 x− + b+, then x ∈ I.

P r o o f. (i) Let x ∈ A, a, b ∈ I, x++a− 6 b++x−. Then (x+)++a− = x++a− 6

b+ + x− 6 b+ = (x+)− + b+, a− + (x−)+ = a− 6 x+ + a− 6 b+ + x− = b+ + (x−)−.

This implies x+, x− ∈ I. Therefore x = x+ + x− ∈ I.

The argument for (ii) is similar. �

Theorem 3. Let A be an l-monoid, I a left ideal of A, x ∈ A. Then

(i) x ∈ I iff x+ ∈ I and x− ∈ I,

(ii) I is a convex subset of A,

(iii) I is an l-submonoid of A.

P r o o f. (i) Let x ∈ I. Then (x+)+ +x− 6 x+ = (x+)− +x+ and (x−)+ +x− =

x− 6 (x−)− + x+ yield x+, x− ∈ I. The converse is obvious.

(ii) Let x 6 z 6 y, x, y ∈ I, z ∈ A. Then z+ 6 y+, x− 6 z−. By (i), y+, x− ∈ I.

Since (z+)+ + (y+)− = z+ 6 y+ = (z+)− + (y+)+, (z−)+ + (x−)− = x− 6 z− =

(z−)− + (x−)+, we have z+, z− ∈ I. Therefore z ∈ I.

(iii) We need only to show that I is a sublattice of A. Let x, y ∈ I. By (i), x++y+,

x− + y− ∈ I. Then from x− + y− 6 x− ∧ y− 6 x ∧ y 6 x ∨ y 6 x+ ∨ y+ 6 x+ + y+

and the convexity of I we get x ∧ y, x ∨ y ∈ I. �

R em a r k 2. An analogous theorem is valid for a right ideal of an l-monoid A.

Corollary 1. If x is an element of a left ideal I of an l-monoid A, then the interval

[x−, x+] ⊆ I.

Lemma 2. Let A be an l-monoid, I a left ideal of A.

(i) If x ∈ A−, y ∈ I+ and 0 6 x + y, then x ∈ I.

(ii) If x ∈ A+, y ∈ I− and x + y 6 0, then x ∈ I.

P r o o f. (i) Let x ∈ A−, y ∈ I+ and x + y 6 0. Then x+ + y− = 0 6 x + y =

x− + y+ implies x ∈ I.

The proof of (ii) can be obtained dually. �

Analogously we can prove the following lemma.
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Lemma 3. Let A be an l-monoid, I a right ideal of A.

(i) If x ∈ A−, y ∈ I+ and 0 6 y + x, then x ∈ I.

(ii) If x ∈ A+, y ∈ I− and y + x 6 0, then x ∈ I.

Recall that the set In(A) of all invertible elements of an l-monoid A is an l-group

and a sublattice of A and −(x ∧ y) = (−x) ∨ (−y), −(x ∨ y) = (−x) ∧ (−y) for each

x, y ∈ In(A) (cf. [6, p. 103]).

Hence, if x is an invertible element of an l-monoid A, then x+ and x− are invertible

elements of A and −(x+) = (−x)−, −(x−) = (−x)+.

Lemma 4. Let A be an l-monoid, I a left ideal of A, x ∈ I. If x is invertible,

then −x ∈ I.

P r o o f. Let x be an invertible element of a left ideal I. Then (−x)+ + x− =

−(x−) + x− = 0 = −(x+) + x+ = (−x)− + x+. This implies −x ∈ I. �

If ̺ is an equivalence relation on a set S, then we will write a ̺ b instead of

(a, b) ∈ ̺.

An equivalence relation ̺ on an l-monoid A is called a congruence relation on A

iff for each a, b, c, d ∈ A the following condition is satisfied:

(C1) If a ̺ b and c ̺ d, then (a∧c) ̺ (b∧d), (a∨c) ̺ (b∨d) and (a+c) ̺ (b+d).

For a ∈ A we set [a]̺ = {x ∈ A ; x ̺ a}.

Theorem 4. Let ̺ be a congruence on an l-monoid A. Then [0]̺ is an ideal of A.

P r o o f. By Lemma 7 [4, p. 20], [0]̺ is a convex sublattice of A. Clearly, [0]̺ is

a submonoid of A.

Let z ∈ A, a, b ∈ [0]̺, z++a− 6 z−+b+. Then from a− 6 z++a− 6 z−+b+ 6 b+

and the convexity of [0]̺ it follows that (z++a−) ̺ 0 and (z−+b+) ̺ 0. From (a−) ̺ 0

and (b+) ̺ 0 we get (z+ + a−) ̺ (z+), (z− + b+) ̺ (z−). Hence (z+) ̺ 0, (z−) ̺ 0.

Therefore z ∈ [0]̺. Thus [0]̺ is a left ideal of A. Similarly we can show that [0]̺ is

a right ideal of A. �

An ideal I of an l-monoid A is normal iff x + I = I + x for each x ∈ A.

Lemma 5. An ideal I of an l-monoid A is normal iff x + I+ = I+ + x and

x + I− = I− + x for each x ∈ A.

P r o o f. Let I be a normal ideal of A. Let x ∈ A, a ∈ I+. Then x + a = b + x

for some b ∈ I. Then x+ a = (x + a)∨x = (b + x)∨x = (b∨ 0)+ x = b+ +x. Hence

x + I+ ⊆ I+ + x. Analogously I+ + x ⊆ x + I+. Therefore x + I+ = I+ + x.

Dually we can show that x + I− = I− + x.
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Let x + I+ = I+ + x and x + I− = I− + x for each x ∈ A. Then for z ∈ A and

d ∈ I we get z + d = z + d+ + d− = g + h + z for some g ∈ I+ and h ∈ I−. Hence

z + I ⊆ I + z. Similarly, I + z ⊆ z + I. �

Kühr [10, p. 103] defined a normal ideal I of a DRl-monoid B as an ideal of B

satisfying the following condition for each x, y ∈ B:

(N1) (x ⇀ y)+ ∈ I iff (x ↽ y)+ ∈ I.

Further, he showed that an ideal I of a DRl-monoid B is normal iff x+I+ = I++x

for each x ∈ B [10, Proposition 20].

The next lemma shows that in the case of DRl-monoids our definition of a normal

ideal coincides with the definition of Kühr.

Lemma 6. Let I be an ideal of a DRl-monoid B. Then I is a normal ideal iff

x + I+ = I+ + x for each x ∈ B.

P r o o f. Necessity follows from Lemma 5.

Let I be an ideal of B, x ∈ B and x + I+ = I+ + x. Let g ∈ I−. Hence

x+(−g) = h+x for some h ∈ I+. By the Representation Theorem of Kovář [8, p. 25–

27], B is the direct product of In(B) and a DRl-monoid S with the least element 0.

Let xIn, xS be components of x in the direct factors In(B) and S, respectively. Then

we have x+(−g) = xIn +xS +(−g) = xIn +(−g)+xS = xIn +(−g)+(−xIn)+x. Let

h′ = xIn+(−g)+(−xIn). Hence h′ ∈ (In(B))+. Then (h∧h′)+x = (h+x)∧(h′+x) =

x + (−g). Since 0 6 h ∧ h′ 6 h, h′, from the convexity of I and In(B) we obtain

h∧h′ ∈ I+ ∩ (In(B))+. Then x+(−g) = (h∧h′)+x implies (−(h∧h′))+x = x+ g.

Hence x + I− ⊆ I− + x. Analogously, I− +x ⊆ x + I−. Then Lemma 5 implies that

I is a normal ideal of B. �

Kühr imposed the condition (C1) and the condition

(C2) if a ̺ b and c ̺ d, then (a ⇀ c) ̺ (b ⇀ d), (a ↽ c) ̺ (b ↽ d)

on an equivalence relation ̺ on a DRl-monoid B to be a congruence relation on

B and showed that [0]̺ is a normal ideal of B for each congruence relation ̺ on a

DRl-monoid B [10, Theorem 28].

The following example shows that [0]̺ need not be a normal ideal for any congru-

ence ̺ on an l-monoid A.

E x am p l e 1. Let A = {0, a, b, c, d}. The binary operation + on A is de-

fined by Table 1. The partial order 6 on A is defined by the diagram in Fig-

ure 1. Then (A, +, 6) is a non-commutative l-monoid and the relation ̺ =

{(0,0), (a, a), (b, b), (c, c), (d, d), (c,0), (d, b), (a, b), (a, d), (0, c), (b, d), (b, a), (d, a)} is a

congruence on the l-monoid A. The ideal [0]̺ = {0, c} is not a normal ideal, since

d + [0]̺ = {d, a} 6= {d} = [0]̺ + d.
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+ 0 a b c d

0 0 a b c d
a a a a a a
b b a b a a
c c a d c d
d d a d a a

Table 1

0

c

d

b

a

Figure 1

Let A be an l-monoid, I a left ideal of A and J a right ideal of A. We define two

binary relations ̺1
I and ̺2

J on A:

x ̺1
I y iff there exist elements g1, h1 ∈ I such that x 6 g1 + y and y 6 h1 + x,

x ̺2
J y iff there exist elements g2, h2 ∈ J such that x 6 y + g2 and y 6 x + h2

for each x, y ∈ A.

In [10, p. 106] for each ideal I of a DRl-monoid B two binary relation Θ1(I) and

Θ2(I) were defined on B by

xΘ1(I)y iff (x ⇀ y) ∨ (y ⇀ x) ∈ I,

xΘ2(I)y iff (x ↽ y) ∨ (y ↽ x) ∈ I

for each x, y ∈ B, and it was proved that Θ1(I) and Θ2(I) are congruence relations

on the lattice (B,∨,∧) [10, Theorem 18].

Further, it was shown that if I is a normal ideal of a DRl-monoid B, then Θ1(I) =

Θ2(I), [0]Θ1(I) = I and if ̺ is a congruence on B, then Θ1([0]̺) = ̺ [10, p. 108–109].

We will show that in the case that I is an ideal of a DRl-monoid B, ̺1
I coincides

with Θ1(I) and ̺2
I coincides with Θ2(I).

Lemma 7. Let B be a DRl-monoid.

(i) If x, y ∈ B, then 0 ⇀ (x ⇀ y) 6 y ⇀ x, 0 ↽ (x ↽ y) 6 y ↽ x.

(ii) If I is an ideal of B, then ̺1
I = Θ1(I) and ̺2

I = Θ2(I).

P r o o f. (i) Let x, y ∈ B. By Lemma 6(2) [10] and Lemma 1(2) [10], (y ⇀

x) + (x ⇀ y) > y ⇀ y = 0 and (x ↽ y) + (y ↽ x) > y ↽ y = 0. This yields

0 ⇀ (x ⇀ y) 6 y ⇀ x, 0 ↽ (x ↽ y) 6 y ↽ x.

(ii) Let I be an ideal of B, x, y ∈ B, x ̺1
I y. Hence x 6 g + y, y 6 h + x

for some g, h ∈ I. Thus x ⇀ y 6 g, y ⇀ x 6 h. In view of Proposition 8(6)

[10] we have 0 6 (x ⇀ y) ∨ (y ⇀ x) 6 g ∨ h. From the convexity of I we obtain

(x ⇀ y) ∨ (y ⇀ x) ∈ I. Therefore xΘ1(I)y.

Let z, t ∈ B, zΘ1(I)t. Thus (z ⇀ t) ∨ (t ⇀ z) ∈ I. In view of (i) we have

|z ⇀ t| = (z ⇀ t) ∨ (0 ⇀ (z ⇀ t)) 6 (z ⇀ t) ∨ (t ⇀ z) = |(z ⇀ t) ∨ (t ⇀ z)|. This
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yields z ⇀ t ∈ I. Analogously, t ⇀ z ∈ I. Since z 6 (z ⇀ t) + t, t 6 (t ⇀ z) + z, we

have z ̺1
I t. Hence ̺1

I = Θ1(I).

Similarly we can show that ̺2
I = Θ2(I). �

Theorem 5. Let A be an l-monoid, I a left ideal of A and J a right ideal of A.

Then ̺1
I and ̺2

J are congruence relations on the lattice (A,∨,∧).

P r o o f. It is clear that the relation ̺1
I is reflexive and symetric. Let a, b, c ∈ A,

a ̺1
I b and b ̺1

I c. Hence a 6 g + b, b 6 h + a, b 6 u + c, c 6 v + b for some

g, h, u, v ∈ I. Then a 6 g + u + c, c 6 v + h + a. Since g + u, v + h ∈ I, we have

a ̺1
I c.

Let x, y, s, z ∈ A, x ̺1
I y and s ̺1

I z. Hence x 6 g′ + y, y 6 h′ + x, s 6 u′ + z,

z 6 v′+s for some g′, h′, u′, v′ ∈ I. Then (g′∨u′)+(y∨z) = (g′+y)∨(g′+z)∨(u′+y)∨

(u′+z) > (g′+y)∨(u′+z) > x∨s. Analogously, (h′∨v′)+(x∨s) > y∨z. Further, we

have (g′∨u′)+(y∧z) = [(g′+y)∨(u′+y)]∧[(g′+z)∨(u′+z)] > (g′+y)∧(u′+z) > x∧s.

Similarly, (h′∨v′)+(x∧s) > y∧z. Since g′∨u′, h′∨v′ ∈ I, we have (x∨s) ̺1
I (y∨z),

(x ∧ s) ̺1
I (y ∧ z). Therefore ̺1

I is a congruence relation on the lattice (A,∨,∧).

Similarly we can show that ̺2
J is a congruence relation on the lattice (A,∨,∧). �

Let A be an l-monoid and I a left ideal of A. Then (A,∨,∧)/̺1
I is a lattice and

for the partial order relation 6 of this factor lattice the following assertion is valid.

Theorem 6. Let A be an l-monoid, I a left ideal of A, x, y ∈ A. Then the

following conditions are equivalent:

(i) [x]̺1

I
6 [y]̺1

I
,

(ii) x 6 g + (x ∧ y) for some g ∈ I,

(iii) x ∨ y 6 h + y for some h ∈ I.

P r o o f. (i) ⇒ (ii). Let x, y ∈ A, [x]̺1

I
6 [y]̺1

I
. Then [x ∧ y]̺1

I
= [x]̺1

I
. Hence

(x ∧ y) ̺1
I x. Therefore x 6 g + (x ∧ y) for some g ∈ I.

(ii) ⇒ (iii). Let x, y ∈ A and x 6 g + (x ∧ y) for some g ∈ I. Let h = g+. Then

h ∈ I. Since x 6 h+(x∧y) 6 (h+x)∧(h+y), we have x 6 h+y. Clearly, y 6 h+y.

Therefore x ∨ y 6 h + y.

(iii) ⇒ (i). Let x, y ∈ A, x ∨ y 6 h + y for some h ∈ I. Since y 6 0 + (x ∨ y), we

conclude that y ̺1
I (x ∨ y). Thus [y]̺1

I
= [x]̺1

I
∨ [y]̺1

I
and hence [x]̺1

I
6 [y]̺1

I
. �

R em a r k 3. An analogous theorem is valid for a right ideal of an l-monoid.
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Lemma 8. If ̺ is a congruence relation on an l-monoidA, then ̺1
[0]̺

⊆ ̺, ̺2
[0]̺

⊆ ̺.

P r o o f. Let x, y ∈ A, x ̺1
[0]̺

y. Then x 6 g+y and y 6 h+x for some g, h ∈ [0]̺.

Thus g ̺ 0, h ̺ 0. Then y ̺ (g + y), x ̺ (h + x) and hence (x ∧ y) ̺ (x ∧ (g + y)),

(y ∧ x) ̺ (y ∧ (h + x)). Thus (x ∧ y) ̺ x, (x ∧ y) ̺ y. This yields x ̺ y.

Analogously we can show that ̺2
[0]̺

⊆ ̺. �

Unlike in a DRl-monoid, in an l-monoid A the relations ̺1
[0]̺

= ̺, ̺2
[0]̺

= ̺ need

not be valid for a congruence relation ̺ on A. For the congruence ̺ from Example 1

we have ̺1
[0]̺

= {(0, 0), (b, b), (c, c), (d, d), (a, a), (0, c), (c, 0), (b, d), (d, b)} 6= ̺.

Lemma 9. If I is an ideal of A, then [0]̺1

I
⊆ I, [0]̺2

I
⊆ I.

P r o o f. Let I be an ideal of A, p ∈ [0]̺1

I
. By Theorems 4 and 5, [0]̺1

I
is an ideal

of A and hence (p+) ̺1
I 0, (p−) ̺1

I 0. Then 0 6 p+ 6 q, 0 6 r + p− 6 r for some

q, r ∈ I. From the convexity of I it follows that p+ ∈ I. In view of Lemma 3 (i) from

0 6 r + p− we obtain p− ∈ I. Then p = p+ + p− ∈ I. Thus [0]̺1

I
⊆ I. Similarly we

can show that [0]̺2

I
⊆ I. �

For a normal ideal I of an l-monoid the relations [0]̺1

I
= I, [0]̺2

I
= I need

not be valid. The set A = {0, a, b, c, d, e, f} with the binary operation + on A

defined by Table 2 and the partial order 6 on A defined by the diagram in Fig-

ure 2 is a commutative l-monoid [7, Example 2]. The ideal I = {0, a, c, e, } of

the l-monoid A is normal, ̺1
I = ̺2

I = {(0, 0), (a, a), (b, b), (c, c), (d, d), (e, e), (f, f),

(0, e), (e, 0), (0, a), (a, 0), (e, a), (a, e), (d, f), (f, d)}, [0]̺1

I
= [0]̺2

I
= {0, a, e} 6= I.

+ 0 a b c d e f

0 0 a b c d e f
a a a b c f a f
b b b b b b b b
c c c b c b c b
d d f b b d d f
e e a b c d e f
f f f b b f f f

Table 2

d

e

0

c

b

f

a

Figure 2

An ideal I of an l-monoid A is called tall iff for each x ∈ I there exist b, c ∈ I such

that 0 6 x + b, 0 6 c + x.
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Theorem 7. Let I be a tall ideal of an l-monoid A. Then [0]̺1

I
= [0]̺2

I
= I.

P r o o f. Let I be a tall ideal of A, x ∈ I. Then 0 6 b + x, 0 6 x + c for some

b, c ∈ I. Since x 6 x+ + 0, x 6 0 + x+, we have x ̺1
I 0 and x ̺2

I 0. Hence I ⊆ [0]̺1

I
,

I ⊆ [0]̺2

I
. Then Lemma 8 completes the proof. �

A soft l-monoid is an l-monoid in which every negative element is invertible.

Every DRl-monoid is a soft l-monoid.

We give a simple construction of a soft l-monoid which is not a DRl-monoid from

a nontrivial l-group.

E x am p l e 2. Let (G, +, 6) be a nontrivial l-group. Let G∞ = G ∪ {∞}. Let

∞⊕ x = x ⊕∞ = ∞ for each x ∈ G∞, y ⊕ z = y + z for each y, z ∈ G. Let x 6′ ∞

for each x ∈ G∞, and let y 6′ z iff y 6 z for each y, z ∈ G. Then (G∞,⊕, 6′) is a

soft l-monoid, but not a DRl-monoid since ∞ ⇀ ∞, ∞ ↽ ∞ do not exist in G∞.

An l-monoid A is called a positively (negatively) ordered l-monoid iff each element

of A is positive (negative, respectively).

Each positively ordered l-monoid is a soft l-monoid. Each pseudo MV-algebra is

a positively ordered l-monoid. For the definition of a pseudo MV-algebra (denoted

also as a noncommutative MV-algebra) we refer to [2] or [3].

The l-monoid A from Example 1 is a finite positively ordered l-monoid which is

not a DRl-monoid, since (b ⇀ c) ∨ 0 + c = a > d = b ∨ c.

The l-monoids (B,⊕, 61) and (G∞,⊕, 61) from Examples in [6, p. 106–107] are

infinite positively ordered l-monoids, but not DRl-monoids.

E x am p l e 3. Let (G,⊕, 6′) be an l-group, (H, +, 6) a positively ordered l-

monoid which is not a DRl-monoid. Then the direct product of (G,⊕, 6′) and

(H, +, 6) is a soft l-monoid, but not a DRl-monoid.

Lemma 10. Each ideal of a soft l-monoid A is a tall ideal.

P r o o f. Let I be an ideal of A, x ∈ I. By Theorem 3 and Lemma 4, −x− ∈ I.

Since x + (−x−) = (−x−) + x = x+ > 0, I is a tall ideal of A. �

From Theorem 7 and Lemma 10 we obtain the following corollary.

Corollary 2. If I is an ideal of a soft l-monoid A, then [0]̺1

I
= [0]̺2

I
= I.
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Theorem 8. Let A be an l-monoid and I a normal ideal of A. Then

(i) ̺1
I = ̺2

I (in the sequel it will be denoted by ̺I),

(ii) ̺I is a congruence relation on the l-monoid A.

P r o o f. (i) The proof is obvious.

(ii) Let x, y, s, z ∈ A, x ̺I y, s ̺I z. Then x 6 g+y, y 6 h+x, s 6 u+z, z 6 v+s

for some g, h, u, v ∈ I. This yields x + s 6 g + y + u + z, y + z 6 h + x + v + s.

Then x + s 6 g + u1 + y + z, y + z 6 h + v1 + x + s for some u1, v1 ∈ I. Since

g + u1, h + v1 ∈ I, we have (x + s) ̺I (y + z). In view of Theorem 5 we conclude

that ̺I is a congruence relation on the l-monoid A. �

The next example shows that In(A) need not be a convex subset of an l-monoid A.

E x am p l e 4. Let (Z, +, 6) be the additive group of all integers with the natural

order. We define a new operation ⊕ on the linearly ordered set (Z, 6) as follows:

(2k)⊕(2l) = (2l)⊕(2k) = 2k+2l, (2k+1)⊕(2l+1) = (2l+1)⊕(2k+1) = 2k+2l+1,

(2k) ⊕ (2l + 1) = (2l + 1) ⊕ (2k) = 2k + 2l + 1 for all k, l ∈ Z. Then (Z,⊕, 6) is a

commutative linearly ordered monoid. In(Z) is the set of all even numbers, which is

not a convex subset of (Z,⊕, 6).

Theorem 9. Let A be an l-monoid. Then In(A) is an ideal of A iff In(A) is a

convex subset of A.

P r o o f. Necessity follows from Theorem 3.

Let In(A) be a convex subset of A. Let x ∈ A, y, z ∈ In(A) and x++y− 6 x−+z+.

From y− 6 x+ + y− 6 x− + z+ 6 z+ and the convexity of In(A) it follows that

x+ + y−, x− + z+ ∈ In(A). Then x+ = x+ + y− + (−y−), x− = x− + z+ + (−z+) ∈

In(A). Hence x ∈ In(A). Thus In(A) is a left ideal of A. Analogously we can show

that In(A) is a right ideal of A. �

Lemma 11. Let A be a soft l-monoid. Then In(A) is a convex subset of A.

P r o o f. Let x, y ∈ In(A), z ∈ A, x 6 z 6 y. Since z + (−y) 6 0, there exists

u ∈ In(A) such that z + (−y) + u = 0. Then (−y) + u + z + (−y) + u + (−u)+ y = 0

yields z ∈ In(A). �

Corollary 3. For each DRl-monoid B, In(B) is an ideal of B.

P r o o f. It follows from Theorem 9 and Lemma 11. �

It is clear that the intersection of any family of ideals of an l-monoid A is again an

ideal of A. Thus for any family of ideals there exists the least ideal containing this

family of ideals. It is the intersection of all ideals containing this family of ideals.
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Hence the following theorem holds for the set Id(A) of all ideals of an l-monoid A

partially ordered by inclusion.

Theorem 10. For each l-monoid A, Id(A) is a complete lattice.

R em a r k 4. An analogous assertion holds for left ideals and right ideals of an

l-monoid.

Theorem 11. Let A be a linearly ordered monoid. Then Id(A) is a linearly

ordered set.

P r o o f. Let I and J be ideals of A, I 6= J . Then there exists x ∈ A such that

x ∈ I \ J or x ∈ J \ I.

Suppose that x ∈ I \ J , 0 6 x. Let y ∈ J . If x 6 y, then from the convexity of J

we get x ∈ J , a contradiction. Thus y 6 x. If 0 6 y then from the convexity of I we

obtain y ∈ I. If y 6 0 and x+y 6 0, then Lemma 2(ii) yields x ∈ J , a contradiction.

Hence, if y 6 0, then 0 6 x + y. In this case Lemma 3(i) yields y ∈ I. Therefore

J ⊆ I. For x 6 0, analogously we can obtain that J ⊆ I.

It is clear that if x ∈ J \ I, than I ⊆ J . �

Let A be an l-monoid. For any subset M of A, the smallest ideal containing M ,

i.e. the intersection of all ideals I of A such thatM ⊆ I, is called the ideal generated

byM . It will be denoted by I(M). If M = {a}, we will write I(a) instead of I({a}).

Theorem 12. Let A be a commutative l-monoid, ∅ 6= M ⊆ A. Then I(M) =

{x ∈ A ; x+ + a−

1 + . . . + a−

m 6 x− + b+
1 + . . . + b+

n for some a1, . . . , am, b1, . . . , bn ∈

M, m, n ∈ N}.
P r o o f. Let S = {x ∈ A ; x+ + a−

1 + . . . + a−

m 6 x− + b+
1 + . . . + b+

n for

some a1, . . . , am, b1, . . . , bn ∈ M, m, n ∈ N}. Clearly, 0 ∈ S. Let x, y ∈ S. Then

x+ + a−

1 + . . . + a−

m 6 x− + b+
1 + . . . + b+

n , y
+ + c−1 + . . . + c−k 6 y− + d+

1 + . . . + d+
l

for some a1, . . . , am, b1, . . . , bn, c1, . . . , ck, d1, . . . , dl ∈ M , m, n, k, l ∈ N. Then (x +

y)+ + a−

1 + . . . + a−

m + c−1 + . . . + c−k 6 x+ + y+ + a−

1 + . . . + a−

m + c−1 + . . . + c−k 6

x− + y− + b+
1 + . . . + b+

n + d+
1 + . . . + d+

l 6 (x + y)− + b+
1 + . . . + b+

n + d+
1 + . . . + d+

l .

Hence x + y ∈ S.

Let t ∈ A, u, v ∈ S, t++u− 6 t−+v+. Thus u++p−1 +. . .+p−m′ 6 u−+q+
1 +. . .+q+

n′ ,

v+ + r−1 + . . . + r−k′ 6 v− + s+
1 + . . . + s+

l′ for some p1, . . . , pm′ , q1, . . . , qn′ , r1, . . . , rk′ ,

s1, . . . , sl′ ∈ M, m′, n′, k′, l′ ∈ N. Then we have t+ + p−1 + . . .+ p−m′ + r−1 + . . .+ r−k′ 6

t+ +u+ + p−1 + . . .+ p−m′ + r−1 + . . .+ r−k′ 6 t+ +u− + q+
1 + . . .+ q+

n′ + r−1 + . . .+ r−k′ 6

t− + v+ + q+
1 + . . . + q+

n′ + r−1 + . . . + r−k′ 6 t− + q+
1 + . . . + q+

n′ + v− + s+
1 + . . . + s+

l′ 6

t− + q+
1 + . . . + q+

n′ + s+
1 + . . . + s+

l′ . Therefore t ∈ S. Hence S is a left ideal of A.

Clearly, S is also a right ideal of A and M ⊆ S.
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Let J be an ideal of A such that M ⊆ J , z ∈ S. Then z+ + e−1 + . . . + e−m1
6

z−+f+
1 +. . .+f+

n1
for some e1, . . . , em1

, f1, . . . , fn1
∈ M , m1, n1 ∈ N. Since e−1 +. . .+

e−m1
, f+

1 + . . . + f+
n1

∈ J , we have z ∈ J . Therefore I(M) = S. �

R em a r k 5. Birkhoff [1, p. 294] proved that if a, b, c are elements of a lattice

ordered group, a∧ b = 0 and a∧ c = 0, then a∧ (b+ c) = 0. From the proof it follows

that this assertion is also valid in the case that a, b, c are elements of an l-monoid.

Lemma 12. Let A be a soft l-monoid, x ∈ A, n ∈ N. Then
(i) (nx+) ∧ (n(−x−)) = 0,

(ii) nx+ + n(−x−) = (nx+) ∨ (n(−x−)),

(iii) nx− = (nx)−, nx+ = (nx)+.

P r o o f. (i) Since x+ = x+(−x−), we have x+∧(−x−) = [x+(−x−)]∧(−x−) =

x ∧ 0 + (−x−) = 0. Then it follows from Remark 5 that (nx+) ∧ (n(−x−)) = 0.

(ii) Since nx+ and nx− commute, in view of (i) from nx+ + n(−x−) 6 [(2nx+) ∨

(nx+ + n(−x−))] ∧ [(n(−x−) + nx+) ∨ 2n(−x−)] = [(nx+) ∧ (n(−x−))] + [(nx+) ∨

(n(−x−))] = [(2nx+)∧ (n(−x−)+nx+)]∨ [((nx+)+n(−x−))∧ (2n(−x−))] 6 nx+ +

n(−x−) we get nx+ + n(−x−) = (nx+) ∨ (n(−x−)).

(iii) In view of (i) we have (nx)− = (nx) ∧ 0 = (nx+ + nx−) ∧ [n(−x−) + nx−] =

[(nx+) ∧ (n(−x−))] + nx− = nx−.

By (ii), (nx)+ = (nx) ∨ 0 = (nx+ + nx−) ∨ [n(−x−) + nx−] = [nx+ ∨ n(−x−)] +

nx− = nx+ + n(−x−) + nx− = nx+. �

The relation for the absolute value in a DRl-monoid from Lemma 1 can be used

for the definition of the absolute value of an element x of a soft l-monoid A. Hence

we define: |x| = x+ + (−x−) for each x ∈ A.

This absolute value has properties analogous to the absolute value in a DRl-

monoid.

Theorem 13. Let A be a soft l-monoid, x, y ∈ A, n ∈ N. Then
(i) |x| > 0 and |x| = 0 iff x = 0,

(ii) |x| = x iff x > 0,

(iii) |x| = −x− iff x 6 0,

(iv) |x| = (−x−) + x+ = x+ ∨ (−x−),

(v) |x| 6 |y| iff x+ + y− 6 x− + y+ iff y− + x+ 6 y+ + x−,

(vi) n|x| = |nx|,

(vii) |x + y| 6 |x| + |y| + |x|; if A is commutative, then |x + y| 6 |x| + |y|,

(viii) |x| + |y| > |x| ∨ |y| > |x ∨ y|, |x| ∨ |y| > |x ∧ y|.

P r o o f. (i) Let |x| = 0. Then 0 6 x+ = x− 6 0 yields x = 0. The rest is

obvious.

381



(ii) If x > 0, then x− = 0. Hence |x| = x. The rest is obviuos.

(iii) If x 6 0, then x+ = 0. Thus |x| = −x−. If |x| = −x−, then x+ = 0. Therefore

x = x− 6 0.

(iv) It follows from Lemma 12(ii).

(v) It is obvious.

(vi) In view of Lemma 12(iii) we get n|x| = nx+ + n(−x−) = nx+ + [−(nx−)] =

(nx)+ + [−((nx)−)] = |nx|.

(vii) Obviously, |x|+|y|+|x| > x++y++(−y−)+(−x−) > (x+y)++[−(x−+y−)] >

(x + y)+ + [−((x + y)−)] = |x + y|. The rest is obvious.

(viii) Clearly |x| + |y| > |x| ∨ |y|. In view of (iv) we have |x| ∨ |y| = x+ ∨ y+ ∨

(−x−) ∨ (−y−) = (x ∨ y)+ ∨ [−((x ∧ y)−)] > (x ∨ y)+ ∨ [−((x ∨ y)−)] = |x ∨ y|. �

Corollary 4. Let A be a soft l-monoid, I ⊆ A. Let 0 ∈ I and u + v ∈ I for each

u, v ∈ I. Then I is an ideal of A iff x ∈ A, y ∈ I and |x| 6 |y| implies x ∈ I.

P r o o f. It follows from Theorem 13(v). �

Corollary 5. Let A be a soft l-monoid, I an ideal of A, a ∈ A. Then a ∈ I iff

|a| ∈ I.

Theorem 14. Let A be a soft l-monoid, ∅ 6= M ⊆ A. Then I(M) = {x ∈

A ; |x| 6 |a1| + . . . + |an| for some a1, . . . , an ∈ M, n ∈ N}.
P r o o f. Let S = {x ∈ A ; |x| 6 |a1|+ . . .+ |an| for some a1, . . . , an ∈ M, n ∈ N}.

Clearly 0 ∈ S. Let x, y ∈ S. Thus |x| 6 |a1| + . . . + |am|, |y| 6 |b1| + . . . + |bn|

for some a1, . . . , am, b1, . . . , bn ∈ M , m, n ∈ N. In view of Theorem 13 (vii) we have
|x + y| 6 |x|+ |y|+ |x| 6 |a1|+ . . . + |am|+ |b1|+ . . . + |bn|+ |a1|+ . . . + |am|. Hence

x + y ∈ S.

Let z ∈ A, t ∈ S and |z| 6 |t|. Then |z| 6 |c1| + . . . + |ck| for some c1, . . . , ck ∈

M, k ∈ N. Hence z ∈ S. By Corollary 4, S is an ideal of A. Clearly, M ⊆ S.

Let J be an ideal of A containing M , u ∈ S. Then |u| 6 |d1|+ . . . + |dl|, for some

d1, . . . , dl ∈ M, l ∈ N. Since |d1| + . . . + |dl| ∈ J , we have u ∈ J . Hence S ⊆ J .

Therefore S = I(M). �

Corollary 6. Let A be a soft l-monoid.

(i) If I and J are ideals of A, then I ∨ J = {x ∈ A ; |x| 6 |a1|+ . . . + |an| for some

a1, . . . , an ∈ I ∪ J, n ∈ N}.
(ii) If I and J are normal ideals of A, then I ∨ J = {x ∈ A ; |x| 6 c + d for some

c ∈ I+, d ∈ J+}.
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R em a r k 6. Kühr [10, Lemma 11] showed that for all positive elements x, y, z

of a DRl-monoid the following proposition is valid:

(P1) x ∧ (y + z) 6 (x ∧ y) + (x ∧ z).

From the proof it follows that the assertion (P1) also holds for any positive elements

x, y, z of an l-monoid A. The dual assertion is also valid. Hence for any negative

elements x, y, z of an l-monoid A the following proposition is valid:

(P2) x ∨ (y + z) > (x ∨ y) + (x ∨ z).

The following two theorems generalize Theorem 14 and Proposition 15 of Kühr

[10].

Theorem 15. For any soft l-monoid A, the lattice Id(A) is algebraic and Brouw-

erian.

P r o o f. First we prove that Id(A) is an algebraic lattice. Let J be an ideal of

A. Clearly, J =
∨

a∈J

I(a).

Let a ∈ J and let Kγ be ideals of A, where γ ∈ Γ, such that I(a) ⊆
∨

γ∈Γ

Kγ . In

view of Theorem 14 from a ∈
∨

γ∈Γ

Kγ we get |a| 6 |a1| + . . . + |an|, where n ∈ N
and ai ∈ Kγi

for some γi ∈ Γ, i = 1, . . . , n. This yields a ∈
n∨

i=1

Kγi
and hence

I(a) ⊆
n∨

i=1

Kγi
. Thus I(a) is a compact element of the lattice Id(A) and hence Id(A)

is an algebraic lattice.

Since every algebraic distributive lattice is Brouwerian, it suffices to show that

Id(A) is a distributive lattice.

Let I, J, K be ideals of A. Let x ∈ I∩(J∨K). By Corollary 6, |x| 6 |b1|+. . .+|bk|,

where b1, . . . , bk are elements of J ∪ K, k ∈ N. In view of (P1) we obtain |x| =

|x|∧(|b1|+ . . .+ |bk|) 6 (|x|∧ |b1|)+ . . .+(|x|∧ |bk|). Since |x|∧ |bi| ∈ (I∩J)∨(I∩K)

for i = 1, . . . , k, we obtain (|x| ∧ |b1|) + . . . + (|x| ∧ |bk|) ∈ (I ∩ J) ∨ (I ∩ K). This

implies x ∈ (I ∩ J) ∨ (I ∩ K). Therefore I ∩ (J ∨ K) ⊆ (I ∩ J) ∨ (I ∩ K). Hence

Id(A) is a distributive lattice. �

Since Id(A) is a Brouwerian lattice for each soft l-monoid A, for any ideals J and

K of A the relative pseudocomplement of J with respect to K in Id(A) exists which

is described in the following theorem.

Theorem 16. For any ideals J and K of a soft l-monoid A, the relative pseudo-

complement of J with respect to K in Id(A) is given by J ∗K = {x ∈ A ; |x|∧|a| ∈ K

for any a ∈ J}.
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The proof is the same as the proof of Proposition 15 in [10], only instead of Proposi-

tion 9(3), Lemma 11 and Theorem 14 from [10] it is necessary to use Theorem 13(vii),

(P1) and Theorem 15, respectively.

Corollary 7. Let A be a positively ordered l-monoid. Then Id(A) is an algebraic

and Brouwerian lattice.

Theorem 17. Let A be a negatively ordered l-monoid.

(i) If M is a nonempty subset of A, then I(M) = {x ∈ A ; a1 + . . . + an 6 x for

some a1, . . . , an ∈ M, n ∈ N}.
(ii) Id(A) is an algebraic and Brouwerian lattice.

P r o o f. (i) Let S = {x ∈ A ; a1 + . . .+ an 6 x for some a1, . . . , an ∈ M, n ∈ N}.
Clearly, 0 ∈ S. Let x, y ∈ S. Then a1 + . . . + am 6 x, b1 + . . . + bn 6 y for some

a1, . . . , am, b1, . . . , bn ∈ M , m, n ∈ N. Then a1 + . . . + am + b1 + . . . + bn 6 x + y.

Hence x + y ∈ S.

Let z ∈ A, u, v ∈ S, z+ + u− 6 z− + v+. Then c1 + . . . + ck 6 u 6 z for some

c1, . . . , ck ∈ M, k ∈ N. This yields z ∈ S. Therefore S is an ideal and M ⊆ S.

It is easy to see that if K is an ideal containingM , then S ⊆ K. Hence I(M) = S.

(ii) The proof is similar to the proof of Theorem 15, only instead of Theorem 14,

Corollary 6 and (P1) we have to use (i) and (P2). �

Theorem 18. Let I and J be normal ideals of an l-monoid A. Then I ∨ J =

{x ∈ A ; x+ + a−

1 + a−

2 6 x− + b+
1 + b+

2 for some a1, b1 ∈ I, a2, b2 ∈ J}.

P r o o f. Let I and J be normal ideals of A, S = {x ∈ A ; x+ + a−

1 + a−

2 6

x− + b+
1 + b+

2 for some a1, b1 ∈ I, a2, b2 ∈ J}. Clearly 0 ∈ S. Let x, y ∈ S. Hence

x++a−

1 +a−

2 6 x−+b+
1 +b+

2 , y
++c−1 +c−2 6 y−+d+

1 +d+
2 for some a1, b1, c1, d1 ∈ I,

a2, b2, c2, d2 ∈ J . Thus x+ +a−

1 +a−

2 +y+ + c−1 + c−2 6 x− + b+
1 + b+

2 +y−+d+
1 +d+

2 .

Then x+ + y+ + e−1 + e−2 + c−1 + c−2 6 x− + y− + f+
1 + f+

2 + d+
1 + d+

2 for some

e1, f1 ∈ I, e2, f2 ∈ J . This yields (x + y)+ + (e−1 + (c′1)
−)− + (e−2 + c−2 )− 6

(x + y)− + (f+
1 + (d′1)

+)+ + (f+
2 + d+

2 )+ for some c′1, d
′

1 ∈ I. Hence x + y ∈ S.

Let z ∈ A, u, v ∈ S, z+ + u− 6 z− + v+. Hence u+ + p−1 + p−2 6 u− + q+
1 + q+

2 ,

v+ + r−1 + r−2 6 v− + s+
1 + s+

2 for some p1, q1, r1, s1 ∈ I, p2, q2, r2, s2 ∈ J .

Then z+ + p−1 + p−2 + r−1 + r−2 6 z+ + u+ + p−1 + p−2 + r−1 + r−2 6 z+ + u− + q+
1 +

q+
2 + r−1 + r−2 6 z− + v+ + q+

1 + q+
2 + r−1 + r−2 = z− + v+ + r−1 + r−2 + h+

1 + h+
2 6

z− + v− + s+
1 + s+

2 + h+
1 + h+

2 6 z− + s+
1 + s+

2 + h+
1 + h+

2 for some h1 ∈ I, h2 ∈ J .

Thus z+ +(p−1 +((r′1)
−)− +(p−2 + r−2 )− 6 z− +(s+

1 +(h′

1)
+)+ +(s+

2 +h+
2 )+ for some

r′1, h
′

1 ∈ I. This yields z ∈ S. Therefore S is a left ideal of A. Analogously we can

show that S is a right ideal of A.
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For c ∈ I, d ∈ J we have c+ + c− + 0 6 c− + c+ + 0, d+ + 0 + d− 6 d− + 0 + d+.

This implies c, d ∈ S. Hence I ⊆ S, J ⊆ S.

Clearly, if K is an ideal containing ideals I and J , then S ⊆ K. Therefore

S = I ∨ J . �

Theorem 19. Let A be an l-monoid, In(A) a convex subset of A, g ∈ In(A).

(i) If 0 6 g 6 a1 + . . . + an for some a1, . . . , an ∈ A+, n ∈ N, then there exist
elements b1, . . . , bn ∈ In(A) such that g = b1 + . . .+bn, 0 6 bi 6 ai, i = 1, . . . , n.

(ii) If a1 + . . . + an 6 g 6 0 for some a1, . . . , an ∈ A−, n ∈ N, then there exist
elements b1, . . . , bn ∈ In(A) such that g = b1 + . . .+bn, ai 6 bi 6 0, i = 1, . . . , n.

P r o o f. (i) We prove this statement by induction on n. The statement is valid

for n = 1. Assume that the statement holds for n = k, k ∈ N.
Let 0 6 g 6 a1 + . . . + ak + ak+1, where a1, . . . , ak+1 ∈ A+. Let a = a1 + . . . + ak,

bk+1 = g ∧ ak+1. Hence bk+1 6 ak+1. Since 0 6 bk+1 6 g, from the convexity of

In(A) it follows that bk+1 ∈ (In(A))+. Further, g 6 a + g and g 6 a + ak+1 implies

g 6 (a + g) ∧ (a + ak+1) = a + g ∧ ak+1 = a + bk+1. Let h = g + (−bk+1). Hence

g = h+bk+1, h ∈ (In(A))+. From 0 6 h = g+(−bk+1) 6 a = a1 + . . .+ak we obtain

that h = b1 + . . . + bk where b1, . . . , bk ∈ In(A), 0 6 bi 6 ai, i = 1, . . . , k. Then we

have g = b1 + . . .+bk +bk+1, 0 6 bi 6 ai, i = 1, . . . , k+1, where b1, . . . , bk+1 ∈ In(A).

The proof of (ii) can be obtained dually. �

An l-monoid A is called a weak divisibility l-monoid if for each a, b ∈ A such that

a 6 b there exist x, y ∈ A such that a + x = b, y + a = b.

R em a r k 7. Birkhoff [1, p. 320] defined a divisibility monoid as a partially or-

dered monoid M in which a 6 b is equivalent to a + x = b, y + a = b for some

x, y ∈ M .

Each weak divisibility l-monoid is a soft l-monoid. From Lemma 5 [10] it follows

that if a, b are elements of a DRl-monoid A such that a 6 b, then (b ⇀ a) + a = b,

a + (b ↽ a) = b. Hence each DRl-monoid is a weak divisibility l-monoid.

The l-monoid (G∞,⊕, 61) from Example in [6, p. 107] is a weak divisibility l-

monoid, but not a DRl-monoid.

Lemma 13. If J and K are normal ideals of an l-monoid A, then J ∩ K is a

normal ideal of A.

P r o o f. Let x ∈ A, c ∈ (J ∩ K)+. Then x + c = c1 + x = c2 + x for some

c1 ∈ J+, c2 ∈ K+. Since 0 6 c1 ∧ c2 6 c1, c2, from the convexity of J and K it

follows that c1 ∧ c2 ∈ (J ∩K)+. Then c1∧ c2 +x = (c1 +x)∧ (c2 +x) = x+ c. Hence

x + (J ∩ K)+ ⊆ (J ∩ K)+ + x. Analogously, (J ∩ K)+ + x ⊆ x + (J ∩ K)+.
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Dually we obtain that (J ∩K)− +x = x+ (J ∩K)−. Then Lemma 5 implies that

J ∩ K is a normal ideal of A. �

Theorem 20. Let A be a weak divisibility l-monoid, I and J normal ideals of A.

Then I ∨ J is a normal ideal of A.

P r o o f. Let x ∈ A. Suppose that c ∈ (I ∨ J)+. By Corollary 6(ii), c 6 a + b for

some a ∈ I+, b ∈ J+. Since x 6 x + c, there exists d ∈ A+ such that d + x = x + c.

Hence d+x 6 x+a+b = a′+b′+x for some a′ ∈ I+, b′ ∈ J+. Then [d∧(a′+b′)]+x =

(d + x) ∧ (a′ + b′ + x) = d + x = x + c. Since 0 6 d ∧ (a′ + b′) 6 a′ + b′, from the

convexity of I ∨J we get d∧ (a′ + b′) ∈ (I ∨J)+. Hence x+(I ∨J)+ ⊆ (I ∨J)+ +x.

Analogously (I ∨ J)+ + x ⊆ x + (I ∨ J)+.

Let g ∈ (I ∨ J)−, h = −g. Then g, h ∈ In(A), h ∈ (I ∨ J)+. In view of

Corollary 6(ii) we have h = |h| 6 c+d for some c ∈ I+, d ∈ J+. By Theorem 19 and

Lemma 11, there exist elements h1, h2 ∈ In(A) such that h = h1 + h2, 0 6 h1 6 c,

0 6 h2 6 d. From the convexity of I and J we have h1 ∈ I+, h2 ∈ J+.

Since −h1 ∈ I, −h2 ∈ J , we get x + g = x + (−h2) + (−h1) = h′

1 + h′

2 + x, where

h′

1 ∈ I−, h′

2 ∈ J−. Clearly h′

1 + h′

2 ∈ (I ∨ J)−. Hence x + (I ∨ J)− ⊆ (I ∨ J)− + x.

Similarly x + (I ∨ J)− ⊆ x + (I ∨ J)−. In view of Lemma 5 we have x + (I ∨ J) =

(I ∨ J) + x. �

Corollary 8. The set of all normal ideals of a weak divisibility l-monoid A is a

sublattice of Id(A).
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