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Abstract. We consider almost-complex structures on � P3 whose total Chern classes differ
from that of the standard (integrable) almost-complex structure. E. Thomas established
the existence of many such structures. We show that if there exists an “exotic” integrable
almost-complex structures, then the resulting complex manifold would have specific Hodge
numbers which do not vanish. We also give a necessary condition for the nondegeneration
of the Frölicher spectral sequence at the second level.
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1. Introduction

It is well-known that the six sphere � 6 admits almost-complex structures, for ex-
ample [6, Chapter IX Ex 2.6]. Blowing up an almost-complex � 6 at a point produces

an almost-complex manifold diffeomorphic to
�
P3. We will call the resulting almost-

complex structure on this manifold “exotic” because its Chern classes are topolog-

ically different from the Chern classes of the standard (integrable) almost-complex
structure on

�
P3. A long standing question in differential geometry is whether or

not � 6 admits a complex structure, that is, an integrable almost-complex structure.
If it does, then blowing it up at a point will give an exotic complex structure on�
P3. This is interesting because Hirzebruch and Kodaira have shown in [3] that any
Kähler manifold of odd complex dimension diffeomorphic to

�
Pn is biholomorphic

to
�
Pn. Yau [12], Peternell [7], and Siu [8] have subsequently proved related results

for
�
P2,

�
P3, and

�
Pn, respectively.
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It is perhaps less well-known that
�
P3 admits other almost-complex structures. In

fact Thomas gives a formula in [10] for the total Chern classes of the exotic almost-
complex structures on

�
P3. Let x denote the standard generator of H2(

�
P3; � ).

Theorem 1.1 (Thomas). Consider the complex projective space
�
P3. The fol-

lowing cohomology classes, and only these, occur as the total Chern class of an

almost-complex structure on
�
P3.

c(
�
P3) = 1 + 2jx + 2(j2 − 1)x2 + 4x3; j ∈ � .

We denote by Xj , j ∈ � , an almost-complex manifold diffeomorphic to � P3 whose
total Chern class is given as in the theorem. In particular, the standard almost-

complex structure has j = 2, and the blowup of an almost-complex � 6 has j = −1.
It is not known whether there exist integrable almost-complex structures for j 6= 2. In
this paper we investigate some properties of a hypothetical exotic complex structure
on
�
P3. We give lower bounds on the Hodge numbers of such a hypothetical complex

structure which depend on j in Theorems 3.2 and 4.5. We also present a necessary
condition for the degeneration of the Frölicher spectral sequence in Corollary 4.4.

2. Dolbeault cohomology and the Frölicher spectral sequence

In this section we recall Dolbeault cohomology groups and some general facts

about the Frölicher spectral sequence of a complex manifold.
Suppose X is a complex manifold of complex dimension n. A differential form

of type (p, q) on X is a complex differential form ϕ which can be written in local
complex coordinates (z1, . . . , zn) as

ϕ =
∑

ai1...ipj1...jq dzi1 ∧ . . . ∧ dzip ∧ dzj1 ∧ . . . ∧ dzjq .

Let Ωp,q denote the space of smooth (p, q) forms on X , and Ωm =
⊕

p+q=m
Ωp,q .

Let d : Ωm → Ωm+1 denote the exterior derivative. On a complex manifold

d(Ωp,q) ⊂ Ωp+1,q ⊕ Ωp,q+1,

d = ∂ + ∂,

where

∂(Ωp,q) ⊂ Ωp+1,q

and
∂(Ωp,q) ⊂ Ωp,q+1.
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Since ∂2 = 0, define the Dolbeault cohomology groups to be

Hp,q(X) =
(ker∂) ∩ Ωp,q

(im ∂) ∩ Ωp,q
.

Let hp,q = dim � Hp,q(X).

Lemma 2.1 (Serre Duality). Let X be a compact complex manifold of complex

dimension n. Then

Hp,q(X) = Hn−p,n−q(X).

Lemma 2.2. Let X be a compact complex manifold of complex dimension n.

There exists a natural injective map

i : Hn,0(X) ↪→ Hn
dR(X).

���	�
���
. Since (im ∂)∩Ωn,0 = 0, we have Hn,0(X) = (ker∂)∩Ωn,0. In addition

we have (ker d) ∩ Ωn,0 = (ker∂) ∩ Ωn,0 which gives a natural map i : Hn,0(X) →
Hn

dR(X). We only need to show that this map is injective.
Suppose that β ∈ Ω∗ is such that dβ ∈ Ωn,0. Then

∫

X

dβ ∧ dβ =
∫

X

d(β ∧ dβ) = 0,

by Stokes’ theorem. Write dβ locally as dβ = f dz1 ∧ . . . ∧ dzn. Then

dβ ∧ dβ = |f |2 dz1 ∧ . . . ∧ dzn ∧ dz1 ∧ . . . ∧ dzn

= (−1)(1/2)n(n−1)|f |2 dz1 ∧ dz1 ∧ . . . ∧ dzn ∧ dzn

= (−1)(1/2)n(n−1)|f |2 dx1 ∧ dy1 ∧ . . . ∧ dxn ∧ dyn,

where zj = xj +
√
−1yj , j = 1, . . . , n. The vanishing of the integral shows that

dβ = 0 which gives the injectivity of i. �

Corollary 2.3. Let X be a compact complex manifold of complex dimension n

such that bn(X) = 0. Any complex structure on X has the property

hn,0 = h0,n = 0.

���	�
���
. The previous lemma gives thatHn,0(X) ↪→ Hn

dR(X), and since bn(X) =
0 we have that hn,0 = 0. Then h0,n = 0 follows by Serre duality. �
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We now turn to the Frölicher spectral sequence. For a complete discussion see [5].

We form from the double complex (Ω∗,∗, ∂, ∂) the associated de Rham complex
(Ω∗, d) where

Ωm =
⊕

p+q=m

Ωp,q,

d = ∂ + ∂.

There are two filtrations on (Ω∗, d) given by

′F pΩm =
⊕

p′+q=m

p′>p

Ωp′,q ,

′′F qΩm =
⊕

p+q′′=m
q′′>q

Ωp,q′′
.

Associated with each filtration is a spectral sequence {′Er} and {′′Er} both of which
abut to H∗

dR(X). The first filtration ′F pΩm gives the Frölicher spectral sequence, for

in this case ′Ep,q
1 is given by

Ep,q
1 = Hq

∂
(X, Ωp) = Hp,q(X),

the Dolbeault cohomology groups of X . Henceforth we will drop this prime notation,
denoting ′Ep,q

r by Ep,q
r .

Here we note that if X is a Kähler manifold, then the Frölicher spectral sequence
degenerates at the E1 level and we have the Hodge decomposition

Hm(X) =
⊕

p+q=m

Hp,q(X)

as well as

Hp,q(X) = Hq,p(X).

As above we let hp,q = dim Hp,q(X) = dim Ep,q
1 , and we also define hp,q

r = dim Ep,q
r

where
dr : Ep,q

r → Ep+r,q−r+1
r

and

Ep,q
r+1 =

(ker dr) ∩Ep,q
r

(im dr) ∩ Ep,q
r

.

For each p, let

χp(X) =
n∑

q=0

(−1)qhp,q .

Observe that hp,q
r+1 6 hp,q

r , and that if p = 0, then following Hirzebruch [2], χ0(X) is
the familiar arithmetic genus. In [11] Ugarte gives the following useful proposition.
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Proposition 2.4 (Ugarte). Let X be a compact complex manifold of complex

dimension n. If there are no holomorphic n-forms on X , then En
∼= E∞.

This proposition follows from noting that the holomorphic n-forms are by defini-
tion Ωn,0 ∩ (ker∂) which by the proof of lemma (2.2) is Hn,0(X). If there are no
holomorphic n-forms, then dr : Ep,q

r → Ep+n,q−n+1
r is identically zero for any r > n.

3. Cohomology relations for exotic complex structures and the

Atiyah-Singer index theorem

In this section we consider the relations among the Hodge numbers for an exotic
complex structure on

�
P3. We employ the Hirzebruch-Riemann-Roch theorem as

it appears in [1] and [2]. Suppose X is a compact complex manifold of complex
dimension n.

Consider the Dolbeault complex

Ω0,∗ : 0 → Ω0,0 → . . . → Ω0,q ∂→ Ωp,q+1 → . . . → Ω0,n → 0.

We apply the Atiyah-Singer Index theorem

(1) index ∂ =
{
ch σ(∂) Td(X)

}
[TX ],

where chσ(∂) is the Chern character of the symbol of the operator ∂, Td(X) is the
Todd class of X and [TX ] is the fundamental class of the tangent bundle. The left
hand side of equation (1) is the arithmetic genus given by

index ∂ =
3∑

q=0

(−1)qHq(X,O) =
3∑

q=0

(−1)qh0,q = χ0(X).

The expression on the right hand side of equation (1) can be rewritten in terms of

a universal expression in Chern classes ck ∈ H2k(X) evaluated on the fundamental
class [X ] ∈ H2n(X). In particular, for a complex manifold of complex dimension
three, the formula simplifies to

{
ch σ(∂) Td(X)

}
[TX ] = Td(X)[X ] =

1
24

c1c2[X ].

In the special case of X = � 6 we have a theorem of Gray [4] for a hypothetical
complex structure on X .
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Theorem 3.1 (Gray). Any complex structure on � 6 has the property that

h0,1( � 6) > 1.

���	�
���
. Any complex structure on � 6 satisfies

χ0( � 6) =
1
24

c1c2[X ].

Since the cohomology Hk(X) vanishes for all k 6= 0, 6 we have h0,3 = 0 and
1/24c1c2[X ] = 0 so that

1− h0,1 + h0,2 = 0,

which gives

h0,1 = 1 + h0,2 > 1.

�

We can extend this result to the exotic manifolds Xj from the introduction.

Theorem 3.2. Let Xj be a complex manifold diffeomorphic to
�
P3 whose total

Chern class is given by c(Xj) = 1 + 2jx + 2(j2 − 1)x2 + 4x3, where x generates

H2(Xj , � ).
(a) If j < 2, then

h0,1(Xj) > 1, and h1,1 + h2,0 > 2.

(b) If j > 2, then

h0,2(Xj) > 3, and h1,0 + h1,2 > 2.


��������	�
1. If j 6= 2, then Xj is not Kähler because this is inconsistent with

Hodge decomposition. The results of [3] imply this as well. We can also see that if

j 6= 2, then Xj is not Kähler since the Frölicher spectral sequence lives to E2. We
will explore this further in section 4.

���	�
���
. From Thomas’ theorem (1.1) for each j ∈ � , the total Chern class of

Xj is given by

c(Xj) = 1 + 2jx + 2(j2 − 1)x2 + 4x3.

As above

χ0(Xj) = 1− h0,1(Xj) + h0,2(Xj)
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since h3,0(Xj) = 0. Combining this with the index theorem gives

1− h0,1(Xj) + h0,2(Xj) =
j(j2 − 1)

6
,

h0,1(Xj) > 1− j(j2 − 1)
6

> 1, for j < 2,

h0,2(Xj) > j(j2 − 1)
6

− 1 > 3, for j > 2.

Additionally, the topological Euler characteristic may be expressed

χTop(Xj) =
3∑

p=0

3∑

q=0

(−1)p+qhp,q

= 2
( 3∑

q=0

(−1)qh0,q −
3∑

q=0

(−1)qh1,q

)

= 2(χ0 − χ1).

In particular, χ1 = χ0 − 2. This expression for χ1 along with Serre duality give

χ1 = h1,0 − h1,1 + h1,2 − h2,0 =
j(j2 − 1)

6
− 2,

so that

h1,1 + h2,0 > 2− j(j2 − 1)
6

> 2 for j < 2,

h1,0 + h1,2 > j(j2 − 1)
6

− 2 > 2 for j > 2.

�

In section 4 we prove a sharper inequality for h1,2 using the Frölicher spectral
sequence.

4. Frölicher spectral sequence computations

Since b1(Xj) = 0 and b2(Xj) = 1, it is clear from the preceding proposition that
if j 6= 2, the Frölicher spectral sequence lives at least to E2(Xj). We also have that
E3(Xj) ∼= E∞(Xj), so we would like to know under what conditions does the spectral
sequence live to E3(Xj). For a compact complex manifold X of complex dimension

65



three, consider the dimension grids below.

E1

0 h1,3 h2,3 1
h0,2 h1,2 h2,2 h3,2

h0,1 h1,1 h2,1 h3,1

1 h1,0 h2,0 0

E2

0 h1,3
2 h2,3

2 1
h0,2

2 h1,2
2 h2,2

2 h3,2
2

h0,1
2 h1,1

2 h2,1
2 h3,1

2

1 h1,0
2 h2,0

2 0

E3

0 h1,3
3 h2,3

3 1
h0,2

3 h1,2
3 h2,2

3 h3,2
3

h0,1
3 h1,1

3 h2,1
3 h3,1

3

1 h1,0
3 h2,0

3 0


��������	�
2. We recall two facts about the dimension grids above: First, each

entry hp,q
r is a non-negative integer, and second, dim Hn

dR(X) =
∑

p+q=n
hp,q
∞ =

∑
p+q=n

hp,q
3 . The computations in the subsections that follow use the basic homolog-

ical algebra fact that the Euler characteristic of a complex of vector spaces equals
the Euler characteristic of the cohomology of the complex.

4.1. The Frölicher spectral sequence for � 6. We recall some of L.Ugarte’s
main results in [11], since we know that dim Hn

dR( � 6) = 0 for all n 6= 0, 6 we have
hp,q

3 = 0 for all pairs (p, q) except (0, 0) and (3, 3), so that the E3 term becomes:

E3

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

Since the E3 term comes from the following sequences

(2) 0 → Ep,q
2

d2→ Ep+2,q−1
2 → 0,

and Ep,q
2 = 0 for all p, q < 0, p, q > 3, and (p, q) = (0, 3), (3, 0) we know that

h1,0
2 = h2,3

2 = h1,1
2 = h2,2

2 = h3,0
2 = h0,3

2 = 0.
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We also know that for the cohomology of the complex (2) to vanish we need

Ep,q
2

∼= Ep+2,q−1
2 hence we have

h0,1
2 = h2,0

2 ,

h0,2
2 = h2,1

2 ,

h1,2
2 = h3,1

2 ,

h1,3
2 = h3,2

2 .

On the other hand the entries of the E2 term arise from the following sequences

(3) 0 → Ep,q
1

d1→ Ep+1,q
1

d1→ Ep+2,q
1

d1→ Ep+3,q
1 → 0,

so that

h0,q
2 − h1,q

2 + h2,q
2 − h3,q

2 = h0,q − h1,q + h2,q − h3,q .

By Serre duality we know that hp,q = h3−p,3−q . Then we have

1 + h2,0
2 = 1− h1,0 + h2,0 = 1− h2,3 + h1,3 = 1 + h1,3

2 ,

which gives

h0,1
2 = h2,0

2 = h1,3
2 = h3,2

2 .

We also have

h0,1
2 + h2,1

2 − h3,1
2 = h0,1 − h1,1 + h2,1 − h3,1

= h3,2 − h2,2 + h1,2 − h0,2

= h3,2
2 + h1,2

2 − h0,2
2

= h0,1
2 + h3,1

2 − h2,1
2 ,

which gives

h0,2
2 = h1,2

2 = h2,1
2 = h3,1

2 .

Let a = h0,1
2 = dim((ker d1) ∩H0,1( � 6)) and b = h0,2

2 = dim((ker d1) ∩H0,2( � 6)).
Then the E2 term is

E2

0 a 0 1
b b 0 a

a 0 b b

1 0 a 0
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Proposition 4.1 (Ugarte). If X = � 6, then either

(a) H1,1(X) 6= 0, or
(b) H2,0

2 (X) 6= 0 and E1 6∼= E2 6∼= E3
∼= E∞.

4.2. The Frölicher spectral sequence for Xj. Consider now the case X = Xj .

Since b0 = b2 = b4 = b6 = 1 and b1 = b3 = b5 = 0 we have

h0,0
3 = h3,3

3 = 1,

h0,1
3 = h1,0

3 = h0,3
3 = h1,2

3 = h2,1
3 = h3,0

3 = h2,3
3 = h3,2

3 = 0,

h0,2
3 + h1,1

3 + h2,0
3 = 1,

h1,3
3 + h2,2

3 + h3,1
3 = 1,

so the E3 term becomes

E3

0 h1,3
3 0 1

h0,2
3 0 h2,2

3 0
0 h1,1

3 0 h3,1
3

1 0 h2,0
3 0

Unlike the case of � 6 we cannot determine all of the entries of the E3 term exactly,
but we do know that either h0,2

3 , h1,1
3 , or h2,0

3 is 1, and h1,3
3 , h2,2

3 , or h3,1
3 is 1. This

observation allows us to regard the nine cases of E3 individually. Before we do this

we can make some general observations.
Since

h0,1
3 = h1,0

3 = h0,3
3 = h1,2

3 = h2,1
3 = h3,0

3 = h2,3
3 = h3,2

3 = 0,

we can conclude that
h0,3

2 = h1,0
2 = h2,3

2 = h3,0
2 = 0.

By Serre Duality at the E1 level we have

h1,3
2 = h2,0

2 .

We can also conclude

h1,1
2 = h1,1

3 ,

h2,2
2 = h2,2

3 ,

h0,2
3 = h0,2

2 − h2,1
2 ,

h2,0
3 = h2,0

2 − h0,1
2 ,

h1,3
3 = h1,3

2 − h3,2
2 ,

h3,1
3 = h3,1

2 − h1,2
2 ,

h0,1
2 − h1,1

2 + h2,1
2 − h3,1

2 = h3,2
2 − h2,2

2 + h1,2
2 − h0,2

2 .
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In all of the cases that follow let a = h0,1
2 = dim((ker d1) ∩ H0,1(Xj)) and b =

h0,2
2 = dim((ker d1) ∩H0,2(Xj)).� �����

1: h0,2
3 = 1 and h1,3

3 = 1.

E3

0 1 0 1
1 0 0 0
0 0 0 0
1 0 0 0

Then the E2 term becomes for all j ∈ � :

E2

0 a 0 1
b b 0 a−1
a 0 b−1 b

1 0 a 0

from which we conclude that a, b > 0 so that
(i) H0,1(Xj) 6= 0, H0,2(Xj) 6= 0 and
(ii) this spectral sequence lives to E3.� �����

2: h0,2
3 = 1 and h2,2

3 = 1

E3

0 0 0 1
1 0 1 0
0 0 0 0
1 0 0 0

Then the E2 term becomes for all j ∈ � :

E2

0 a 0 1
b b 1 a

a 0 b−1 b

1 0 a 0

from which we conclude that b > 0 so that
(i) H0,2(Xj) 6= 0 and
(ii) this spectral sequence lives to E3.� �����

3: h0,2
3 = 1 and h3,1

3 = 1

E3

0 0 0 1
1 0 0 0
0 0 0 1
1 0 0 0
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Then the E2 term becomes for all j ∈ � :

E2

0 a 0 1
b b−1 0 a

a 0 b−1 b

1 0 a 0

from which we conclude that b > 0 so that
(i) H0,2(Xj) 6= 0 and
(ii) E2

∼= E∞ if and only if a = 0 and b = 1.� �����
4: h1,1

3 = 1 and h1,3
3 = 1

E3

0 1 0 1
0 0 0 0
0 1 0 0
1 0 0 0

Then the E2 term becomes for all j ∈ � :

E2

0 a 0 1
b b 0 a−1
a 1 b b

1 0 a 0

from which we conclude that a > 0 so that
(i) H0,1(Xj) 6= 0 and
(ii) this spectral sequence lives to E3.� �����

5: h1,1
3 = 1 and h2,2

3 = 1

E3

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

Then the E2 term becomes for all j ∈ � :

E2

0 a 0 1
b b 1 a

a 1 b b

1 0 a 0

from which we conclude
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(i) E2
∼= E∞ if and only if a = b = 0.� �����
6: h1,1

3 = 1 and h3,1
3 = 1

E3

0 0 0 1
0 0 0 0
0 1 0 1
1 0 0 0

Then the E2 term becomes for all j ∈ � :

E2

0 a 0 1
b b−1 0 a

a 1 b b

1 0 a 0

from which we conclude that b > 0 so that
(i) H0,2(Xj) 6= 0 and
(ii) this spectral sequence lives to E3.� �����

7: h2,0
3 = 1 and h1,3

3 = 1

E3

0 1 0 1
0 0 0 0
0 0 0 0
1 0 1 0

Then the E2 term becomes for all j ∈ � :

E2

0 a+1 0 1
b b 0 a

a 0 b b

1 0 a+1 0

from which we conclude:
(i) E2

∼= E∞ if and only if a = b = 0.� �����
8: h2,0

3 = 1 and h2,2
3 = 1

E3

0 0 0 1
0 0 1 0
0 0 0 0
1 0 1 0
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Then the E2 term becomes for all j ∈ � :

E2

0 a+1 0 1
b b 1 a+1
a 0 b b

1 0 a+1 0

from which we conclude:

(i) this spectral sequence lives to E3.� �����
9: h2,0

3 = 1 and h3,1
3 = 1

E3

0 0 0 1
0 0 0 0
0 0 0 1
1 0 1 0

Then the E2 term becomes for all j ∈ � :

E2

0 a+1 0 1
b b−1 0 a+1
a 0 b b

1 0 a+1 0

from which we conclude that b > 0 so that
(i) H0,2(Xj) 6= 0 and
(ii) this spectral sequence lives to E3.

4.3. General descriptions of the terms of the Frölicher spectral sequence.
We combine the preceding nine cases to make some general case-independent obser-

vations about when the spectral sequence lives to E3, and when it degenerates at the
E2 level. For the remaining statements we make no assumptions on the vanishing of

specific terms at the various levels of the spectral sequence.

Proposition 4.2. If E2
∼= E∞, then hp,q

2 = h3−p,3−q
2 .

Proposition 4.3. hp,q
2 = h3−p,3−q

2 if and only if hp,q
3 = h3−p,3−q

3 .

Combining these together gives a necessary condition for the degeneration of the
Frölicher spectral sequence at the second level.
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Corollary 4.4. If hp,q
3 6= h3−p,3−q

3 , then E1 6∼= E2 6∼= E3.

We complement Theorem 3.2 with the following.

Theorem 4.5. Let Xj be a complex manifold diffeomorphic to
�
P3 whose total

Chern class is given by c(Xj) = 1 + 2jx + 2(j2 − 1)x2 + 4x3, where x generates

H2(Xj , � ). If j > 2, then h1,2 = h2,1 > 2. Moreover, if h0,2
3 6= 1 or h3,1

3 6= 1, then
h1,2 > h0,2 > 3.
���	�
���

. Observe that in all nine cases above either h1,2
2 = h0,2

2 or h1,2
2 = h0,2

2 −1.
Let us suppose h1,2

2 = h0,2
2 . To simplify the notation we consider the complex

0 → E0,2
1

α→ E1,2
1

β→ . . .

where α and β are the maps d1. We know h0,2
2 = dim(kerα) and h1,2

2 = dim(kerβ)−
rank(α), thus giving

h0,2 = dim(kerα) + rank(α)

= h1,2
2 + rank(α)

= dim(kerβ)− rank(α) + rank(α)

6 h1,2.

We assumed that h1,2
2 = h0,2

2 , but suppose instead that h1,2
2 = h0,2

2 − 1. If this
occurs, then unless h0,2

3 = h3,1
3 = 1, we have h3,1 = h2,1. We can repeat the above

argument for h3,1 and h2,1. Serre duality again gives

h0,2 = h3,1 6 h2,1 = h1,2.

In case h0,2
3 = h3,1

3 = 1 we have h2,1 = h1,2 = h0,2 − 1. The same arguments go
through except that now we have

h0,2 6 h1,2 + 1.

�
��� �
��� �"!#� $&%��'���
()�

. The author would like to express his appreciation to

Professor Jan Segert for his thoughtful guidance in the completion of this note.
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