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LAPLACE EQUATION IN THE HALF-SPACE WITH
A NONHOMOGENEOUS DIRICHLET BOUNDARY CONDITION
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Dedicated to Prof. J. Necas on the occasion of his 70th birthday

Abstract. We deal with the Laplace equation in the half space. The use of a special
family of weigted Sobolev spaces as a framework is at the heart of our approach. A complete
class of existence, uniqueness and regularity results is obtained for inhomogeneous Dirichlet

problem.
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1. INTRODUCTION

The purpose of this paper is to solve the problem
_ — ; N
®) Au=f in RY,
u=g on I'=RN-1,
with the Dirichlet boundary condition on I'. The approach is based on the use of
a special class of weighted Sobolev spaces for describing the behavior at infinity.
Many authors have studied the Laplace equation in the whole space RY or in an
exterior domain. The main difference is due to the nature of the boundary and one
of difficulties is to obtain the appropriate spaces of traces. However, the half-space

has a useful symmetric property.

Second author would like to thank the Grant Agency of the Czech Republic No. 201/99/
0267 and both authors to the Barrande project between the Czech Republic and France.
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Problem (P) has been investigated in weighted Sobolev spaces by several authors,
but only in the Hilbert cases (p = 2) and without the critical cases corresponding to
the logarithmic factor (cf. [2], [4]). We can also mention the book by Simader, Sohr
[6] where the Dirichlet problem for the Laplacian is investigated.

Let Q be an open subset of RV, N > 2. Let x = (21,...,7x) be a typical point
of RN and r = |z| = (2 + ...+ 2%)'/2. We use two basic weights:

o= (1+7r>)Y% and lgp=In(2+7?).

As usual, D(RY) denotes the spaces of indefinitely differentiable functions with a
compact support and D (RY') denotes its dual space, called the space of distributions.
For any nonnegative integers n and m, real numbers p > 1, o and 3, setting

-1 if YX4ad{l,...,m},
k;:k:(mJV,p,oz):{ N _ ]I\]f a J
m— - if 7+0z€{1,...,m},

we define the following space:
) WIP(@) = {u e D/(Q); 0< A <k, 07" (1g 0)~ 1D u € LP(9);
' k1< A <m, o ™M (lg o)’ DMu e LP(9)}.

In case 3 = 0, we simply denote the space by W7"?(Q2). Note that W,."}"(Q) is a
reflexive Banach space equipped with its natural norm

lullwrge = [ 32 e+ (1g0)* D ully, o
0< A<k

Y e Mg o) Dl g |
E+1<|AI<m

1/p

We also define the semi-norm

1/p
[ulwr @ = (Y llo*(go)’ D ull}u)

[A[=m

and for any integer g, we denote by P, the space of polynomials in N variables of
a degree smaller than or equal to ¢, with the convention that P, is reduced to {0}
when ¢ is negative. The weights defined in (1.1) are chosen so that the corresponding
space satisfies two properties:

(1.2) D(@) is dense in Wg?bp(Rf),
and the following Poincaré-type inequality holds in WCTIBP (Rf ).
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Theorem 1.1. Let o and 3 be two real numbers and m > 1 an integer not
satisfying simultaneously

(1.3) %—i—ae{l,...,m} and (8—-1)p=-L.

Then the semi-norm | - |W;',pr (RY) defines on W7 (RY)/P, a norm which is equiv-
alent to the quotient norm,

(14) Yu € WZEP(R_I,'Y), ||u||W;r,pr(Rﬁ)/pq, < C|U‘W;r:bp(Rﬁ)

with ¢’ = inf(q, m — 1), where q is the highest degree of the polynomials contained
in WP (RY),

Proof. First, we construct a linear continuous extension operator such that

(1.5) P: WIP(RY) — WIP(RY)

satisfying

(1.6) [1Pullwrr@yy < llullwme @y

Since

(1.6) Yu € ngbp(RN), ||u||W;'fbp(RN)/pq, < C|U‘W;':23P(RN)

holds [cf. 1], it automatically implies the statement of our theorem. O

Now, we define the space
o H.H )V"'L’ N
W f’f,’é’(RNH = D(RN+) “’Bp(p*);

[e] ’
the dual space of W'J(RY) is denoted by W__"";(RY), where p’ is the conjugate
of p: Il] + 1% =1.

Theorem 1.2. Under the assumptions of Theorem 1.1, the semi-norm
| lwmp @y is a norm on W"E(RY) such that it is equivalent to the full norm
- lwmr ey

We recall now some properties of weighted Sobolev spaces ngbp (Rf ). We have
the algebraic and topological imbeddings

W RY) € WIS (RY) € . C W2, (RY)
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if%+a¢{1,...,m}. When%+a:j€{l,...,m}, then we have:

) +1, , 0,
WIPRY) C .. C WY ) C W (RY) C L C W, o (RY),
Note that in the first case, the mapping u — ¢u is an isomorphism from W."” (RN )
onto W;"’; ,B(RN ) for any integer m. Moreover, in both cases and for any multl index
A € NV the mapping

u e WIP(RY) — D ue Wy MP(RY)

is continuous.
Finally, it can be readily checked that the highest degree ¢ of the polynomials
contained in W"(RY ) is given by

+ae{l,...,m}and (B—1)p > -1

N

N o) P
m—(=4+a) —1 if

G ) {ﬁJraG{jGZ] <0} and Bp > —

q= P

[m — (% +a)] otherwise,

where [s] denotes the integer part of s.

In the sequel, for any integer ¢ > 0, we will use the following polynomial spaces:

— P, (PqA) is the space of polynomials (respectively, harmonic polynomials) of
degree < g,

— P, is the subspace of polynomials in P, depending only on the N — 1 first
variables, ' = (x1,...,2Nn_1),

— AqA (N, qA) is the subspace of polynomials PA satisfying the condition p(z’,0) = 0
(respectively, di (z',0) = 0) or equlvalently odd with respect to xy (even with
respect to xy), with the convention that P, PqA, P,, ... are reduced to {0} when ¢
is negative.

2. THE SPACES OF TRACES

In order to define the traces of functions of Wm’p (RY), we introduce for any
o €]0, 1] the space

21)  WIPRN) = {u e D'(RN); wu e LP(RY),
+oo
/ t—imop dt/ lu(z + te;) —u(x)|P de < oo},
0 RN

where
if

0 # 0,
w =
o(lgo)/o if

:O’,

|z sz
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and eq,...,ey is a canonical basis of RY. It is a reflexive Banach space equipped
with its natural norm

N .
P 1/p
o,p = — + E t—l—ap dt +t i) — pd
HUHWO (RY) (Hw" LP(RN) i:l/O /[RN‘U(x ei) —u(@)l x)

which is equivalent to the norm

|u(z) — u(y)[” 1/p
= I qedy)
(H Lr(RN) /RNXRN [z —y[iror y)

For any s € R, we set

(2.2) WEP(RY) = {u e WEIE (RY); WA = [s], D u e WS_[S]’p(RN)}.

It is a reflexive Banach space equipped with the norm

HUHW“’(RN) = ||U||W[ 17 (R N) + Z HD’\UHWe—[ 1P (RNY*
[A|=s

We notice that this definition and the next one coincide with the definition in the
first section when s = m is a nonnegative integer. For any s € Rt and a € R, we
then set

(23)  WrRY) = {ue Wi (RY), V]| = [s), 0" D ue Wy HPRY) L

Finally, for any integer m > 1, we define the space

Xpr(RY) = {ue DY) 0 < ]\ <k, @M " (150) D u e L7(RY),
(2.4)
k+1< |\ <m, g")“*mD)‘ueLp(lRf)}

with o/ = (1 + |2/|?)'/2 and 1g ¢’ = In(2 + |2/|?). Tt is a reflexive Banach space. We
can prove that

D(RY) isdensein X;"P(RY).
We observe that the functions from X" (RY ) and W§™? (R} ) have the same traces
on ' = RN~! (see below). If u is a function, We denote its traces on T' = RV~1 by

x' € RN?I) ’You(lj) = U(ZL”,O), e 'af)/ju(‘x/) = 8 J ( /30)'
As in [3], we can prove the following trace lemma:
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Lemma 2.1. For any integer m > 1 and real number «, the mapping
- m—1
v: DRY) - [ DY)
§=0

U= (f)/Ou, B 'af)/mflu)

can be extended by continuity to a linear and continuous mapping still denoted by

v from WZP(RY) to H Wa' 7”’p(RN 1). Moreover, ~ is onto and
=0

Ker v = WZ”’(R_IX).

3. THE LAPLACE EQUATION

The aim of this section is to study the problem (P):

®) { —Au=f in Rf,

uU=g in I'=RN"L

Theorem 3.1. Let £ > 0 be an integer and assume that
N
(3.1) Fgé{l,...,ﬂ}

with the convention that this set is empty if { = 0. For any f in W[l’p(Rf) and g
1
in W/ ’p(F) satisfying the compatibility condition

O
(3.2) Vi € A% [e+1- 21> AL WP xwly! :< 87N>

1 oy
where (-, -)r denotes the duality between W' ’p(l“) and W_}' ? (T"), problem (P) has
a unique solution u € Wfl’p (RY') and there exists a constant C' independent of u, f
and g such that

P
£

(3-3) lullwrr@yy < CUfllw, 1@y + IIQHW%,IJ(P))

Proof. First, the kernel of the operator

/JJ

(=2, 70): WP (RY) — W, M P(RY) x W' (T)
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is precisely the space A[%_H_N/p,] for any integer ¢ and A@Hi%] is reduced to {0}

when ¢ > 0. Thanks to Lemma 2.1, let u, € Wfl’p(Rf) be the lifting function of g
such that

ug =g on I and HugHW;”(Rf) < Cl||gHWeﬁp

Then problem (P) is equivalent to

—Av=f+Au in RY,
(3.4) { J J -

v=0 on I
Set h = f + Aug. For any ¢ € Wi’f'(RN) set
Ne(z',zn) = (@', 2n) — p(2',—zy) if zn > 0.

It is clear that My € Wofl_f,(Rf) Then h can be extended to h, € W[l’p(RN)
defined by

1,p" N _
v € W27 (RT), ha(9) = (h190) yyoro vy’ iy
Moreover,
||h7T||W£—1,p(RN) = ||h||W[1’P([R$)'

Let ¢ be a polynomial in P[lé+1—

N/p]" We can write it in the form
A A
g=r+s, 1€ A Ny and s € Njgy )y

Then,
(hasq) = (f + Augv7">w;1=P(M)xW1f'(M)

and applying the Green formula we get

(Aug,r) = — Vug - Vrde

N
R+

or
:*<9,—> 1, T
OxN Iwr " ryxw_ ()

£ —£

(note that Ar =0 in RY and r =0 on T). Thus, h, € W[l’p(RN) and it satisfies

Vq S P[?+17N/p/], <h7-r,q> =0.
Recall that (cf. [1]) since (3.1) holds, the operators

A: W/P(RN) — W, ML P2

S (O 1,

A: WyP(RN) /Py wy— Wy " P(RN) L Py wyif £=0

P
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are isomorphisms. Hence, there exists ¥ in Wll’p (RY) such that —A% = h,. Now we
remark that the function w = 1 M@ belongs to W, P (RY) and

—Aw=~h in R_IX and w=0 on T,

i.e.w is a solution of (3.4). O

Remark. The kernel A2

Crr1-nyp) 18 Teduced to {0} if £ > 0 and to Pi_nyp) if
{=0.

With similar arguments, we can prove the following theorem:

Theorem 3.2. Let ¢ > 1 be an integer and assume that
N
(3.5) ? ¢ {1,...,—/}.

1
Then for any f in W:L,l’p(lRf) and g in W_p;,’p(l“), problem (P) has a unique solution
u € Wi’f(Rf)/A@H_N/p] and there exists a constant C' independent of u, f and g
such that

inf  Jlutgllyrr@y) SCUflw—r@yy +llgll 5. -
A[Aé+1—%] S - () wZ, ()

+m,p

1
Theorem 3.3. Let m be a nonnegative integer, let g belong to W5, (T") and

assume that

N
(3.6) few, Hmr(RY) jf? #1orm=0,
or
N
3.7 few HmeRNY AW P(RY) if = =1 and m #0.
m + 0 + p/

Then problem (P) has a unique solution v € Wt™P(RY) and u satisfies

N
i1, < C1gm, if — —
||U||Wm+1rp(uqef) S C(HfHWmH P(RY) + Hg”w,?ﬁm'p(r)) if o #1lorm=0
and
eyt yy < CUSlwpr@y) + 1 lwmreme gy + \|g||W7§7+,,L,p(F))

N
if;zl and m # 0.
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Proof. First, we observe that for any integer m > 0 we have the inclusion
W (RY) € W (RY)

1f y # 1 or m = 0. Thus, under the assumptions (3.6) or (3.7) and thanks to
Theorem 3.1, there exists a unique solution u € W, P(RY) of problem (P). Let us

prove by induction that

m,p

(3.8) g€ Wg+ (T) and f satisfies (3.6) or (3.7) = u € W *HP(RY).

For m = 0, (3.8) is valid. Assume that (3.8) is valid for 0,1, ..., m and suppose that
/+m+ P

geWwr. (T) and f € WP (RY) with N # 1 (a similar argument can be used
for f satisfying (3.7)). Let us prove that u € W,;":f P(RY). We observe first that

W (RY) ¢ Wrmte(RY ) and W) ¢ i T ),

hence u belongs to Wm+1p (Rf ) thanks to the induction hypothesis. Now, for i =
1 N —1,

ge ey

2 2 1

Thus, A(ed;u) € Wr=1P(RY) and o (0d;u) € W tHP(RV1). Applying the induc-
tion hypothesis, we can deduce that

du € WIEPP(RY) fori=1,...,N — 1.

It remains to prove that v = Oyu € VVmJrl P(RY). This is a consequence of the fact

that v belongs to W,P(RY) and

0;0nu = OnOju € WP (RN) i=1,...,N—1,

m+1
N-1
On(Onu) = Au— Y 0fu € Wk (RY).
i=1
We can conlude that u € W T2P(RY). O

Corollary 3.4. Let £ > 1 and m > 1 be two integers.
(1) Under the assumption

N
L,
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1
_ —rtm,
for any f € VV;LnHl’p(Rf) and g € W;’L_H,m p(F) satisfying the compatibility condition
(3.2) there exists a unique solution v € W m'H’p([Rf) of (P) and u satisfies

m--£

HUHW:LLLLP(RQ) < O(Hf“w;’::;‘”(mf) + Hg”Wiwn,p( )
me

where C'= C(m,p, ¢, N) is a constant independent of u, f and g.

1
_ 7+
for any f € W;Ln_ll’p(Rf) and g € W' _,
m~+1,p

W,

m—

1]

(ii) Under the assumption

N
m>={ or —¢&{l,....,0—m},
b

(") there exists a unique solution u €

7 (Rf)/A[AleN/p] of (P) and u satisfies

inf u~+ mal, <C m—1, + am .
et et dlwrar ey <O lwnpr@y Tl dems )
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