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Abstract. In the present paper we generalize a result of a theorem of J. Jakubík concerning
graph automorphisms of lattices to the case of multilattices of locally finite length.
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1. Introduction

Inspired by a problem proposed G.Birkhoff ([1], Problem 6) J. Jakubík investigated

graph automorphisms of modular lattices [4], semimodular lattices [10] and lattices
[5].

The present author studied graph isomorphisms of multilattices [7], [8], [11]. We
will apply some results [4], [5] and our results [7], [8] for dealing with graph auto-

morphisms of multilattices of locally finite length. We obtain a generalization of a
theorem of J. Jakubík [4], [5].

2. Preliminaries

The notion of a multilattice was introduced by Benado [2]. It is defined as follows.

Let P be a partially ordered set. For x, y,∈ P we denote by L(x, y) and U(x, y) the
system of all lower bounds and all upper bounds of the set {x, y} in P , respectively.
Let x ∧ y be the system of all maximal elements of L(x, y); similarly we denote by
x ∨ y the system of all minimal elements of U(x, y). If P is directed then both
x ∧ y, x ∨ y are nonempty. P is said to be a multilattice if whenever x, y ∈ P and
z ∈ L(x, y) then there is z1 in L(x, y) such that z1 > z, z1 is a maximal element of
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L(x, y) (this case we will write down as z1 ∈ (x ∧ y)z = {u ∈ x ∧ y : u > z}) and if
the corresponding dual condition concerning U(x, y) also holds.
In what follows M is a directed multilattice of locally finite length. For a, b ∈ M

with a 6 b, the interval [a, b] is the set {x ∈ M : a 6 x 6 b}. If [a, b] = {a, b} and
a 6= b then [a, b] is said to be a prime interval and we put a ≺ b.

By a graph G(M) we mean an unoriented graph whose vertices are elements of
M : two vertices are joined by an edge (a, b) iff [a, b] is a prime interval. A graph
automorphism of M is a one-to-one maping ϕ : M onto M such that whenever
x, y ∈M and x ≺ y, then either ϕ(x) ≺ ϕ(y) or ϕ(y) ≺ ϕ(x).
The following assertion (A) was proved in [2].

(A) A multilattice M of locally finite length is modular iff it fulfils the following

covering condition (σ′) and the condition (σ′′) dual to σ′.
(σ′) If a, b, u, v ∈ M are such that [u, a], [u, b] are prime intervals and v ∈ a ∨ b,

then [a, v], [b, v] are prime intervals.

3. Cells in partially ordered sets

LetM be a multilattice. Assume that x1, x2, . . . , xm, y1, y2, . . . , yn, u, v are distinct
elements of M such that

(i) u ≺ x1 ≺ x2 ≺ . . . ≺ xm ≺ v, u ≺ y1 ≺ . . . ≺ yn ≺ v;
(ii) either v ∈ x1 ∨ y1 or u ∈ xm ∧ yn.

Then the set {u, v, x1, x2, . . . , xm, y1, y2, . . . , yn} = C is called a cell in M . The

cell C in M is said to be proper if either m > 1 or n > 1. A cell C in M such that
m = n = 1 will be called an elementary square. We will say that an elementary square
C = {u, v, x1, y1} inM is broken by a graph automorphism ϕ if either ϕ(u) ≺ ϕ(x1),
ϕ(u) ≺ ϕ(y1), ϕ(v) ≺ ϕ(x1), ϕ(v) ≺ ϕ(y1) or dually.
A cell C is called regular under a graph automorphism ϕ if either each prime

interval [a, b] ∈ C is preserved by the graph automorphism ϕ (i.e.ϕ(a) ≺ ϕ(b)) or each
prime interval [a, b] ∈ C is reversed by the graph automorphism ϕ (i.e.ϕ(b) ≺ ϕ(a)).
The present author proved the following results.

3.1. Theorem (Cf. [7].). Let M,M ′ be directed modular multilattices of locally

finite length. Then the following conditions are equivalent:

(α1) There exists a graph isomorphism ϕ of M onto M ′ such that no elementary

square of M or M ′ is broken by ϕ or ϕ−1, respectively.

(α2) There are multilattices A,B and direct representations f : M → A × B,

g : M ′ → A×Bd such that ϕ = g−1f (Bd is the dual to B).
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3.2. Theorem (Cf. [8].). Let M,M ′ be directed multilattices of locally finite

length and let ϕ : M →M ′ be a bijection. Then the condition (α2) is equivalent to
the following condition.

(β1) ϕ is a graph isomorphism of the multilattice M onto M ′ such that no ele-

mentary square of M or M ′ is broken under ϕ or ϕ−1, respectively, and all

proper cells of M,M ′ are regular under ϕ or ϕ−1, respectively.

For a multilattice M we denote by
A(M)—the set of all graph automorphisms of M ;
As(M)—the set of all ϕ ∈ A(M) such that no elementary square of M is broken

by ϕ and by ϕ−1;

Ac(M)—the set of all ϕ ∈ As(M) such that each proper cell inM is regular under
ϕ or ϕ−1.

Futher, let C, (C0 and C1) be the class of multilattices M such that whenever
ϕ ∈ A(M) (or ϕ ∈ As(M), ϕ ∈ Ac(M)) then ϕ is a lattice automorphism on M .
The following two lemmas were proved in [3] for a lattice L. The proofs of these

lemmas remain valid if the assumption that L is a modular lattice is replaced by the

assumption that L is a multilattice of locally finite length.

3.3. Lemma (Cf. [4].). Let ψ be an isomorphism of the multilattice M onto the
direct product A×B. Further suppose that γ is an isomorphism of B onto Bd.

For each x ∈M we put ϕ(x) = y where ψ(x) = (a, b) y = ψ−1(a, γ, (b)).
Then ϕ is a graph automorphism of M .

3.4. Lemma (Cf. [4].). Let the assumption of 3.3 be satisfied. Further suppose
that B has more than one element. Then ϕ fails to be a multilattice automorphism

on M .

3.5. Lemma. Let the assumption of 3.3 be valid. Then no elementary square
ofM is broken by the graph automorphism ϕ and by ϕ−1; consequently ϕ ∈ As(M).

�������	�
. Let {a, b, u, v} be an elementary square in M such that a ≺ v, b ≺

v, u ≺ a, u ≺ b. If ψ(a) = (a1, a2), ψ(b) = (b1, b2), ψ(u) = (u1, u2), ψ(v) = (v1, v2)
then the relation ψ(a) ≺ ψ(v) is valid if and only if either

(i) a1 ≺ v1 and a2 = v2,

or

(ii) a1 = v1 and a2 ≺ v2.

From this and a ≺ v it follows that ϕ(a) ≺ ϕ(v) if and only if the case (i) is
valid and ϕ(v) ≺ ϕ(a) if and only if the case (ii) is valid. Suppose that ϕ(u) ≺ ϕ(a),
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ϕ(u) ≺ ϕ(b), ϕ(v) ≺ ϕ(a), ϕ(v) ≺ ϕ(b). From the relations ϕ(u) ≺ ϕ(a), ϕ(u) ≺ ϕ(b)
we have a2 = u2 = b2. The relations ϕ(v) ≺ ϕ(a), ϕ(v) ≺ ϕ(b) imply a1 = v1 = b1.

Thus ψ(a) = ψ(b), which is a contradiction.
If we consider ϕ(a) ≺ ϕ(u), ϕ(b) ≺ ϕ(u), ϕ(a) ≺ ϕ(v), ϕ(b) ≺ ϕ(v) then we obtain

ψ(a) = ψ(b) by a similar argument.
In the same way we arrive at a contradiction if we suppose that an elementary

square of M is broken by the graph automorphism ϕ−1. �

3.6. Lemma. Let the assumptions of 3.3 be satisfied. Then each proper cell
of M is regular under the graph automorphism ϕ and under ϕ−1; consequently

ϕ ∈ Ac(M).

�������	�
. Assume that C = {u, v, x1, . . . , xm, y1, . . . , yn} is a proper cell in M

such that m > 1 and v ∈ x1 ∨ y1 (if u ∈ (xm ∧ yn) we can apply the dual method).
If x ∈M and ψ(x) = (a, b) then we denote a = x(A), b = x(B).
Since u ≺ x1 we have either

(i) u(A) ≺ x1(A) and u(B) = x1(B),

or

(ii) u(A) = x1(A) and u(B) ≺ x1(B).

Similar relations hold for u and y1; let us denote them by (i1) and (ii1). Consider
the case when (i) is valid.

If (ii1) holds, then x1 = ψ−1(x1(A), u(B)), y1 = ψ−1(u(A), y1(B)) and (x1(A),
u(B)) ∨ (u(A), y1(B)) = {(x1(A), y1(B))}. From this it follows that ψ(v) =
(x1(A), y1(B)) ≺ (x1(A), u(B)) = ψ(x1) and thus v ≺ x1, which is a contradic-

tion.

Hence (i1) must hold and we have ψ(x1) ∨ψ(y1) = (x1(A), u(B)) ∨ (y1(A), u(B)).
From this it follows that v(B) = u(B).
For each xi and yj we have u 6 xi 6 v, u 6 yj 6 v whence xi(B) = u(B) = yj(B)

and therefore we get ϕ(u) ≺ ϕ(x1) ≺ . . . ≺ ϕ(xm) ≺ ϕ(v), ϕ(u) ≺ ϕ(y1) ≺ . . . ≺
ϕ(yn) ≺ ϕ(v).
Thus C is regular.

The proof for the case (ii) is analogous. �

By the same method as 1.3, 3.1 in [4] (with the only distinction that instead of [3]
we now apply 3.2) we have

3.7. Lemma. If a multilattice M belongs to C1 then no direct factor of M

having more than one element is self-dual.
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3.8. Lemma. If no direct factor ofM having more than one element is self-dual
then M belongs to C1.

These lemmas yield the following assertion.

3.9. Theorem. Let M be a directed multilattice of locally finite length. Then

the following conditions are equivalent:

(i) M belongs to C1;

(ii) no direct factor of M having more than one element is self-dual.

Analogously as above (by applying 3.1) we obtain

3.10. Theorem. Let M be a directed modular multilattice of locally finite

length. Then the following conditions are equivalent:

(i′) M belongs to C0;

(ii) no direct factor of M having more than one element is self-dual.
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