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Abstract. A caterpillar is a tree with the property that after deleting all its vertices of
degree 1 a simple path is obtained. The signed 2-domination number γ2s (G) and the signed
total 2-domination number γ2st(G) of a graph G are variants of the signed domination
number γs(G) and the signed total domination number γst(G). Their values for caterpillars
are studied.
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This paper concerns caterpillars. A caterpillar [1] is a tree with the property that
after deleting all its vertices of degree 1 a simple path is obtained. According to this

definition a caterpillar has at least three vertices. But we need not care about graphs
with one or two vertices. For such graphs our considerations are trivial.

Let G be a caterpillar. The mentioned simple path will be denoted by B and

called the body of the caterpillar G. Let the number of vertices of B be m. Let
a1, . . . , am be these vertices and let aiai+1 for i = 1, . . . , m − 1 be the edges of B.

By [m] we shall denote the set of integers i such that 1 6 i 6 m. For each i ∈ [m]
let si be the degree of ai in G. The vector ~s = (s1, . . . , sm) will be called the degree
vector of the caterpillar G.

Now we shall define variants of the signed domination number and of the signed
total domination number [2] of a graph. For a vertex u ∈ V (G) the symbol N(u)
denotes the open neighbourhood of u in G, i.e. the set of all vertices which are
adjacent to u in G. The closed neighbourhood of u is N [u] = N(u) ∪ {u}. Similarly
the open 2-neighbourhood N2(u) is the set of all vertices having the distance 2 from
u in G. The closed 2-neighbourhood of u is N 2[u] = N [u]∪N2(u). If f is a mapping
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of V (G) into some set of numbers and S ⊆ V (G), then f(S) =
∑
x∈s

f(x) and the

weight of f is w(f) = f(V (G)) =
∑

x∈V (G)

f(x).

Let f : V (G) → {−1, 1}. If f(N 2[u]) > 1 (or f(N2(u)) > 1) for each u ∈ V (G),
then f is called a signed 2-dominating (or signed total 2-dominating, respectively)

function on G. The minimum of weights w(f) taken over all signed 2-dominating (or
all signed total 2-dominating) functions f is the signed 2-dominating number γ2

s (G)
(or the signed total 2-domination number γ2

st(G), respectively) of G.
For each i ∈ [m] let ti ∈ {1, 2} and ti ≡ si + 1 (mod 2).
We shall prove a theorem concerning γ2

s (G).

Theorem 1. Let G be a caterpillar with the degree vector ~s = (s1, . . . , sm) such
that n > 2 and si > 3 for all i ∈ [m]. Then

γ2
s (G) =

m∑

i=1

ti − 2m + 2.

���	�����
. Consider a vertex ai with i ∈ [m]. As si > 3, there exists at least one

vertex u ∈ N(ai) which does not belong to B and has degree 1. Then N 2[u] = N [ai].
Let f be a signed 2-dominating function on G. Then f(N 2[u]) = f(N [ai]) > 1. The
setN [ai] has si+1 vertices. If si is even, then si+1 is odd. At least 1

2 (si+2) = 1
2si+1

vertices of N [ai] must have the value 1 in f and at most 1
2si of them may have the

value −1. Then f(N2[u]) > ( 1
2si + 1)− 1

2si = 1 = ti. If si is odd, then si+1 is even

and at least 1
2 (si + 1) + 1 vertices of N [ai] must have the value 1 in f and at most

1
2 (si + 1) − 1 of them may have the value −1. Then f(N 2[u]) > 2 = ti. We may

easily construct the function f such that it has the value −1 in exactly 1
2si vertices

of degree 1 in N [ai] with i even and in exactly 1
2 (si + 1)− 1 = 1

2 (si − 1) vertices of
degree 1 in N [ai] with i odd. In all other vertices (including all vertices of the body)
the function f has the value 1.

We have
m⋃

i=1

N [ai] = V (G). The vertex a1 is contained in exactly two sets N [ai],

namely in N [a1] and N [a2]. Similarly am is contained in exactly two sets N [am−1],
N [am]. For i ∈ [m]−{1, m} the vertex ai is contained in exactly three sets N [ai−1],
N [ai], N [ai+1]. Each vertex outside the body is contained in exactly one of these
sets. By the Inclusion-Exclusion Principle we have

w(f) = f(V (G)) =
m∑

i=1

f(N [ai])− 2
m−1∑

i=2

f(ai)− f(a1)− f(am)

=
m∑

i=1

ti − 2(m− 2)− 1− 1 =
m∑

i=1

ti − 2m + 2.
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As f is the minimum function satisfying the requirements, we have

γ2
s (G) = w(f) =

m∑

i=1

ti − 2m + 2.

�
An analogous theorem concerns γ2

st(G).

Theorem 2. Let G be a caterpillar with the degree vector ~s = (s1, . . . , sm) such
that m > 2 and si > 4 for all i ∈ [m]. Then

γ2
st(G) =

m∑

i=1

ti + 2.

���	�����
. Consider a vertex ai with i ∈ [m]. As si > 5, there exists at least

one vertex u ∈ N(ai) which does not belong to B and has degree 1. Then N 2(u) =
N(ai)−{u}. Let f be a signed total 2-dominating function on G. Then f(N 2(u)) =
f(N(ai) − {u}) > 1. The set N(ai) − {u} has si − 1 vertices. If si is even, then

si − 1 is odd. At least 1
2si vertices of N(ai) − {u} must have the value 1 in f and

at most 1
2 (si − 2) = 1

2si − 1 of them may have the value −1. Then f(N 2(u)) >
1
2si − ( 1

2si − 1) = 1 = ti. If si is odd, then si − 1 is even and at least 1
2 (si − 1) + 1

vertices of N(ai)−{u} must have the value 1 in f and at most 1
2 (si − 1)− 1 of them

may have the value −1. Then f(N 2(u)) > 2 = ti. As si > 5 for i ∈ [m], in both
these cases we must admit the possibility f(u) = 1. Then in the case of si even we

have f(N(ai)) > 2 = ti + 1 and in the case of si odd we have f(N(ai)) > 3 = ti + 1.
We may easily construct the function f such that it has the value −1 in 1

2si − 1
vertices of degree 1 in N(ai) for si even, in 1

2 (si−1)−1 = 1
2 (si−3) vertices of degree

1 in S(ai) for si odd and the value 1 for all other vertices (including all vertices

of B). Each vertex aj for j ∈ [m] − {1, m} is contained in two sets N(ai), namely
in N(aj−1) and N(aj+1). Each other vertex is contained in exactly one set N(ai).
Again by the Inclusion-Exclusion Principle we have

w(f) = f(V (G)) =
m∑

i=1

f(N(ai))−
m−1∑

i=2

f(ai)

=
m∑

i=1

(ti + 1)− (m− 2) =
m∑

i=1

ti + m− (m− 2) =
m∑

i=1

ti + 2.

As f is the minimum function satisfying the requirements, we have

γ2
st(G) = w(f) =

m∑

i=1

ti + 2.

�
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In Figs. 1 and 2 a caterpillar G with the degree vector (5, 6, 7) is depicted. We have
t1 = t3 = 2, t2 = 1 and therefore γ2

st(G) = 7 and γ2
s (G) = 1. In Fig. 1 the values of

the corresponding signed total 2-dominating function are illustrated; in the vertices
denoted by + the value is 1 and in the vertices denoted by − it is −1. Similarly in
Fig. 2 the corresponding signed 2-dominating function is illustrated.

+ + + + +

− − − − −

+ +++ +++

Fig. 1.

+ + + + +

− − −−− −−−

+ + + +

Fig. 2.

In Theorems 1 and 2 we had the assumption m > 2. The following proposition
concerns the singular case m = 1.

Proposition 1. Let G be a caterpillar with the body consisting of one vertex,

i.e. a star with the central vertex a1 and with s1 > 2 vertices of degree 1. Then
γ2
st(G) is undefined and γ2

s (G) = t1.

���	�����
. The open 2-neighbourhood N2(a1) = ∅ and thus f(N2(a1)) = 0 for

any function f : V (G) → {−1, 1}, hence none of such functions might be signed
total 2-dominating in G. On the other hand, N 2[a1] = V (G) and |V (G)| = s1 + 1.
Analogously as in the proofs of Theorems 1 and 2 we prove that for s1 even we have
γ2
s (G) = 1 = t1 and for s1 odd we have γ2

s (G) = 2 = t1. �

Proposition 2. Let G be a caterpillar with m ≡ 2 (mod 5), m > 5, si = 3 for all

i ∈ [m]. Then γ2
st(G) 6 4

3 (m + 3) + 2, while
m∑

i=1

ti + 2 = 2(m + 1).

���	�����
. As si = 3 for each i ∈ [m], we have ti = 2 for each i ∈ [m]. Each

vertex ai for i ∈ [m] − {1, m} is adjacent to exactly one vertex vi of degree 1. The
vertex a1 is adjacent to two such vertices v1, w1 and similarly am to vm, wm. Let

f : V (G) → {−1, 1} be defined so that f(vi) = −1 for i ≡ 0 (mod 3) and f(u) = 1 for
all other vertices u. This is a signed total 2-dominating function on G (this can be

easily verified by the reader) and w(f) = 1
3 (4m+10). Therefore γ2

st(G) 6 1
3 (4m+10),

while
m∑

i=1

ti + 2 = 2(m + 1). For m > 3 we have 1
3 (4m + 10) < 2(m + 1).

In Fig. 3 we see such a caterpillar for m = 8 with the corresponding function

f . In this case γ2
st(G) = 14,

m∑
i=1

ti + 2 = 18. For the signed 2-domination number
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+ + + + + + + + + +

+ + − + + − + +
Fig. 3.

here Theorem 1 holds. In Fig. 4 the same caterpillar is depicted with the function f

realizing the signed domination number γ2
s (G) =

m∑
i=1

ti − 2m + 2 = 2. �

+ + + + + + + + + +

− − − − − − − −
Fig. 4.

Proposition 3. Let G be a caterpillar with m > 2 and si = 2 for each i ∈ [m].

Then
m∑

i=1

ti − 2m + 2 < γ2
s (G), but

m∑
i=1

ti + 2 = γ2
st(G).

���	�����
. The caterpillar thus described is a simple path of length m + 1. It has

m+2 vertices. The inequality γ2
s (G) 6

m∑
i=1

ti − 2m+2 would imply that there exists

a signed 2-dominating function f which has the value −1 in m vertices, while the

value 1 only in two vertices. This is evidently impossible. On the other hand the
open 2-neighbourhood of any vertex consists of at most two vertices and therefore

the unique signed total 2-dominating function is the constant function equal to 1 in
the whole set V (G). Then

γ2
st(G) = w(f) =

m∑

i=1

ti + 2 = m + 2.

�

Now we shall study the signed 2-domination number of a simple path Pn with

n vertices (i.e. of length n − 1). We shall not use the notation for caterpillars used
above, but we shall denoted the vertices by u1, . . . , un and edges by uiui+1 for i =
1, . . . , n− 1.

Theorem 3. Let Pn be a path with n vertices. If n ≡ 0 (mod 5), then γ2
s (Pn) =

1
5n. In general, asymptotically γ2

s (Pn) ≈ b 1
5nc.

���	�����
. If n ≡ 0 (mod 5), then the closed neighbourhood N 2[ui] = {ui−2, ui−1,

ui, ui+1, ui+2} for i ≡ 3 (mod 5), 3 6 i 6 n − 2, form a partition of V (Pn). Let f
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be a signed 2-dominating function on Pn. Then f must have the value 1 in at least

three vertices and may have the value −1 in at most two vertices of each class of this
partition. Then w(f) > 3

5n = 1
5n. A function f for which the equality occurs may

be defined so that f(ui) = −1 for i ≡ 0 (mod 5) and i ≡ 1 (mod 5) and f(u1) = 1
for i ≡ 2 (mod 5), i ≡ 3 (mod 5) and i ≡ 4 (mod 5). Therefore γ2

s (Pn) = w(f) = 1
5n.

Now let m ≡ r (mod 5), r 6 4. Let q = n − r. We have q ≡ 0 (mod 5) and thus
γ2
s (Pq) = 1

5q. The path Pn is obtained from Pq by adding a path with r vertices.
Let g be a minimum signed 2-dominating function on Pn, let g0 be its restriction to

Pq . We have w(g0) = 1
5q. Now the vertices of Pn not in Pq may have values 1 or −1

in g and thus 1
5q − r 6 w(g) 6 1

5q + r. In general, 1
5q − 4 6 γ2

s (Pn) 6 1
5q + 4. This

implies
9
5n

− 4
n

6 γ2
s (Pn)

n
6 9

5n
+

4
n

.

Therefore lim
n→∞

γ2
s (Pn)

n = 9
5m and thus γ2

s (Pn) ≈ 9
5 = bn

5 c. �

In Fig. 5 we see a path P15 (with γ2
s (P15) = 3) in which the corresponding signed

2-dominating function is illustrated.

− + + + − − + + + − − + + + −
Fig. 5.

As has already been mentioned, γ2
st(Pn) = n for each positive integer n.

Without a proof we shall state the values of γ2
s (Pn) for n 6 4. We have γ2

s (P1) = 1,
γ2
s (P2) = 2, γ2

s (P3) = 1, γ2
s (P4) = 2.
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