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Abstract. In this work we apply the method of a unique partition of a complex function
f of complex variables into symmetrical functions to solving a certain type of functional
equations.
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1. Introduction

The main result of part 2 consists in the presentation of Theorem 2.1 about the
uniqueness of decomposition of an arbitrary complex multivariable function into the

sum of symmetrical functions. Part 3 and 4 are devoted to the presentation of
the general method of solving certain functional equations (compare (6)) with an

unknown complex multivariable function. This method applies the decomposition
introduced in part 2. Part 5 consists of illustrative examples of the solutions to the

equations f(ix, y) − f(x, iy) = 0 and f(−x, y)f(x,−y) − f2(x, y) + 2x2y2 = 0 for
(x, y) ∈ �

2 .

Let us fix k ∈ �, k � 2 and let εk := exp (2�i/k). Let us assume that a set

U ⊂ � has the following property of k-symmetry: for any z, if z ∈ U then εkz ∈ U .
For every number j from the set of all integers � and every k-symmetrical set U

a function f : U → � will be called (j, k)-symmetrical if f(εkz) = εj
kf(z) for each

z ∈ U. In the paper [1] was proved the folloving lemma
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Lemma 1.1. Let f be a complex function defined on a k-symmetrical set U. Then

f can be written as the sum

(1) f =
k−1∑

j=0

Gj
kf

of (j, k)-symmetrical functions Gj
kf , where for z ∈ U

Gj
kf(z) =

1
k

k−1∑

l=0

ε−lj
k f(ε− klz), j = 0, 1, . . . , k − 1.

Moreover, this partition is unique in the folloving sense: if f =
k−1∑
j=0

gj , where gj are

(j, k)-symmetrical functions for j = 0, 1, . . . , k − 1, then gj = Gj
kf.

2. (j, l|k)-symmetrical functions

Let us fix k ∈ �, k � 2 and let ε := εk = exp (2�i/k). A set U ⊂ �
2 will be called

k-symmetrical if for any (x, y) ∈ U the points (εx, y) and (x, εy) are also elements
of this set.

The class of the nonempty k-symmetrical sets will be denoted by Sk(� 2 ) or,
shortly, Sk.

Let us fix U ∈ Sk. By Fk(U), or Fk, we shall denote the complex linear space of
functions f : U → � .

For any j, l ∈ � a function f ∈ Fk(U) will be called (j, l|k)-symmetrical if
f(εx, y) = εjf(x, y) and f(x, εy) = εlf(x, y) for any (x, y) ∈ U . The (j, l|k)-
symmetrical functions form a linear subspace of the space Fk(U). This subspace
will be denoted by F j,l

k (U) or, shortly, F
j,l
k .

For any (x, y) ∈ U , f ∈ Fk(U) and m, n ∈ � let

Gm,n
k f(x, y) :=

1
k2

k−1∑

j=0

k−1∑

l=0

ε−mj−nlf(εjx, εly).

In this way linear operators Gm,n
k are defined on Fk. It is easy to see that for any

f ∈ Fk we have Gm,n
k f ∈ Fm,n

k . Moreover F j,l
k = F j+mk,l+nk

k and Gj,l
k = Gj+mk,l+nk

k

for j, l, m, n ∈ �. Therefore the analysis of the spaces F j,l
k and the operators Gj,l

k

can be restricted to the case when j, l = 0, 1, . . . , k − 1.
To simplify notation let K := {0, 1, . . . , k − 1}.
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Theorem 2.1. For any U ∈ Sk and f ∈ Fk(U) we have

(2) f =
k−1∑

m,n=0

Gm,n
k f.

The above representation of f in the form (2) is unique, i.e. if f =
k−1∑

m,n=0
gm,n for

some gm,n ∈ Fm,n
k , then gm,n = Gm,n

k f for m, n ∈ K.

�����. For (x, y) ∈ U , m, n ∈ K and f ∈ Fk(U) let

Gm,−
k f(x, y) :=

1
k

k−1∑

j=0

ε−mjf(εjx, y), G−,n
k f(x, y) :=

1
k

k−1∑

l=0

ε−nlf(x, εly).

These equalities define linear operators mapping the space Fk(U) into itself. It is
easily checked that

(3) Gm,n
k = Gm,−

k ◦G−,n
k = G−,n

k ◦Gm,−
k

Let us take x ∈ � such that Ux := {y ∈ � : (x, y) ∈ U} �= ∅. Obviously, if y ∈ Ux

then εy ∈ Ux and therefore Ux is a k-symmetrical set. Due to Lemma 1.1 for any
y ∈ Ux we have

(4) f(x, y) =
k−1∑

n=0

G−,n
k f(x, y).

This equality holds for any (x, y) ∈ U as if (x, y) ∈ U then y ∈ Ux.

Let us denote G−,n
k f(x, y) := gn(x, y) for (x, y) ∈ U and let us take y ∈ � such

that Wy := {x ∈ � : (x, y) ∈ U} �= ∅. If x ∈ Wy then εx ∈ Wy. Hence Wy is a
k-symmetrical set, so for a fixed y we can apply Lemma 1.1 to the function gn on

the set Wy and therefore for any x ∈ Wy

gn(x, y) =
k−1∑

m=0

Gm,−
k gn(x, y).

Hence using (4) and (3) for any (x, y) ∈ U we obtain

f(x, y) =
k−1∑

n=0

gn(x, y) =
k−1∑

n=0

k−1∑

m=0

Gm,−
k (G−,n

k f)(x, y) =
k−1∑

m,n=0

Gm,n
k f(x, y).
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To prove the uniqueness of the decomposition (2) let us assume that f =
k−1∑

m,n=0
hm,n

for some hm,n ∈ Fm,n
k . Then for any j, l ∈ K we have

Gj,l
k f =

k−1∑

m,n=0

Gj,l
k hm,n =

k−1∑

m,n=0

Gj,−
k (G

−,l
k hm,n)

=
k−1∑

m=0

Gj,−
k

( k−1∑

n=0

G−,l
k hm,n

)
=

k−1∑

m=0

Gj,−
k hm,l = hj,l.

������	 The above results can be without any difficulty generalized and proved

in the case of functions of n variables for n > 2.

3. (j, l|k)-symmetrical extensions

Let us fix k ∈ N , k � 2 and U ∈ Sk(� 2 ). For any m, n ∈ K, where K =

{0, 1, . . . , k − 1}, the set

Um,n := {(x, y) ∈ U : Arg(x) ∈ [m2�/k, (m+ 1)2�/k)

∧Arg (y) ∈ [n2�/k, (n+ 1)2�/k)}

will be called a sector of the set U . As usual to represent Arg (0) we can take an
arbitrary real number. Consequently, if (0, 0) ∈ U then (0, 0) ∈ Um,n for arbitrarily
chosen m, n ∈ K.

It can be seen that
k−1⋃

m,n=0
Um,n = U. Nevertheless, sectors are not pairwise disjoint.

Putting

U j := {x ∈ � : Arg (x) ∈ [j2�/k, (j + 1)2�/k)}

for j ∈ K we have Um,n = (Um × Un) ∩ U. Hence for j, l, m, n ∈ K

U j,l ∩ Um,n = [(U j ∩ Um)× (U l ∩ Un)] ∩ U.

Therefore

U j,l ∩ Um,n =





{(0, 0)} ∩ U for j �= m; l �= n

(U j × {0}) ∩ U for j = m; l �= n

({0} × U l) ∩ U for j �= m; l = n.

If fj,l ∈ F j,l
k (U) for j, l ∈ K, then the function fj,l is determined uniquely by fj,l|U0,0.

The following procedure enables us to recover the function fj,l from its behaviour
on the sector U0,0 and is of fundamental importance for our considerations.
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Let us fix a function h : U0,0 → � and j, l ∈ K. A (j, l|k)-symmetrical extension
of the function h onto a set U is a function [h]j,l : U → � such that
1. if (x, y) ∈ Up,q for p, q ∈ K and xy �= 0 then

[h]j,l(x, y) := εjp+lqh(ε−px, ε−qy),

2. if xy = 0 then

[h]j,l(0, y) =

{
0 for j �= 0
εlqh(0, ε−qy) for j = 0, y ∈ U q, y �= 0,

[h]j,l(x, 0) =

{
0 for l = 0

εjph(ε−px, 0) for l = 0, x ∈ Up, x �= 0,

[h]j,l(0, 0) =

{
0 for j, l �= 0
h(0, 0) for j, l = 0.

Lemma 3.1. (a) For any j, l ∈ K and h : U0,0 → � we have [h]j,l ∈ F j,l
k (U).

(b) If f ∈ F j,l
k (U) then there exists a function h : U0,0 → � such that f = [h]j,l.

�����. (a) If (x, y) ∈ Up,q and xy �= 0 then (εx, y) ∈ Up+1,q. Therefore

[h]j,l(εx, y) = εj(p+1)+lqh(ε−p−1εx, ε−qy) = εj [h]j,l(x, y).

By analogy [h]j,l(x, εy) = εl[h]j,l(x, y). Now let x = 0 and y ∈ U q − {0}. Then
εy ∈ U q+1 and

[h]j,l(0, εy) =

{
0 for j �= 0
εl(q+1)h(0, ε−q−1εy) for j = 0

= εl[h]j,l(0, y).

By analogy, when x ∈ Up − {0}, then [h]j,l(εx, 0) = εj [h]j,l(x, 0). It can also be seen
that [h]j,l(ε0, 0) = εj [h]j,l(0, 0) and [h]j,l(0, ε0) = εl[h]j,l(0, 0).

To prove (b) it is sufficient to take h = f |U0,0.
It follows from Lemma 3.1 that F j,l

k (U) is the set of all (j, l|k)-symmetrical exten-
sions of all functions h : U0,0 → � onto U.

Now let us assume that on a set U ∈ Sk we have defined a certain family of

functions
gm0,0,m0,1,...,mk−1,k−1 : U → � ,

where m0,0, m0,1, . . . , mk−1,k−1 ∈ � ∪ {0}. Let us consider a functional equation

(5)
∑

m0,0,m0,1,...,mk−1,k−1

gm0,0,m0,1,...,mk−1,k−1

k−1∏

j,l=0

f
mj,l

j,l = 0

with unknowns fj,l ∈ F j,l
k (U) for j, l ∈ K.
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The equation (5) will be called homogeneous if for some m, n ∈ K all addends of

the sum (5) are elements of the same space Fm,n
k (U).

Theorem 3.1. If U ∈ Sk and if the equation (5) is homogeneous then for any

hj,l : U0,0 → � , j, l ∈ K the functions fj,l = [hj,l]j,l satisfy the equation (5) on U if

and only if the functions hj,l satisfy it on U0,0.

�����. It is clear that if fj,l satisfy the equation (5) on U then the functions

hj,l := fj,l|U0,0 satisfy it on U0,0 and fj,l = [hj,l]j,l for any j, l ∈ K.

Conversely, let us assume that the functions hj,l : U0,0 → � satisfy the equation

(5) on U0,0 and fj,l = [hj,l]j,l. Since (5) is a homogeneous equation there exist
m, n ∈ K such that all addends of the sum (5) belong to Fm,n

k (U).

Let s :=
∑
j

jmj,l, t :=
∑
l

lmj,l. Then
k−1∏
j,l=0

f
mj,l

j,l ∈ F s,t
k and therefore

gm0,0,m0,1,...,mk−1,k−1 ∈ Fm−s,n−t
k .

Let us assume that (x, y) ∈ Up,q and xy �= 0 for p, q ∈ K. Then, writing

m0,0, m0,1, . . . , mk−1,k−1 :=M we have

∑

M

gM (x, y)
k−1∏

j,l=0

f
mj,l

j,l (x, y)

=
∑

M

εp(m−s)+q(n−t)gM (ε−px, ε−qy)
k−1∏

j,l=0

εjpmjl+lqmjlh
mj,l

j,l (ε
−px, ε−qy)

=
∑

M

εp(m−s)+q(n−t)εsp+tqgM (ε−px, ε−qy)
k−1∏

j,l=0

h
mj,l

j,l (ε
−px, ε−qy)

= εpm+qn
∑

M

gM (x0, y0)
k−1∏

j,l=0

h
mj,l

j,l (x0, y0) = 0

where (x0, y0) := (ε−px, ε−qy) ∈ U0,0, as hj,l satisfy the eqation (5) on U0,0. In the

same way we check that fj,l satisfy the equation (5) at the points (x, 0) and (0, y) of
the set U.

4. Application

In what follows we assume that k is a fixed natural number, k � 2 and ε =

exp (2�i/k).
Let us take a set U ∈ Sk(� 2 ) and consider a functional equation

(6) W (x, y, f(x, y), f(εx, y), . . . , f(εjx, εly), . . . , f(εk−1x, εk−1y)) = 0
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for (x, y) ∈ U , j, l ∈ K, where f is an unknown complex function defined on U, while

W (x, y, p1, . . . , pk2), for fixed (x, y) ∈ U, is a polynomial with variables p1, . . . , pk2 .

Note that if the unknown function f is represented in the form (2), i.e.

f(x, y) =
k−1∑

j,l=0

fj,l(x, y)

for (x, y) ∈ U , where fj,l = Gj,l
k f , then after substituting it into (6) and rearranging

it the equation takes the form

(7)
k−1∑

m,n=0

[ ∑

m0,0,...,mk−1,k−1

gm0,0,...,mk−1,k−1

k−1∏

j,l=0

f
mj,l

j,l

]
= 0

where for certainm0,0, . . . , mk−1,k−1 ∈ �∪{0}, gm0,0,...,mk−1,k−1 are functions defined

on U such that the addends in the square bracket in (7) belong to Fm,n
k (U). Due to

the uniqueness of the decomposition (2) the equation (7) is equivalent to a system

of k2 homogeneous equations on U :

(8)
∑

m0,0,...,mk−1,k−1

gm0,0,...,mk−1,k−1

k−1∏

j,l=0

f
mj,l

j,l = 0

with unknowns fj,l; j, l ∈ K.

In order to find solutions fj,l of the system (8) it is sufficient—due to Theo-
rem 3.1—to find all solutions hj,l on the sector U0,0; then the functions fj,l = [hj,l]j,l

form a complete set of solutions of the system (8) on U. Consequently, the functions

f =
k−1∑
j,l=0

fj,l will form the complete set of solutions of the equation (6).

In order to obtain all solutions hj,l of the system (8) on U0,0 we can apply algebraic
methods.

5. Examples


��
��� 5.1. Let us consider the equation

(9) f(ix, y)− f(x, iy) = 0.

It is an equation of the form (6) if we put k = 4, ε = i = exp (2�i/4).
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Let us take U = �
2 . Representing the unknown function f on U in the form (2)

and putting Gj,l
k f := fj,l we have f =

3∑
j,l=0

fj,l. After substituting it into (9) in the

way described in part 4, we obtain the equation

3∑

j,l=0

(ij − il)fj,l = 0

which is equivalent on U to the system of equations fj,l = 0 for j, l = 0, 1, 2, 3; j �= l.

Hence we get all solutions of the equation (9) on � : f =
3∑

j=0
fj,j, where fj,j are

arbitrary elements of the space F j,j
k (�

2 ) for j = 0, 1, 2, 3.


��
��� 5.2. Let us consider the equation

(10) f(−x, y)f(x,−y)− f2(x, y) + 2x2y2 = 0

on the set U = {(x, y) ∈ �
2 : xy �= 0}.

It is an equation of the form (6) with k = 2 and ε = −1. Representing the function
f on U in the form (2): f =

1∑
j,l=0

fj,l where fj,l ∈ F j,l
2 (U) for j, l = 0, 1, substituting

it into (10) and following the procedure described in part 4 we obtain a system of

equations equivalent to the equation (10)

(11) f20,1 + f21,0 = F, f0,0f1,1 = 0, f0,0f1,0 + f0,1f1,1 = 0, f0,0f0,1 + f1,0f1,1 = 0,

where F (x, y) := x2y2 for (x, y) ∈ U.

Due to Lemma 3.2 it is sufficient to find all solutions hj,l := fj,l|U0,0 of this system
on the sector U0,0. Then the functions f =

1∑
j,l=0
[hj,l]j,l will represent all solutions of

the equation (10) on U.

On U0,0 the system (11) is equivalent to the system

h20,1(x, y) + h21,0(x, y) = x2y2, h0,0(x, y) = 0, h1,1(x, y) = 0.

All its solutions can be obtained by putting for (x, y) ∈ U0,0

h0,0(x, y) = 0, h1,1(x, y) = 0, h0,1(x, y) =
√

x2y2 − h21,0(x, y),

and h1,0(x, y) arbitrary, where
√

x2y2 − h21,0(x, y) is an arbitrarily chosen square

root of x2y2 − h21,0(x, y). Hence each solution f of the equation (10) is of the form

f = f1,0 +

[√
(F − f21,0)|U0,0

]0,1
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where f1,0 is an arbitrary element of the space F 1,02 (U).
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