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Abstract. The symbol K(B, C) denotes a directed graph with the vertex set B∪C for two
(not necessarily disjoint) vertex sets B, C in which an arc goes from each vertex of B into
each vertex of C. A subdigraph of a digraph D which has this form is called a bisimplex in
D. A biclique in D is a bisimplex in D which is not a proper subgraph of any other and in
which B �= ∅ and C �= ∅. The biclique digraph �C(D) of D is the digraph whose vertex set
is the set of all bicliques in D and in which there is an arc from K(B1, C1) into K(B2, C2)
if and only if C1 ∩B2 �= ∅. The operator which assigns �C(D) to D is the biclique operator
�C. The paper solves a problem of E. Prisner concerning the periodicity of �C.
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Let ϕ be a graph operator, let ϕn denote the n-th iteration of ϕ for a positive

integer n. Let G be a graph (directed or undirected) for which ϕn(G) ∼= G. Then we
say that G is periodic in ϕ with periodicity n. If n = 1, then G is called fixed in ϕ.

We shall consider directed graphs (digraphs) without loops and without arcs hav-
ing the same initial vertex and the same terminal one.

Let B, C be two (not necessarily disjoint) sets of vertices. By K(B, C) we denote

the digraph with the vertex set B ∪ C in which an arc goes from each vertex of B

into each vertex of C. If we consider such a digraph as a subdigraph of a digraph D,

we call it a bisimplex in D. A bisimplex in D which is not a proper subdigraph of
any other and in which B �= ∅ and C �= ∅ is called a biclique in D.

A biclique digraph �C(D) of D is the digraph whose vertex set is the set of all
bicliques in D and in which there is an arc from a biclique K(B1, C1) into a biclique
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K(B2, C2) if and only if C1 ∩ B2 �= ∅. The operator �C which assigns �C(D) to D is

called the biclique operator.
In [1], p. 207, E. Prisner suggests the following problem:
Are there, besides the dicycles, any other �C-periodic digraphs in the �C-semibasin

of finite strongly connected digraphs?
We shall not reproduce the definition of a semibasin from [1]; it suffices to say that

in this problem we might say “in the class of finite strongly connected digraphs”.
Before solving this problem we do a consideration concerning bicliques with

B ∩C �= ∅. In the definition of K(B, C) it was noted that B, C are not necessarily
disjoint. Thus consider B = {x, z}, C = {y, z}. We consider no loops, therefore
K(B, C) has three arcs xy, xz, zy.
The solution of the problem is the following theorem.

Theorem. There exists a finite strongly connected digraph D which is not a

directed cycle and which is fixed in the biclique operator �C.

�����. The vertex set of D is V (D) = {u, v, w, u′, v′, w′} and the arc set
is A(D) = {uv, vw, wu, u′v′, v′w′, w′u′, uu′, vv′, ww′, u′v, v′w, w′u} (Fig. 1). This di-
graph is evidently finite and strongly connected and is not a directed cycle (dicycle).
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Put B1 = C′
3 = {u, u′}, B2 = C′

1 = {v, v′}, B3 = C′
2 = {w, w′}, C1 = B′

1 = {u′, v},
C2 = B′

2 = {v′, w}, C3 = B′
3 = {w′, u}. The digraph D has exactly six bicliques,

namely Ci = K(Bi, Ci) and C′
i = K(B′

i, C
′
i) for i ∈ {1, 2, 3}. The reader may verify

himself that there exists a homomorphic mapping ϕ : V (D) → V (C(D)) such that

ϕ(u) = C1, ϕ(v) = C2, ϕ(w) = C3, ϕ(u′) = C′
1, ϕ(v

′) = C′
2, ϕ(w

′) = C′
3. �

Note that the digraph D is obtained from the graph of the regular octahedron by

directing its edges in such a way that the indegrees and the outdegrees of all vertices
become equal to 2.
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