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THE INDUCED PATHS IN A CONNECTED GRAPH AND

A TERNARY RELATION DETERMINED BY THEM

Ladislav Nebeský, Praha

(Received October 5, 2000)

Abstract. By a ternary structure we mean an ordered pair (X0, T0), where X0 is a finite
nonempty set and T0 is a ternary relation on X0. By the underlying graph of a ternary
structure (X0, T0) we mean the (undirected) graph G with the properties that X0 is its
vertex set and distinct vertices u and v of G are adjacent if and only if

{x ∈ X0 ; T0(u, x, v)} ∪ {x ∈ X0 ; T0(v, x, u)} = {u, v}.

A ternary structure (X0, T0) is said to be the B-structure of a connected graph G if X0
is the vertex set of G and the following statement holds for all u, x, y ∈ X0: T0(x, u, y) if
and only if u belongs to an induced x− y path in G. It is clear that if a ternary structure
(X0, T0) is the B-structure of a connected graph G, then G is the underlying graph of
(X0, T0). We will prove that there exists no sentence σ of the first-order logic such that a
ternary structure (X0, T0) with a connected underlying graph G is the B-structure of G if
and only if (X0, T0) satisfies σ.
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Introduction

The letters i, j, k, m and n will be reserved for denoting integers.
By a graph we mean here a graph in the sense of [2], i.e. a finite undirected graph

without loops or multiple edges. If G is a graph, then V (G) and E(G) denote its
vertex set and its edge set, respectively.

Let G be a graph, let v0, . . . , vn ∈ V (G), and let

P : v0, . . . , vn
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be a path in G. We say that P is an induced path in G if vivj �∈ E(G) for all

i, j ∈ {0, . . . , n} such that |i− j| �= 1. Note that instead of the term “induced path”
the term “minimal path” is sometimes used. If G is a connected graph, then we say
that P is a geodesic in G, if d(v0, vn) = n, where d denotes the distance function of

G. Instead of the term “geodesic” the term “shortest path” is sometimes used.

Let P and P ′ be induced paths in a graph G; we will say that P and P ′ are
disjoint if no vertex of G belongs both to P and to P ′; we will say that P and P ′

are non-adjacent in G if there exists no pair of vertices u and u′ such that u belongs

to P , u′ belongs to P ′ and u and u′ are adjacent in G.

Part 1

By a ternary structure we mean an ordered pair (X0, T0), where X0 is a finite

nonempty set and T0 is a ternary relation on X0.

Let (X1, T1) and (X2, T2) be ternary structures. By a partial isomorphism from

(X1, T1) to (X2, T2) we mean such an injective mapping q that Def(q) ⊆ X1, Im(q) ⊆
X2 and

T1(x, u, y) if and only if T2(q(x), q(u), q(y))

for all u, x, y ∈ Def(q). (Note that the notion of a partial isomorphism from a
ternary structure to a ternary structure is a special case of the notion of a partial

isomorphism in the sense of [4], p. 15). Let (X0, T0) be a ternary structure. By the
pseudointerval function of (X0, T0) we mean the mapping J of X0 × X0 into 2X0

defined as follows:

J(x, y) = {u ∈ X0 ; T0(x, u, y)}

for all x, y ∈ X0.

Let (X0, T0) be a ternary structure, and let J denote its pseudointeval function. By
the underlying graph of (X0, T0) we mean the graph G defined as follows: V (G) = X0

and

E(G) = {uv ; u, v ∈ X0, u �= v and J(u, v) ∪ J(v, u) = {u, v}}.

We will say that (X0, T0) is connected if its underlying graph is connected.

Let G be a connected graph, and let P0 be a subset of the set of all paths in G. By
the P0-structure of G we mean the ternary structure (X0, T0) such that X0 = E(G)

and

T0(x, u, y) if and only if

there exists an x− y path P in G such that P ∈ P0 and u belongs to P
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for all u, x, y ∈ X0. Let (X0, T0) be the P0-structure of G. If P0 is the set of all
paths in G, the set of all induced paths in G, or the set of all geodesics in G, then we
say that (X0, T0) is the A-structure of G, the B-structure of G, or the Γ-structure of
G, respectively.

Let G be a connected graph, and let d denote its distance function. By the Σ-
structure of G we mean the ternary structure (X0, T0) such that X0 = V (G) and

T0(x, u, y) if and only if d(x, u) = 1 and d(u, y) = d(x, y)− 1

for all u, x, y ∈ X0.
Let (X0, T0) be a ternary structure, and let Z stand for A, B, Γ or Σ. We say

that (X0, T0) is a Z-structure if there exists a connected graph G such that (X0, T0)
is the Z-structure of G.
Let (T0, X0) be a ternary structure, and let J denote its pseudointerval function.

We will say that (X0, T0) satisfies condition C1, C1′, C2 or C3 if

J(x, x) = {x} for all x ∈ X0,(C1)

J(x, x) = ∅ for all x ∈ X0,(C1′)

J(x, y) = J(y, x) for all x, y ∈ X0, or(C2)

x ∈ J(x, y) for all x, y ∈ X0,(C3)

respectively. It is obvious that all A-structures, B-structures and Γ-structures satisfy
conditions C1, C2 and C3 and that all Σ-structures satisfy condition C1′.

Let Z stand for B, Γ or Σ. It is easy to see that if (X0, T0) is a Z-structure, then it
is the Z-structure of exactly one connected graph, namely of the underlying graph of
(X0, T0). This means that all B-structures, all Γ-structures and all Σ-structures are
connected. However, this is not the case with A-structures. The underlying graph

of the A-structure of a complete graph with at least three vertices has no edges.
Let (X0, T0) be a ternary structure, and let J denote its pseudointerval function.

We will say that (X0, T0) is scant if (a) it satisfies conditions C1 and C2, and (b)
the following statement holds for all distinct x, y ∈ X0: if J(x, y) �= {x, y}, then
J(x, y) = X0. Clearly, every scant ternary structure is determined by its underlying
graph. It is not difficult to see that if the Γ-structure of a connected graph G is scant,

then the diameter of G does not exceed two. This is not the case with B-structures.
It is obvious that the B-structure of every cycle is scant. Thus, for every n � 3 there
exists a connected graph G of diameter n such that the B-structure of G is scant.
Let (X0, T0) be a ternary structure, let J denote its pseudointerval function, and

let G denote the underlying graph of (X0, T0). If J satisfies conditions C1, C2 and
C3, then J is a transit function on G in the sense of Mulder [7]. Recall that if (X0, T0)
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is a Γ-structure or a B-structure, then it is respectively the Γ-structure or the B-

structure of G. If (X0, T0) is a Γ-structure, then J is called the interval function
of G; cf.Mulder [6], where the interval function of a connected graph was studied
widely. If (X0, T0) is a B-structure, then J is called the induced path function or the

minimal path function on G in [7]. The induced path function on a connected graph
was studied by Duchet [3] and by Morgana and Mulder [5].

The pseudointerval functions of A-structures were characterized in Changat,

Klavžar and Mulder [1] while the pseudointerval functions of Γ-structures were
characterized by the present author in [8], [10] and [12]. These characterizations can

be reformulated easily as characterizations of A-structures and of Γ-structures by a
finite set of axioms or, more strictly, by a unique axiom.

The result obtained for Σ-structures by the present author in [9] and [11] is not too
strong: Σ-structures were characterized as connected ternary structures satisfying a

finite set of axioms. This result could be reformulated as follows: there exists an
axiom σ in a language of the first order logic such that a connected ternary structure

(X0, T0) is a Σ-structure if and only if (X0, T0) satisfies σ.

In the present paper we will prove that a similar result does not hold for B-
structures. To prove this, we will need a certain portion of mathematical logic; for

precise formulations and further details the reader is referred to Ebbinghaus and
Flum [4], p. 1–12. (Especially, the explanation of the term “satisfy”, which will be

used in Theorem 1, can be found in [4], p. 6).

Let T be the symbol for a ternary relation. By an atomic formula of the first-order

logic of vocabulary {T } (shortly: by an atomic formula) we mean an expression

x = y,

where x and y are variables, or an expression

T (x, u, y),

where u, x and y are variables. The formulae of the first-order logic of vocabulary
{T } (shortly: the formulae) will be defined as follows:

every atomic formula is a formula;

if α is a formula, then ¬α is a formula;

if α1 and α2 are formulae, then α1 ∨ α2 is a formula;

if α is a formula and x is a variable, then ∃xα is a formula;

no other expressions are formulae.
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Following [4] we define the quantifier rank qr(α) of a formula α:

if α is atomic, then qr(α) = 0;

if α is ¬β, where β is a formula, then qr(α) = qr(β);

if α is β1 ∨ β2, where β1 and β2 are formulae, then qr(α) = max(qr(β1), qr(β2));

if α is ∃xβ, where β is a formula and x is a variable, then qr(α) = qr(β) + 1.

The most important formulae are sentences: a formula α is called a sentence if for

every atomic subformula β of α, every variable belonging to β is in the scope of the
corresponding quantifier.

The next theorem, which is a special case of Fräıssé’s Theorem, will be an impor-

tant tool for us:

Theorem 1. Let (X1, T1) and (X2, T2) be ternary structures, and let n � 1.
Then the following statements (A) and (B) are equivalent:

(A) (X1, T1) and (X2, T2) satisfy the same sentences σ with qr(σ) � n.

(B) There exist nonempty sets Q0, . . . ,Qn of partial isomorphisms from (X1, T1) to

(X2, T2) such that for each m, 1 � m < n, we have

(I) for every q ∈ Qm+1 and every x ∈ X1 there exists r ∈ Qm such that q ⊆ r

and x ∈ Def(r);
(II) for every q ∈ Qm+1 and every x ∈ X2 there exists r ∈ Qm such that q ⊆ r

and x ∈ Im(r).

For the proof of Fräıssé’s Theorem (and further closely related results) the reader
is referred to [4], Chapter 1.

Part 2

Assume that an infinite sequence

u0, w0, u1, w1, u2, w2, . . .

of mutually distinct vertices is given.

Let k � 3. By Fk we denote the graph with vertices

u0, w0, u1, w1, . . . , u6k−1, w6k−1
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and with edges

u0u1, u1u2, . . . , u3k−2u3k−1, u3k−1u0,

u3ku3k+1, u3k+1u3k+2, . . . , u6k−2u6k−1, u6k−1u3k,

w0w1, w1w2, . . . , w3k−2w3k−1, w3k−1w0,

w3kw3k+1, w3k+1w3k+2, . . . , w6k−2w6k−1, w6k−1w3k,

u0w0, u1w1, . . . , u6k−1w6k−1,

u0u3k, uku4k, u2ku5k.

A diagram of F3 is presented in Fig. 1.

u6

w6 u8

w8

u4 w4 u0w0

u7

w7

u2

w2

u3

w3

u5 w5

u1

w1

u15

w15u17

w17

u13w13u9 w9

u16

w16

u11

w11

u12

w12

u14w14

u10

w10�
Fig. 1.

Lemma 1. Let k � 3. Then the B-structure of Fk is scant.

�����. Let x ∈ V (Fk). Then there exists exactly one i, 0 � i � 6k − 1, such
that x = ui or x = wi; we define ind(x) = i. For every y ∈ V (Fk) we define yL and

yR as follows:

if ind(y) ∈ {0, k, 2k, 3k, 4k, 5k}, then yL = yR = uind(y);

if jk < ind(y) < (j + 1)k, where j ∈ {0, 1, 3, 4}, then yL = ujk and yR = u(j+1)k;

if 2k < ind(y) < 3k, then yL = u2k and yR = u0;

if 5k < ind(y) < 6k, then yL = u5k and yR = u3k.

Let J denote the pseudointerval function of the B-system of Fk. Consider arbitrary

x, y ∈ V (Fk) such that d(x, y) � 2, where d denotes the distance function of Fk. We
want to prove that J(x, y) = V (Fk).
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Denote V1 = {v ∈ V (Fk) ; 0 � ind(v) � 3k − 1} and V2 = V (Fk) \ V1. Without

loss of generality we assume that x ∈ V1. We distinguish two cases.
���� 1. Let y ∈ V1. It is clear that V1 ⊆ J(x, y) and

V2 ⊆ J(u0, uk) ∩ J(uk, u2k) ∩ J(u2k, u0).

Recall that d(x, y) � 2. We can see that there exist x1 ∈ {xL, xR} and y1 ∈ {yL, yR}
such that x1 �= y1 and there exist an induced x− x1 path Px in Fk and an induced

y1− y path Py in Fk with the property that Px and Py are disjoint and non-adjacent
in Fk. This implies that J(x, y) = V (Fk).

���� 2. Let y ∈ V2. We distinguish two subcases.
�	
���� 2.1. Let d(x, y) = 2. Then x ∈ {u0, uk, u2k} or y ∈ {u3k, u4k, u5k}.

Without loss of generality we assume that x = u0. Then y = w3k or y = u3k+1 or
y = u6k−1.

First, let y = w3k. Consider the following five sequences:

u0, u3k, w3k;

u0, u1, . . . , uk−1, uk, u4k, u4k−1, . . . , u3k+1, u3k, w3k;

u0, u3k−1, u3k−2, . . . , uk+1, uk, u4k, u4k+1, . . . , u6k−2, u6k−1, u3k, w3k;

u0, w0, w1, . . . , wk−1, wk, uk, u4k, w4k, w4k−1, . . . , w3k+1, w3k;

u0, w0, w3k−1, w3k−2, . . . , wk, uk, u4k, w4k, w4k+1, . . . w6k−1, w3k.

Each vertex of Fk belongs to at least one of these sequences. Moreover, each of these

sequences is an induced x− y path in Fk. Thus J(x, y) = V (Fk).
Now, let y �= w3k. Without loss of generality we assume that y = u3k+1. Consider

the following five sequences:

u0, u3k, u3k+1;

u0, u1, . . . , uk−1, uk, u4k, u4k−1, . . . , u3k+1;

u0, u3k−1, . . . , uk+1, uk, u4k, u4k+1, . . . , u6k−2, u6k−1, w6k−1, w3k, w3k+1, u3k+1;

u0, w0, w1, . . . , wk−1, wk, uk, u4k, w4k, w4k−1, . . . , w3k+1, u3k+1;

u0, w0, w3k−1, w3k−2, . . . , wk, uk, u4k, w4k, w4k+1, . . . , w6k−1, w3k, w3k+1, u3k+1.

Again, each vertex of Fk belongs to at least one of these sequences and each of these

sequences is an induced x− y path in Fk. Thus J(x, y) = V (Fk).
�	
���� 2.2. Let d(x, y) � 3. Then there exist x2 ∈ {xL, xR} and y2 ∈ {yL, yR}

such that d(x2, y) � 3 and d(x, y2) � 3. Define x∗ = uind(x2)+3k and y∗ = uind(y2)−3k.
Obviously, d(x∗, y) � 2 and d(x, y∗) � 2. It is clear that V1 ⊆ J(x, y∗) and V2 ⊆
J(x∗, y). This implies that J(x, y) = V (Fk).
The proof is complete. �
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Let k > 2. By F ′
k we denote the graph with vertices

u0, w0, u1, w1, . . . , u6k−1, w6k−1

and with edges

u0u1, u1u2, . . . , u2k−2u2k−1, u2k−1u0,

u2ku2k+1, u2k+1u2k+2, . . . , u4k−2u4k−1, u4k−1u2k,

u4ku4k+1, u4k+1u4k+2, . . . , u6k−2u6k−1, u6k−1u4k,

w0w1, w1w2, . . . , w2k−2w2k−1, w2k−1w0,

w2kw2k+1, w2k+1w2k+2, . . . , w4k−2w4k−1, w4k−1w2k,

w4kw4k+1, w4k+1w4k+2, . . . , w6k−2w6k−1, w6k−1w4k,

u0w0, u1w1, . . . , u6k−1w6k−1,

uku2k, u3ku4k, u5ku0.

A diagram of F ′
3 is presented in Fig. 2.

u1

w1

u2

w2

u3

w3

u4

w4

u5

w5

u0

w0

u14

w14

u13

w13

u12

w12

u17

w17

u16

w16

u15

w15

u6 w6

u7

w7

u8

w8

u9w9

u10

w10

u11

w11�
Fig. 2.

Lemma 2. Let k � 3. Then the B-structure of F ′
k is not scant.

�����. Let J denote the pseudointerval function of the B-structure of F ′
k. Since

J(uk−1, uk+1) �= V (F ′
k), the result follows. �
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Lemma 3. Let n � 1 and k > 2n+1. Assume that (X1, T1) and (X2, T2) are

scant ternary structures such that the underlying graph of (X1, T1) is Fk and the

underlying graph of (X2, T2) is F ′
k. Then (X1, T1) and (X2, T2) satisfy the same

sentences σ with qr(σ) � n.

�����. Put U = {u0, u1, . . . , u6k−1}, U � = {u0, uk, u2k, u3k, u4k, u5k},
W = {w0, w1, . . . , w6k−1} and W � = {w0, wk, w2k, w3k, w4k, w5k}. Obviously,

X1 = U ∪W = X2.
If x, y ∈ U ∪ W , then we will write x ∼ y if and only if x, y ∈ U or x, y ∈ W .

We define u�i = wi and w�
i = ui for all i, 0 � i � 6k − 1. Thus (x�)� = x for each

x ∈ U ∪W and y� ∼ z� if and only if y ∼ z for all y, z ∈ U ∪W . We define [x] = x

for every x ∈ U and [x] = x� for every x ∈ W .

By F ∗ we mean Fk or F ′
k. Let d∗ denote the distance function of F ∗. Define

e∗(x, y) = d∗([x], [y]) for all x, y ∈ U ∪W.

Obviously, e∗(x, y) = 0 if and only if x = y or x� = y for all x, y ∈ U ∪W .
Recall that k > 2n+1. Consider an arbitrary x ∈ U ∪W and denote D(x) = {y ∈

U � ∪W � ; e∗(x, y) � 2n}; it is easy to see that |D(x)| � 4 and if D(x) �= ∅, then the
subgraph of F ∗ induced by D(x) is a path of length either one or three.

Consider arbitrary x, y ∈ U ∪W such that e∗(x, y) � 2n. It is easy to see that (i)
every x − y geodesic in F ∗ contains at most two vertices in U �; (ii) if at least one

x − y geodesic in F ∗ contains two vertices in U �, then every x − y geodesic in F ∗

contains two vertices in U � and these two vertices are adjacent in F ∗. We will write

f∗(x, y) = 1 if every x − y geodesic in F ∗ contains at most one vertex in U � and
f∗(x, y) = 2 otherwise.

For every m, 0 � m � n and for all x, y ∈ U ∪W we define

e∗m(x, y) = e∗(x, y) if e∗(x, y) � 2m,

e∗m(x, y) =∞ if e∗(x, y) > 2m.

Consider an arbitrary m, 0 � m < n. We see that

(1) if e∗m+1(x, y) =∞ and e∗m(y, z) < ∞, then e∗m(x, z) =∞ for all x, y, z ∈ U ∪W.

We will write e, em and f instead of e∗, e∗m and f∗ respectively if F ∗ is Fk, and e′, e′m
and f ′ instead of e∗, e∗m and f∗ respectively if F ∗ is F ′

k.

Recall that (X1, T1) and (X2, T2) are scant. We denote by PART the set of all
partial isomorphisms p from Fk to F ′

k such that U � ∪W � ⊆ Def(p),

p(x) ∼ x for all x ∈ Def(p),
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and

p(u0) = u0, p(w0) = w0, p(uk) = uk, p(wk) = wk, p(u2k) = u4k, p(w2k) = w4k,

p(u3k) = u5k, p(w3k) = w5k, p(u4k) = u2k, p(w4k) = w2k,

p(u5k) = u3k and p(w5k) = w3k.

Obviously, there exists exactly one p0 ∈ PART such that Def(p0) = U � ∪W �.

For every m, 0 � m � n, we denote by Qm the set of all q ∈ PART such that
|Def(q)| � 12 + n−m and that e′m(q(x), q(y)) = em(x, y) for all x, y ∈ Def(q).
It is clear that Qn = {p0}. As follows from the definition, Qn ⊆ . . . ⊆ Q0.
Consider an arbitrary m, 0 � m < n. We need to show that conditions (I) and

(II) (of Theorem 1) hold.

Consider an arbitrary q ∈ Qm+1 and an arbitrary x ∈ U ∪W . If x ∈ Def(q), we
put r = q. Assume that x �∈ Def(q). Then x �∈ U � ∪ Z�. We distinguish two cases.

���� 1. Assume that there exists y ∈ Def(q) such that em(x, y) < ∞. Without
loss of generality we assume that em(x, y) � em(x, y0) for every y0 ∈ Def(q).
First, let em(x, y) = 0. Since x �∈ Def(q), we have y = x�. We put x′ = (q(y))�.

Now, we assume that em(x, y) > 0. We distinguish four subcases.

�	
���� 1.1. Assume that

(2)
there exists z ∈ Def(q) such that
em(x, z) < ∞ and e(y, z) = em(y, x) + em(x, z).

Without loss of generality we assume that em(x, z) � em(x, z0) for every z0 ∈ Def(q)
such that em(x, z0) < ∞ and e(y, z0) = em(y, x) + em(x, z0). Since em(x, y) > 0,
it is obvious that em(x, z) > 0. Since em(x, y) < ∞ and em(x, z) < ∞, we get
em+1(y, z) < ∞. Since y, z ∈ Def(q), we have e′m+1(q(y), q(z)) = em+1(y, z). There
exists exactly one x′ ∈ (U ∪ W ) \ Im(q) such that e′(q(y), q(z)) = e′m(q(y), x

′) +

em(x′, q(z)) and x′ ∼ x.

�	
���� 1.2. Assume (2) does not hold and

(3)
there exists z ∈ Def(q) such that
0 < em+1(y, z) < ∞, f(y, z) = 1 and e(x, z) = em(x, y) + em+1(y, z).

Without loss of generality we assume that em+1(y, z) � em+1(y, z0) for every z0 ∈
Def(q) such that 0 < em+1(y, z0) < ∞, f(y, z0) = 1 and e(x, z0) = em(x, y) +
em+1(y, z0). Since y, z ∈ Def(q), we get e′m+1(q(y), q(z)) = em+1(y, z). There

exists exactly one x′ ∈ (U ∪ W ) \ Im(q) such that e′(x′, q(z)) = e′m(x
′, q(y)) +

e′m+1(q(y), q(z)) and x′ ∼ x.
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�	
���� 1.3. Assume (2) and (3) do not hold and

(4)
there exists z ∈ Def(q) such that
0 < em+1(y, z) < ∞, f(y, z) = 2 and e(x, z) = em(x, y) + em+1(y, z).

Without loss of generality we assume that em+1(y, z) � em+1(y, z0) for every z0 ∈
Def(q) such that 0 < em+1(y, z0) < ∞, f(y, z0) = 2 and e(x, z0) = em(x, y) +

em+1(y, z0). It is easy to see that y, z ∈ U � ∪ W � and e(y, z) = 1. Since y, z ∈
Def(q), we get q(y), q(z) ∈ U � ∪ W � and e′(q(y), q(z)) = 1. There exist exactly two

vertices belonging to (U ∪W )\ Im(q), say vertices v1 and v2, such that e′(vj , q(z)) =
e′m(vj , q(y)) + 1 and vj ∼ x for j = 1, 2. Consider an arbitrary x′ ∈ {v1, v2}.
�	
���� 1.4. Assume (2), (3) and (4) do not hold. Then there exists no

z ∈ Def(q) such that 0 < em+1(y, z) � em(x, y)+2m. Thus there exists no z ∈ Def(q)
such that 0 < e′m+1(q(y), q(z)) � em(x, y) + 2m. This implies that there exist
exactly two vertices belonging to (U ∪W ) \ Im(q), say vertices v1 and v2, such that

e′m(vj , q(y)) = em(x, y) and vj ∼ x for j = 1, 2. Consider an arbitrary x′ ∈ {v1, v2}.
���� 2. Assume that em(x, y) = ∞ for every y ∈ Def(q). There exists x′ ∈

(U ∪W ) \ Im(q) such that x′ ∼ x and e′m(x
′, q(y)) =∞ for every y ∈ Def(q).

Define r = q ∪ {(x, x′)}. If we take (1) into account, we can see that r ∈ Qm.
Thus condition (I) holds.

The fact that condition (II) holds can be proved analogously. Applying Theorem 1,
we obtain the result of the lemma. �

��
���. The introduction of functions e∗m in the proof of Lemma 3 is a modi-
fication of one of the ideas in Example 1.3.5 of [4].

Theorem 2. There exists no sentence σ of the first-order logic of vocabulary {T }
such that a connected ternary structure is a B-structure if and only if it satisfies σ.

�����. Combining Lemmas 1, 2 and 3, we get the theorem. �

Note that Theorem 2 can be reformulated as follows: There exists no finite set
S of sentences of first-order logic of vocabulary {T } such that a connected ternary
structure is a B-structure if and only if it satisfies each sentence in S.
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