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Abstract. Modal operators on Heyting algebras were introduced by Macnab. In this
paper we introduce analogously modal operators on MV-algebras and study their properties.
Moreover, modal operators on certain derived structures are investigated.
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Modal operators on Heyting algebras, i.e.on lattices which are associated with
intuitionistic logic, were introduced and studied by Macnab in [3]. In this paper, we
deal with the possibility of introducing modal operators on MV-algebras which are
an algebraic counterpart of the Lukasiewicz infinite valued logic, i.e. one of the most
important logics behind fuzzy reasoning. (Boolean algebras which are an algebraic
semantics of the classical two-valued logic are special cases both of Heyting algebras
and MV-algebras.)

Let us recall the notion of an MV-algebra.

Definition. An algebra «# = (A4;®, —,0) of type (2, 1,0) is called an MV-algebra,
if it satisfies the following identities:
MV1) 20 (ydz)=(zdy) & 2,
MV2) 2y =y®x,
(MV3) 2®0 =z,
(MV4) =z ==,
(MV5) z & =0 = -0,
(MV6) ~(—z@y) Dy =(x®y) dx.

The second author was supported by the Council of Czech Government, MSM
6198959214.
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For arbitrary z,y € A we put:

Oy :=-(~rdy), aVy=-(-rdy) Dy,
x Ay :=-(-zV-y), 1:=-0.

Then (A;®,1) is an Abelian monoid, (A4;V, A,0,1) is a bounded distributive lat-
tice, (4;®,0,A,V) and (4;®,1,A,V) are lattice ordered monoids, and, moreover,
2@y = (- -y) and x Vy = —(—x A —y). At the same time z Oy < = Ay,
zVy < x@y. Hence the binary operations “®” and “®” are mutually dual as well
as the lattice operations “v” and “A”. Therefore we can take the binary operation
“@” (together with the negation) as initial. Further, for possibility to compare with
Heyting algebras, we will work with another binary operation “—” on A, defined by
r—y:=x ®y for each z,y € A.

Let “<” be the ordering on A induced by the lattice (A;V, A). It is easy to prove
that x — y is the greatest element z € A such that z ® z < y. For other results from
the theory of MV-algebras see [1] or [2].

The following lemma contains the necessary properties of the operation “—7”.

Lemma 1. Let & be an MV-algebra and x,y € A. Then the following holds:
TOZSYS 2T —Y;

)z (x—y) =xAy;
) z<yer—y=1;
4) z<y=>c—22Yy — 2;
S) z<y=2—c<z2—Y;

(zoy)—mz=y—(r—2)=z—(y—>2);
(x A

y)—mz= -y = @—=2)=y—2) =Y —2);

Definition. Let A be an MV-algebra and f: A — A be a mapping. Then f is
called a modal operator on A, if for each x,y € A:

Lz < f(x);

2. f(f(z)) = f(x);

3. flzoy) = f(z)© f(y).

A modal operator f is called strong, if for each x,y € A:

4. flxoy) = flx® f(y))
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Lemma 2. Let A be an MV-algebra. If f is a modal operator on A, then for each

f(f(:v) = fy) =2— fly) = flz — f(v));

Proof. (1) Let © < y. Then f(z Ay) = f(x), therefore by Lemma 1(2),
fly® (y — x)) = f(x). Hence by the condition 3 from the definition we obtain
f(y) © f(y — ) = f(z) and this implies f(z) < f(y).

(ii) Let #,y € A. Then by the condition 3 from the definition, Lemma 1(2) and
the property (i) it holds f(2) © f(z — y) = f(z ® (z — y)) = f(& Ay) < F(),
therefore by Lemma 1(1), f(z — y) < f(x) — f(y). Further by the conditions 1 and
2 from the definition, Lemma 1(4) and the last proven inequality we have:

f(f(@) — f(y) < f(f(x) — f(f(y))
<z — f(y) <
< f(f(x) — f

hence f(z — f(y)) = f(f(x) = f(y

(ili) By Lemma 1(2), f(z) ® (f
Lemma 1(1), f(z) < (f(z) — £(0))
f(0)) = £(0).

(iv) 0 < f(0), therefore by Lemma 1(5)(8) and the property (iii), -z = — 0 <
x — f(0) = f(z) — f(0), and according to Lemma 1(2) we obtain -2 ® f(x) <
f(@)© (f(x) = £(0)) = fz) A £(0) < £(0).

(v) By the property (ii) and Lemma 1(5) it holds x & f(0) = ==z @ f(0) = -z —
f(0)=f(mz — f(0)) = f(-z — 0) = f(~x) = f(). U

Remark 3. By the conditions 1 and 2 from the definition of a modal operator

)

)= [f(x) = fly) =z — fly).

z) — f(0)) = f(z) A f(0) < f(0), hence by
— f(0), and then by (ii) we obtain f(z) < (x —

and Lemma 2(i) it follows that f is a closure operator on the lattice (A4;V, A).

Lemma 4. If f is a strong modal operator on an MV-algebra <7, then for each
x,y € A it holds:
(vi) flz@y) = f(f(2)® fy));
(vil) =& f(0) = f(x).

Proof. (vi) By the condition 4 from the definition we obtain f(z & y) =
feo fy)=ff() e fy).

(vii) According to the condition 4 it holds f(x @& f(0)) = f(x @ 0) = f(x) and by
the condition 1 and property (v) we have f(z) = f(z® f(0)) 2 2@ f(0) > f(z). O
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Theorem 5. Let &/ be an MV-algebra and f: A — A be a mapping. Then f is
a modal operator on </ if and only if for each x,y € A it holds:
(1) = — f(y) = f(z) = f(y);
2) f@)o fly) = flzoy).

Proof. = It follows from the definition of a modal operator and from Lem-
ma 2(i).

<: Let a mapping f satisfy the conditions (1) and (2).

1. If x € A, then by (1) and Lemma 1(3), z — f(z) = f(z) — f(x) = 1, hence

2. For each z € A by (1) it holds 1 = f(z) — f(z) = f(f(x)) — f(z), hence by
Lemma 1(3), f(f(x)) < f(z), therefore by 1 we obtain f(f(z)) = f(x).

3. Let 2,y € A. Then by 1 it holds x©y < f(z®y), hence by Lemma 1(1) and the
condition (1), y < z — f(xOy) = f(z) — f(x®y), which means y® f(x) < f(zOy).
From this, by Lemma 1(1) again, and by the condition (1), we get f(z) < y —
J(@©y) = f(y) — f(z ©y) and thus [(z) © [(3) < fz O y).

Since f satisfies the condition (2), we obtain the equality f(z) ® f(y) = f(z ©y).

(|

Now, recall some relations between MV-algebras and Boolean algebras. On the one
hand, we can view every Boolean algebra as an MV-algebra, in which the operation
“@®” coincides with the operation “V” and the operation “®” coincides with the
operation “A”. On the other hand, every MV-algebra &7 contains the subalgebra
B)={zr € A: a®a=a} ={x € A: a ®a = a} which is a Boolean algebra
and it is the greatest of all Boolean subalgebras of the MV-algebra /. Moreover,
elements from B(&) are just all complemented elements of the lattice (A4;V, A,0,1).
Elements from B(27) can be described also as follows: An element a € A belongs to
B(«/)ifand only if a® (@ y) = (a©x) ® (a©y) for each x,y € A, or equivalently,
ifand only if a® (z ®y) = (a® ) © (a P y) for each z,y € A.

For an arbitrary element a € A denote by g,: A — A the mapping such that
go(z) = a @ x for each z € A.

Theorem 6. If a € A, then g, is a (strong) modal operator on & if and only if
a € B().

Proof. a) Let a € B(«/). Then for arbitrary elements x,y € A it holds:
lLLr<a®z= ga( )
2. ga(ga(x)) =a®(adr)=adz = ga(z)
Gu(rOYy)=a®(@0y)=(a®)©(a®y) = ga(z) © galy)-
4. ga( y)=ad@oy) =ad (@S (a®y)) = galr S ga(y))-
So g, is a strong modal operator on ..
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b) Let a € A and g, be a modal operator on /. Then for each z,y € A it holds
9o (2 O Y) = ga() ® ga(y), hence a @ (z ©y) = (a® ) ® (a ® y), that is a € B().
Moreover, by the part a) of the proof we get that g, is strong. O

Remark 7. Therefore, by Lemma 4 and Theorem 6, a modal operator on & is
strong if and only if f = g¢(g)-

Let o/ be an MV-algebra and a € A. Put hy(x) :=a — z, ko(z) :== (x - a) — a
for each element z € A. The mappings of type h, and k, form important classes of
modal operators in the theory of Heyting algebras (see [3]).

Proposition 8. If o is an MV-algebra and a € B(4/), then the mappings h,
and k, are strong modal operators on < .

Proof. a) By the definition of the operation “—” it holds ¢« — x = —a ® x for
each x € A, thus hy = g—q-

b)Ifz € A, then (x —a) ma=(a®x) Da=—(a®2)Pa=(-a@z)Pa=
(ra®a)® (x®a)=adx, hence ky = gq. O

Proposition 9. If f is an arbitrary modal operator on an MV-algebra </, then
the restriction of f to the Boolean subalgebra B(</) is a strong modal operator on
B(«).

Proof. Ifa € B(«#), then f(a) ® f(a) = f(a® a) = f(a), thus f(a) € B(&).
Therefore the restriction f|B(«/) is a mapping of B(«) into B(«/). (In particular,
f(0) € B(«) for each modal operator f.) Conditions 1-3 from the definition of a
modal operator for f|B(«7) are satisfied trivially.

Let now a,b € B(«). Then f(a@® f(b)) = f(aV f(b)) < f(f(aVbd)) = f(aVd)=
f(a®b), and since f(a® f(b)) = f(adb), we get the equality f(a®d) = f(a® f(b)).
Consequently f|B(%7) is a strong modal operator on B(«). O

For an arbitrary MV-algebra 7 denote by .# (/) and .#(</) the set of all modal
and all strong modal operators on 7, respectively.

Theorem 10. If f1, fo € M (), or f1,fo € M (), then f1fs € M (), or
f1fe € Ms(), respectively, if and only if f1fa = fafi.

Proof. By [4], Theorem 6, the composition of two closure operators on an
arbitrary ordered set is a closure operator if and only if these operators commute.

Therefore it suffices to prove that if &7 is an MV-algebra, f1, fo € # (<) and
fife = faf1, then fify satisfies the condition 3 from the definition of a modal
operator, and if, moreover, f1, fo € (<), then fifo satisfies also the condition 4
from the same definition.
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a) We will show that the composition of every couple of modal operators on &/
satisfies the condition 3. Let z,y € A. Then fifo(z ©y) = fi(f2(z) © fa2(y)) =
fifa(z) © f1fa2(y)-

b) Let f; and fy be strong and commute. Then f1 fa(z @ y) = fifo(z @ f2(y))
fofi(x @ f2(y)) = fafi(z @ f1fa(y) = fifo(z ® fifa(y)).

Suppose that the set .# (/) is ordered pointwise, i.e. for arbitrary f1, fo € 4 ()
it holds f1 < fo & Vz € A; fi(z) < fo(x). Similarly for (7).

ol

Theorem 11. If o/ is an MV-algebra, a € B(</) and f € 4 (), then [ < g, if
and only if f(a) = a.

Proof. Let f e .# (<) and f < g,. Then for each z € A, f(z) < a ® z, thus
f(a) < a®a = a, and hence f(a) = a.

Conversely, let f(a) = a. Then by Lemma 1(1) and Lemma 2(ii) we get, for each
v e A, f(z) < (@) — F(@) — f(@) = (@ — (@) — fl@) = (z — a) = a =
ko(z) = go(x), that means f < g,. O

If id 4 denotes the identity on A, then id 4 = go, hence id4 € .#;(</). Further, for
the modal operator g7 it holds that g1 (x) =1 for each & € A. Therefore we get as a
consequence of the previous theorem:

Corollary 12. The ordered sets .# (/) and .#s(</) have the least element go
and the greatest element g .

Now we will deal with the sets of fixed elements of modal operators. First recall
the notion of a bounded commutative R{-monoid.

Definition. A bounded commutative residuated ¢-monoid (R{-monoid) is an al-
gebra A = (M;®,V,A,—,0,1) of type (2,2,2,2,0,0) satisfying the following con-
ditions.

(i) (M;®,1) is a commutative monoid.

(i) (M;V,A,0,1) is a bounded lattice.
(i) r0y < ziff x <y — 2z, for each z,y,z € M.
(iv) 20 (x — y) =x Ay, for each z,y € M.

On the basis of properties of MV-algebras we can see that every MV-algebra with
the mentioned signature is a special case of a bounded commutative R¢-monoid. If
A is a bounded commutative R¢-monoid, define the unary operation —: M — M
on M such that -z := 2 — 0 for each 2 € M. Then by [5], [6] it holds that .# is an
MV-algebra if and only if it satisfies the identity ——x = .

Let now & be an MV-algebra and f be a modal operator on «/. Put Fix(f) =
{z € A: f(x) = z}. From the condition 2 of the definition of a modal operator it
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follows that Fix(f) = Im(f) = {f(z): € M}. Set C = Fix(f). Then C is the
set of all closed elements of the closure operator f on the lattice (A;V, A), therefore
(C;Ve, N), where y Ve z = f(y V z) for each y, z € C, is a lattice.

Theorem 13. If f is a modal operator on an MV-algebra o/ and C = Fix(f), then
C=(C;0,Ve,N,—, f(0),1), where “©”, “A” and “—” are the induced operations,
is a bounded commutative R{-monoid.

Proof. (i)Ifz,y € C,then f(zOy) = f(x)©® f(y) = Oy, therefore x Oy € C.
Hence (C;®,1) is a commutative monoid.

(ii) Since f is a closure operator on the lattice (A;V,A,0,1), it holds that
(C;Ve, A, f(0),1) is a bounded lattice.

(iii) Let y,z € C. Then by Lemma 2(2) we obtain y — z = f(y) — f(z) =
f(f(y) = f(2)) = f(y — 2), therefore y — z € C.

Hence, if z,y,2 € C'then 20y € C and y — z € C and it holds in C that zOy < z
if and only if z <y — 2.

(iv) Now it is obvious that the identity 2 ® (x — y) =z Ay also holds in C. O

Proposition 14. An R¢-monoid C is an MV-algebra if and only if (x — f(0)) —
f(0) =z for each x € C.

Proof. Put ¢z := 2 — f(0) for each z € C. By [5], [6], an arbitrary
commutative bounded R/-monoid is an MV-algebra if and only if it satisfies the

identity =—x = x. Now, in our case, C is an MV-algebra if and only if it satisfies
the identity ~c—cz = (z — f(0)) — f(0) = =. O

Introduce now on the set C' = Fix(f) the binary operation “@®¢” for z,y € C as
follows: = ®¢ y := ~¢c(—cx © ~¢y).

Proposition 15. An R¢-monoid C is an MV-algebra if and only if t ®¢ f(0) = x
for each x € C.

Proof. If # =(M;®,V,A,—,0,1) is an arbitrary bounded commutative R{-
monoid, put @y := =(—x © ) for arbitrary 2,y € M. By [7], Remark 2.12, ./ is
an MV-algebra if and only if it satisfies the identity x @ 0 = x. From this we obtain
our proposition for the R¢-monoid C. |

Recall the notion of a filter of an MV-algebra.

Definition. Let &/ be an MV-algebra and () # F' C A. Then F is called a filter
in &, if it holds:

1. Ve,y e F;x Oy € F

2.VeeFze Ajx < 2=z € F.
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Lemma 16. If f is a modal operator on an MV-algebra o/ and K = Ker(f) =
{x € A: f(z) =1}, then K is a filter in < .

Proof. 1€ Ky, thus Ky # 0.

1. Let z,y € Ky. Then f(z ®y) = f(z) © f(y) = 1, therefore x © y € K.

2. Ifx € Ky, z€ Aand z < z, then 1 = f(z) < f(2), therefore f(z) = 1, that
means z € Ker(f). O

Definition. A filter ' of an MV-algebra o7 is called modal if there exists a
modal operator f on o7 such that F' = Ker(f).

Proposition 17. If a € B(&/) then the interval [a,1] ={x € A: a<2x <1} isa
modal filter in 7.

Proof. Sincea € B(«), it holds that [a, 1] is the principal filter in </ generated
by the element a. We will show that [a,1] = Ker(hy). It is known that if a €
B(4), then a is complemented in the lattice (4;V, A, 0,1) and its negation —a is its
complement. Hence if # € A, then x € Ker(h,) if and only if 1 = he(z) = ~a® z =
—a V &, which occurs if and only if a < z, i.e.x € [a, 1]. O

If o7 is an MV-algebra and a € B(«/), denote I(a) :=[0,a] = {x € A: 0 < z < a}.
For arbitrary elements z,y € I(a) define z @,y = z ® y and —,z := —2 O a.
Then it holds (see e.g.[8]) that I(a) = ([0, a]; B4, 7a,0) is an MV-algebra and that
for the operation of multiplication “®,” in I(a) it holds x ®, y = x ® y for each
x,y € I(a). For arbitrary a € B(«/) define the mapping f*: I(a) — I(a) such that
f%(z) = f(z) ©a = f(z) Aa for each z € I(a).

Theorem 18. If o/ is an MV-algebra, a € B(</) and f is a modal or a strong
modal operator on &/, then f® is a modal or a strong modal operator on the MV-
algebra I(a), respectively.

Proof. Letz,y € I(a).

1. It holds = < f(z) and = < a, hence z < f(z) Aa = f*(x).

2. fe(f* (@) = f(f(@)ha) = f(f(x)ANa)Aa = f(f(@))Af(a) = f(z)Na = f*(x).

3. ffroy) = flroy) ha = (fl@)o fly) ha = flz) 0 fly) ©a©a =
(f(x) ©@a) © (f(y) ©a) = f*(z) © f*(y).

4. Let f be strong. Then f*(z @ f%(y)) = fla ® (fly) Aa)) Na = f(z D f
(f)na))ha= fla®(f(f)Afa)Aa= flz®(f(y)Afla)Na=flzd flyA
D) Na=fz®f)Aa=Ffzdy)Aa=fzoy) O

Definition. a) An ordered pair (&, f) is called a modal MV-algebra, if o7 is an
MV-algebra and f is a modal operator on 7.
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b) If (&4, f1) and (e, f2) are modal MV-algebras and ¢: A; — A, is a mapping,
then ¢ is called a modal MV-homomorphism, if it is an MV-homomorphism and if
o(f1(x)) = fa(e(x)) for each x € A;.

Theorem 19. Let (7, f) be a modal MV-algebra and let a € B(«/) N Fix(f).
Put p,(x) == a®x = a Az for each x € A. Then ¢, Iis a surjective modal MV-
homomorphism of (<, f) onto (I(a), f*).

Proof. By [8], Theorem 9, it holds that ¢, is a surjective homomorphism of
the MV-algebra & onto the MV-algebra I(a). Further, for each x € A, ¢, (f(z)) =
0O f(@) = (@) © f(@) = fla®z®a) = f(gar) ©a) = flpa(e) ® fla) =
fla(x)) ®a= f%pa(x)), therefore the MV-homomorphism ¢, is modal. O

Proposition 20. If &/ is an MV-algebra and f is a modal operator on <7, then
the congruences on the modal MV-algebra (<, f) coincide with the congruences on
the MV-algebra <.

Proof. Itisobvious that every congruence on (<, f) is also a congruence on 7.

Let now 6 be a congruence on 7. It holds that there exists a one to one cor-
respondence between congruences and filters of MV-algebras. If Fp is the filter
corresponding to 6, then (z,y) € 6 if and ouly if (z ® ~y) © (—x B y) € Fy, i.e.if and
only if (y — z) ® (x — y) € Fy, for each z,y € .

Let (z,y) € 0. Then (z — y) ® (y — z) € Fp, hence also f(x — y) © f(y — =) =
f((x = y)® (y — x)) € Fy. By Lemma 2(ii) it holds f(z — y) < f(z) — f(y) and
fly = x) < fly) — f(x), so we get (f(x) — f(y) © (f(y) — f(x)) € Fy and that
means (f(x), f(y)) € 0. Therefore 6 is a congruence on (&7, f). O

As an immediate consequence we get the following theorem.

Theorem 21. Let (7, f) be a modal MV-algebra and 6 be a congruence on <.
Let f(z/0) = f(x)/0 for each x € A. Then the mapping f is a modal operator on
the factor MV-algebra <7 /0. If f is a strong modal operator then also the modal
operator f is strong.
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